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Abstract 

In this paper, we consider group rings RG of finite groups over Frobenius rings. 
We introduce the concept of Jacobson ring for G and give necessary conditions 
over R to RG be a Frobenius ring. 

1. Introduction 

A ring R is called quasi-Frobenius (QF ring for short) if R is right 
noetherian and right self-injective. The class of QF rings appeared for 
first time in the work of Brauer, Nesbitt, Nakayama, and others, in the 
form of Frobenius algebras. The study of such algebras was motivated by 
the representation theory of finite groups. Since then, QF rings have 
been studied and have been also used in coding theory. For instance, 
Wood proved that a finite ring R has the extension property for Hamming 
weight if and only if R is Frobenius ([5], Theorems 2.2 and 2.3). 
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We say that a QF ring R is a Frobenius ring if ( ) ( )( )RJRRsoc RR ≅  

as R-modules and for QF rings, we have an important and very 
interesting result, due to Nakayama ([3]), which shows that R is QF if 
and only if G is finite and RG is QF. 

Since group algebras GF  of finite groups G over a field F  which are 
finite-dimensional are Frobenius rings ([1], Example 16.56 and Theorem 
16.21) and if R is a finite Frobenius ring and G is a finite group, then the 
group ring RG is also Frobenius ([4], Example 4.4 (v)), we are interested 
in studying the following equivalence: R is Frobenius if and only if RG is 
Frobenius. 

In this paper, we shall show that this equivalence holds for a class of 
rings R. 

2. Basic Results 

In this section, we shall present basic results which will be used in 
this paper. 

Let R be a ring. In this paper, ( )RJ  will always denote the Jacobson 

radical of R and ( )RRsoc  and ( )Rsoc R  the right and left socle of R. 

Lemma 2.1. For any artinian ring R, we have: 

( ) ( ){ } ( ) ( ){ }.00 =⋅∈==⋅∈= RJrRrRsocandrRJRrRsoc RR  

Theorem 2.2 ([2], Theorem 2.7.16). Let R be a semisimple ring. Then, 
R is artinian and the following conditions hold: 

(i) R contains no nonzero nilpotent two-sided ideals; 

(ii) R contains no nonzero nilpotent left ideals; 

(iii) ( ) ( ).0=RJ  

Conversely, if R is artinian and any of the above conditions holds, 
then R is semisimple. 
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Theorem 2.3 ([1], Theorem 15.1). Let R be a ring. Then, R is QF if 
and only if R is (2-sided) artinian and the following conditions hold: 

(1) ( )( ) AAannann lr =  for any right ideal ;RA ⊆  

(2) ( )( ) BBannann rl =  for any left ideal .RB ⊆  

Proposition 2.4 ([1], Corollary 15.6). For any QF ring R, we have 

( )( ) ( ) ( ) ( )( ).RJannRsocRsocRJann rRRl ===  

Proposition 2.5 ([1], Example 15.6-3). Let .1 i
n
i RR ∏ =

=  Then R is 

QF ring if and only if iR  is QF, for all index i. 

Proposition 2.6 ([3]). Let R be a ring and G be a finite group. Then R 
is QF if and only if RG is QF. 

Theorem 2.7 ([1], Theorem 15.27). For any commutative ring R, the 
following are equivalent: 

(1) R is QF; 

(2) ,21 sRRRR ×××≅  where each iR  is a local artinian ring with 

simple socle. 

Definition 2.8. Let R be a QF ring. We say that R is a Frobenius 
ring if ( ) ( )( )RJRRsoc RR ≅  as R-modules.  

Lemma 2.9 ([4], Remark 1.3). Let R be a commutative artinian ring. 
Then R is QF if and only if R is Frobenius. 

Proposition 2.10 ([1], Example 16.19-3). Let .1 i
n
i RR ∏ =

=  Then R 

is Frobenius ring if and only if iR  is Frobenius, for all index i. 

It follows from Proposition 2.6 and Lemma 2.9 that if R is commutative 
ring, