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Abstract 

This paper considers some bootstrap version of the existing confidence intervals 
for estimating the parameter of an autoregressive process of order one model. A 
simulation study has been conducted to compare the performance of the 
proposed intervals using two important measures: coverage probability and 
average width. It appears from our simulation study that all methods have 
confidence coefficient closest to the given confidence coefficient, however, our 
proposed bootstrap intervals have small average widths as compare to its 
counterpart. A real life data are analyzed, which supported the simulation 
results to some extent. We believe that the findings of this study will make 
important contribution to the time series literature. 
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1. Introduction 

A time series is an ordered sequence of values of a variable that 
occurred at equally spaced points in time. It is well known that the time 
series analysis comprises methods for analyzing time series data in order 
to extract meaningful statistics and other characteristics of a data set. 
Another very widely used area known as time series forecasting or 
predicting of future values based on observed data. To predict any series 
of data, one might need to know about the values of population 
parameter of the model. Since the parameters are unknown, it is 
essential to estimate them from the observed data. To estimate 
parameters, there are two methods available in literature: (i) point 
estimation, (ii) confidence interval estimation. Since point estimator is 
not reliable, one can rely on the confidence interval method, which will 
capture the true population parameter in repeated samples with some 
confidence. Recently, confidence interval for an AR(1) time series model 
has been given considerable attention in the literature. Fuller [5] 
initiated to construct a confidence interval of an AR(1) parameter based 
on the AR coefficient, which is estimated by the ordinary least squares 
(OLS) method. Evidences (Dickey and Fuller [2] and others) show that 
the limiting distribution of this t-statistic based on the OLS method 
varies on different values of AR(1) parameter values. To overcome this 
noise, So and Shin [1] for an AR(1) model propose a new confidence 
interval estimators based on the Cauchy estimator, whose statistic have 
the standard normal limiting distribution for all ranges of the AR 
parameters values. Their Monte-Carlo simulations for an AR(1) process 
shows that the proposed test is more powerful than the Fuller [5] test. It 
also shows that So and Shin [1] proposed confidence interval has shorter 
average lengths than the Fuller [5] suggested interval. Phillips et al. [7] 
suggested a better new simple confidence interval for an AR(1) parameter 
as compare to Beong and Dong [1] interval based on an instrumental 
estimator, which has better finite sample properties according to Phillips 
et al. [7] simulation studies. Gallagher and Tunno [6] proposed an 
interval for an AR(1) parameter for small samples to improve finite 
sample properties by combining the OLS estimator and the Cauchy 
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estimator. Their simulation evidences show that the suggested interval 
has shorter average width as compare to the Beong and Dong [1] interval 
and the Phillips et al. [7] interval. To improve finite sample properties, 
recently, Ferebee and Ashton [4] constructed an interval by combining 
the weighted least square estimator and the sample autocorrelation 
function of lag one. Their simulation results show that their proposed 
interval has better finite sample properties as compare to the proposed 
Fuller [5] interval. To improve finite sample performance one can 
typically use bootstrapping, which is a frequently used computer-based 
non-parametric procedure familiarized by Efron [3]. It is a technique, 
which necessitates no assumptions regarding the underlying target 
population and can be applied to a range of circumstances. The 
bootstrapping confidence interval of an AR(1) model in context of time 
series analysis is limited in literature. The purpose of this paper is to 
propose some bootstrap versions of confidence interval for an AR(1) 
process and is to compare their performances to the existing intervals by 
a simulation study. The structure of the paper is as follows: We review 
and propose some confidence intervals for an AR(1) model in Section 2. 
Simulation study with results is discussed in the Section 3. Real life 
application has been given in the Section 4 and Section 5 concludes the 
paper. 

2. Existing and Proposed Confidence 
Intervals (CI) for an AR(1) Model 

Consider the following AR(1) process: 

,,,2,1,1 nteyy ttt …=+ρ= −  

where ty  is a time series data and te  is a sequence of independent and 

identically distributed (i.i.d.) errors having zero mean and finite variance 

.2σ  The available existing intervals and our proposed bootstrap versions 
intervals are briefly explained in this section. 
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2.1. Fuller CI 

According to Fuller [5], the ( ) CI%1100 α−  for ρ  is given by 

l ( l ) l ( l )= ρ − α ρ = ρ + α ρ2 2and ,LCL z se UCL z se  

where l ( l )11
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 is the standard error of lρ  and 2zα  is 

the standard normal quantile with an area of 2α  to its right. 

2.2. Beong and Dong CI 

Beong and Dong [1] proposed an interval based on the Cauchy 
estimator (has certain advantages over the proposed Fuller [5] confidence 
interval). Their proposed ( ) CI%1100 α−  for ρ  is defined as 

l ( l ) l ( l )α α= ρ − ρ = = ρ + ρ2 2and ,c c c cLCL z se UCL LCL z se  
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l ( l ) ( ) l2
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t tt y y n−=
= − ρ − ρσ ∑  is the OLS estimator and 2αz  is 

the standard normal quantile with an area of 2α  to its right. 

2.3. Philips et al. CI 

Phillips et al. [7] suggested an interval based on the Cauchy 
estimator and showed that this estimator has asymptotically optimal 
precision properties in a certain class of instrumental variable 
estimators. Their proposed ( ) CI%1100 α−  for ρ  is defined as 

l ( l ) l ( l )α α= ρ − ρ = = ρ + ρ2 2and ,c c c cLCL z se UCL LCL z se  
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 is defined above and 2αz  is the 

standard normal quantile with an area of 2α  to its right. 

2.4. Gallagher and Tunno CI 

Gallagher and Tunno [6] proposed an interval, which is a small 
sample correction of the intervals suggested by So and Shin [1] and 
Phillips et al. [7]. They constructed an interval for ρ  around a linear 

combination of the OLS estimator and the Cauchy estimator. Their 
proposed ( ) CI%1100 α−  for ρ  is defined as 

l ( l ) l ( l )= ρ − α ρ = ρ + α ρ2 2Var and Var ,LCL z UCL z  

 where ( l )
( )

−=

−=
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ρ =

∑
∑
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n y
 and 2αz  is the standard 

normal quantile with an area of 2α  to its right. 

2.5. Ferebee and Ashton CI 

To improve coverage probability, Ferebee and Ashton [4] proposed 
interval based on a linear combination of the Cauchy estimator and the 
sample autocorrelation function of lag one. The ( ) CI%1100 α−  for ρ  is 

given by 

( ) ( ( )) ( ) ( ( )) ,1ˆ1ˆand1ˆ1ˆ 22 pVzpUCLpVzpLCL α+=α−=  

where l ( ) ( ( ) )
21 22
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 is the variance of the 

error process and 2αz  is the standard normal quantile with an area of 

2α  to its right. 
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2.6. Proposed Bootstrap CIs 

Let ( ) ( ) ( ) ( ),,,, 21
∗∗∗∗

= nXXXX …  where the i-th sample is denoted 

( )iX  for Bi ,,2,1 …=  and B is the number of bootstrap samples. The 

bootstrap estimate of ρ  is ∗ρi  for n estimates. We proposed the following 

bootstrap version confidence intervals of :ρ  

2.6.1. Bootstrap Fuller (BF) CI 

The ( ) CI%1100 α−  for ρ  is given by 

l ( l ) l ( l )∗ ∗
α α= ρ − ρ = ρ + ρ2 2and ,LCL z se UCL z se  

 where ∗
α 2z  is the ( ) th-2α  quintile of the z-statistic. 

2.6.2. Bootstrap Beong and Dong (BSS) CI 

The ( ) CI%1100 α−  for ρ  is given by 

l ( l ) l ( l )∗ ∗
α α= ρ − ρ = = ρ + ρ2 2and ,c c c cLCL z se UCL LCL z se  

 where ∗
α 2z  is the ( ) th-2α  quintile of the z-statistic. 

2.6.3. Bootstrap Phillips et al. (BP) CI 

The ( ) CI%1100 α−  for ρ  is given by 

l ( l ) l ( l )∗ ∗
α α= ρ − ρ = = ρ + ρ2 2and ,c c c cLCL z se UCL LCL z se  

 where ∗
α 2z  is the ( ) th-2α  quintile of the z-statistic. 

2.6.4. Bootstrap Gallagher and Tunno (BGT) CI 

The ( ) CI%1100 α−  for ρ  is given by 

l ( l ) l ( l )∗ ∗
α α= ρ − ρ = ρ + ρ2 2Var and Var ,LCL z UCL z  

 where ∗
α 2z  is the ( ) th-2α  quintile of the z-statistic. 
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2.6.5. Bootstrap Ferebee and Ashton (BTE) CI  

The ( ) CI%1100 α−  for ρ  is given by 

( ) ( ( )) ( ) ( ( )),1ˆ1ˆand1ˆ1ˆ 22 pVzpUCLpVzpLCL ∗
α

∗
α +=−=  

 where ∗
α 2z  is the ( ) th-2α  quintile of the z-statistic. 

3. Simulation Study 

Since a theoretical comparison among the intervals is not possible, a 
simulation study has been conducted in this paper to find some good 
intervals based on calculated coverage probability and average length 
width of selected intervals. The design of our study is as follows: 

3.1. Simulation design 

Since, random samples are an important component for estimating 
parameter, we have varied sample sizes as follows: n = 20, 50, and 100. 
For each n, random samples are generated from an AR(1) process with 
normal error distribution and various parameter values of  

,8.0,6.0,5.0,5.0,7.0,8.0,9.0 −−−−=ρ  and 0.9 to see effects of ρ  on 

our considered confidence intervals. 5000 replications are used for each 
case and 2500 bootstrap samples for each n. The most common 95% 
confidence interval for the confidence coefficient is used. In order to 
compare performance of the various intervals, the following criterions are 
considered: (i) coverage probability and (ii) mean width on the resulting 
confidence intervals. Simulation results for various values of ρ  are 

tabulated for selected values of n in Tables 3.1 to 3.3, respectively. 

 

 

 

 



Table 3.1. Coverage probability and average width of selected intervals when data generated 
from an AR(1) model with for various values of AR coefficients and n = 20  

AR(1) parameter values 

Intervals ρ = − 0.9 ρ = − 0.8 ρ = − 0.7 ρ = − 0.5 ρ = 0.5 ρ = 0.6 ρ = 0.8 ρ = 0.9 

OLS 0.9425 0.9433 0.9434 0.9436 0.9417 0.9425 0.9378 0.9394 

 3.6818 3.7039 3.7309 3.7502 3.7531 3.7454 3.7073 3.6800 

Beong and Dong 0.9628 0.9510 0.9489 0.9442 0.9458 0.9425 0.9500 0.9615 

 0.5988 0.7276 0.8305 0.9796 0.9784 0.9148 0.7305 0.5999 

Phillips et al. 0.9600 0.9453 0.9431 0.9386 0.9378 0.9365 0.9437 0.9557 

 0.5837 0.7092 0.8095 0.9548 0.9537 0.8917 0.7120 0.5847 

Gallagher and Tunno 0.9245 0.8996 0.8931 0.8748 0.8751 0.8754 0.8995 0.9196 

 0.4974 0.5932 0.6692 0.7765 0.7762 0.7306 0.5960 0.4986 

Tunno and Erwin 0.9227 0.9372 0.9383 0.9401 0.9402 0.9420 0.9306 0.9175 

 0.4801 0.5753 0.6498 0.7561 0.7547 0.7100 0.5776 0.4812 

Bootstrap OLS 0.9373 0.9410 0.9401 0.9407 0.9406 0.9587 0.9548 0.9317 

 3.5847 3.6377 3.6919 3.7244 3.7428 3.7435 3.6626 3.6357 

Bootstrap Beong and Dong 0.9596 0.9475 0.9463 0.9431 0.9450 0.9325 0.9457 0.9548 

 0.5830 0.7146 0.8218 0.9728 0.9757 0.9144 0.7217 0.5927 

Bootstrap Phillps et al. 0.9552 0.9402 0.9402 0.9366 0.9368 0.9252 0.9398 0.9500 

 0.5683 0.6965 0.8010 0.9482 0.9510 0.8912 0.7034 0.5776 

Bootstrap Gallagher and Tunno 0.9151 0.8937 0.8886 0.8708 0.8734 0.8649 0.8913 0.9118 

 0.4843 0.5826 0.6622 0.7712 0.7741 0.7302 0.5888 0.4926 

Bootstrap Tunno and Erwin 0.9134 0.9315 0.9345 0.9380 0.9387 0.9436 0.9474 0.9118 

 0.4675 0.5650 0.6430 0.7509 0.7526 0.7096 0.5706 0.4926 

 



Table 3.2. Coverage probability and average width of selected intervals when data generated 
from an AR(1) model with for various values of AR coefficients and n = 50  

AR(1) parameter values 

Selected Intervals ρ = − 0.9 ρ = − 0.8 ρ = − 0.7 ρ = − 0.5 ρ = 0.5 ρ = 0.6 ρ = 0.8 ρ = 0.9 

OLS 0.9788 0.9757 0.9699 0.9569 0.9584 0.9638 0.9738 0.9786 

 3.8246 3.8346 3.8370 3.8569 3.8500 3.8452 3.8326 3.8230 

So and Shin 0.9554 0.9505 0.9458 0.9465 0.9462 0.9449 0.9533 0.9538 

 0.3368 0.4352 0.5074 0.6091 0.6095 0.5646 0.4357 0.3381 

Phillips et al. 0.9535 0.9476 0.9435 0.9441 0.9436 0.9424 0.9515 0.9513 

 0.3334 0.4308 0.5023 0.6029 0.6033 0.5589 0.4313 0.3347 

Gallagher and Tunno 0.9025 0.8877 0.8794 0.8808 0.8808 0.8740 0.8959 0.9014 

 0.2753 0.3516 0.4070 0.4851 0.4855 0.4511 0.3519 0.2766 

Tunno and Erwin 0.9388 0.9446 0.9465 0.9458 0.9479 0.9450 0.9434 0.9378 

 0.2719 0.3476 0.4026 0.4802 0.4804 0.4464 0.3479 0.2731 

Bootstrap OLS 0.9780 0.9752 0.9729 0.9575 0.9574 0.9641 0.9790 0.9826 

 3.7681 3.7886 3.8726 3.8222 3.8289 3.8346 3.8200 3.7379 

Bootstrap So and Shin 0.9525 0.9472 0.9483 0.9449 0.9447 0.9443 0.9525 0.9502 

 0.3319 0.4299 0.5121 0.6036 0.6061 0.5630 0.4342 0.3305 

Bootstrap Phillips et al. 0.9503 0.9443 0.9460 0.9431 0.9424 0.9416 0.9503 0.9481 

 0.3285 0.4256 0.5070 0.5975 0.6000 0.5574 0.4299 0.3272 

Bootstrap Gallagher and Tunno 0.8972 0.8836 0.8826 0.8752 0.8786 0.8729 0.8936 0.8957 

 0.2712 0.3474 0.4108 0.4817 0.4828 0.4499 0.3508 0.2704 

Bootstrap Tunno and Erwin 0.9347 0.9428 0.9495 0.9416 0.9452 0.9453 0.9501 0.9456 

 0.2679 0.3435 0.4064 0.4767 0.4778 0.4451 0.3468 0.2670 

 



Table 3.3. Coverage probability and average width of selected intervals when data generated 
from an AR(1) model with for various values of AR coefficients and n = 100 

AR(1) parameter values 

Selected Intervals ρ = − 0.9 ρ = − 0.8 ρ = − 0.7 ρ = − 0.5 ρ = 0.5 ρ = 0.6 ρ = 0.8 ρ = 0.9 

OLS 0.9906 0.9868 0.9780 0.9684 0.9695 0.9745 0.9857 0.9940 

 3.8704 3.8780 3.8816 3.8828 3.8858 3.8818 3.8772 3.8716 

So and Shin 0.9495 0.9465 0.9501 0.9475 0.9458 0.9469 0.9491 0.9511 

 0.2270 0.3011 0.3557 0.4282 0.4277 0.3960 0.3016 0.2261 

Phillips et al. 0.9483 0.9456 0.9488 0.9458 0.9450 0.9462 0.9480 0.9501 

 0.2259 0.2996 0.3540 0.4261 0.4256 0.3940 0.3001 0.2250 

Gallagher and Tunno 0.8888 0.8802 0.8867 0.8790 0.8758 0.8767 0.8860 0.8940 

 0.1839 0.2420 0.2847 0.3415 0.3411 0.3163 0.2425 0.1832 

Tunno and Erwin 0.9404 0.9465 0.9463 0.9481 0.9473 0.9463 0.9484 0.9444 

 0.1828 0.2407 0.2832 0.3397 0.3393 0.3147 0.2412 0.1822 

Bootstrap OLS 0.9907 0.9868 0.9772 0.9708 0.9680 0.9778 0.9862 0.9943 

 3.8540 3.8725 3.8942 3.8932 3.8873 3.9667 3.8539 3.9053 

Bootstrap So and Shin 0.9482 0.9465 0.9502 0.9478 0.9449 0.9506 0.9470 0.9537 

 0.2261 0.3007 0.3569 0.4294 0.4279 0.4046 0.2998 0.2281 

Bootstrap Phillips et al. 0.9475 0.9455 0.9493 0.9466 0.9435 0.9494 0.9458 0.9525 

 0.2249 0.2992 0.3551 0.4272 0.4257 0.4026 0.2983 0.2269 

Bootstrap Gallagher and Tunno 0.8877 0.8801 0.8876 0.8802 0.8754 0.8863 0.8835 0.8976 

 0.1831 0.2417 0.2856 0.3424 0.3412 0.3232 0.2410 0.1848 

Bootstrap Tunno and Erwin 0.9403 0.9463 0.9467 0.9505 0.9470 0.9508 0.9487 0.9483 

 0.1820 0.2404 0.2842 0.3406 0.3395 0.3216 0.2397 0.1837 
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3.2. Results discussion 

For a better presentation, the coverage probability and mean width 
are presented in Figures 3.1(a) and 3.1(b), respectively. From the Figure 
3.1(a), it is evident that for strong correlation (negative and positive) 
coefficients, coverage probabilities for all intervals but the Gallagher and 
Tunno interval and the Tunno and Erwin interval are very close to the 
nominal level. Overall, all intervals performed well in terms of coverage 
probability except the Gallagher and Tunno interval and also its 
bootstrap version interval. These two versions coverage probabilities 
observed below the nominal level. 
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Figure 3.1(a). Coverage probabilities for selected intervals. 

 

Figure 3.1(b). Mean widths for selected intervals. 
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Figure 3.2(a) presents coverage probabilities when data are 
generated from an AR(1) model for various values of ρ  and moderate 

sample size n = 50. We observed from this figure that the So and Shin 
interval and the Phillips et al. interval have better coverage probabilities 
as compare to others. It is also observed that our proposed bootstrap 
versions have better coverage probabilities as compare to selected 
intervals for construction of confidence intervals for an AR(1) model. 
Figure 3.2(b) reveals average widths for selected intervals. We found that 
the Gallagher and Tunno interval and the Tunno and Erwin interval 
have shorter mean width as compare to other selected intervals. We also 
notice that our proposed all bootstrap versions have smaller average 
widths as compare to selected intervals. 
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Figure 3.2(a). Coverage probabilities for selected intervals. 

 

Figure 3.2(b). Mean widths for selected intervals. 

 



ESTIMATION OF AR(1) PARAMETER WITH … 15

In the Table 3.3, we have reported coverage probabilities and mean 
widths when data are generated for the large sample size n = 100 and 
different values of .ρ  In the Figure 3.3(a), we have presented coverage 

probabilities and in the Figure 3.3(b), we have presented the average 
widths. From the Figure 3.3(a), we observed that all intervals coverage 
probabilities are very close to the nominal value 0.95 except the Fuller 
interval, the Gallagher and Tunno interval, bootstrap versions of the 
Fuller interval and the Gallagher and Tunno interval. But it is noted 
that all our proposed bootstrap versions coverage probabilities are close 
to the nominal level as compare to all non-bootstrap versions. In the 
Figure 3.3(b), we presented average mean widths of selected intervals. It 
is clear that our proposed bootstrap versions (except the Fuller bootstrap 
version interval) have smaller average widths as compare to others. 
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Figure 3.3(a). Coverage probabilities for selected intervals. 

 

Figure 3.3(b). Average width for selected intervals. 
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4. Application 

In this section, we consider a real-life example to demonstrate the 
performance of our selected confidence intervals. The data set used is the 
time series data namely Dhaka daily general stock price index closing 
values (Source: https://www.dsebd.org) for the period of March 3, 2003 to 
May 31, 2007. The Dhaka daily general stock price index is a weighted 
index accounting for companies across major industry groups such as fuel 
and power, insurance, textiles, bank, cement, engineering, tannery, 
pharmaceuticals and chemicals, industries and others. The data set is 
visualized in the Figure 4.1 to understand movement with respect to 
time. It is observable prices smoothly increased up to 2005 then some 
volatile patterns for next two years (appropriate reasons of this pattern, 
refer the newsletters are published by the Dhaka Stock Exchange). 

 

Figure 4.1. Time plots of Dhaka daily general stock price index closing 
values. 

We want to find the 95% confidence intervals of the parameter of an 
AR(1) model for the daily stock price of Dhaka Stock Exchange. Findings 
of this section may be important for stock investors who are interested to 
know different appearances of stock market to increase their investment 
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performances, policy makers who would like to focus to make sensible 
financial decisions, applied researchers who want to improve the model 
specifications of this index and others. We observed average daily stock 
price is 1427.37 and standard deviation is 382.55 meaning considered 
prices under our study are ranging 1044.82 to 1809.92. 

Since we are interested to find confidence interval of an AR(1) 
parameter, that’s why we need to know whether our considered data set 
follows an AR(1) model or not. For this in the following Figure 4.2 we 
have plotted autocorrelation with respect to various lags (known as 
correlogram). Figure 4.2 confirms us a pattern of an AR(1) model. 

 

Figure 4.2. Correlogram for an AR(1) process of Dhaka stock price index 
values. 

The 95% confidence interval and it’s corresponding width of an AR(1) 
parameter are tabulated in the Table 4.1 and for better understanding in 
the Figure 4.3. 
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Table 4.1. 95% confidence interval and it’s corresponding width of 
selected intervals 

Intervals Confidence interval Width 

Fuller (0.7597, 1.2403) 0.4807 

So and Shin (0.9824, 1.0149) 0.0325 

Phillips et al. (– 5.2242, 7.2215) 12.4456 

Gallagher and Tunno (0.9879, 1.0123) 0.0244 

Tunno and Erwin (0.9853, 1.0157) 0.0304 

Bootstrap OLS (0.7856, 1.2285) 0.4429 

Bootstrap So and Shin (0.9841, 1.0141) 0.0300 

Bootstrap Phillips et al. (– 4.5528, 6.9148) 11.4677 

Bootstrap Gallagher and Tunno (0.9946, 1.0136) 0.0190 

Bootstrap Tunno and Erwin (0.9860, 1.0140) 0.0280 

 

Figure 4.3. Width for an AR(1) process of Dhaka stock price index 
values. 

We noted that the bootstrap version of the Gallagher and Tunno 
interval has the smallest width followed by the Gallagher and Tunno 
interval, the bootstrap version of Tunno and Erwin interval, the 
bootstrap version of So and Shin interval, the Tunno and Erwin interval, 
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the So and Shin interval, the bootstrap version of the Fuller interval, the 
Fuller interval, the bootstrap version of Philips et al. interval and the 
Philips et al. interval. Note that the Philips et al. interval has the highest 
width as compare to other intervals. 

5. Conclusion 

This paper proposes some bootstrap versions confidence intervals 
that are available in literature for estimating the parameter of the 
autoregressive time series model of order 1. To compare the performance 
of the intervals estimators, a simulation study has been done. Data were 
generated from an autoregressive time series model of order 1 and 95% 
coverage probability and average width are calculated for all intervals. 
Our observation from the simulation study is that all proposed intervals 
have coverage probabilities closest to the nominal level. However, the 
average widths for all proposed bootstrap versions have lower average 
widths as compare to the existing intervals. A real life application has 
been given to illustrate the simulation findings of the paper. 
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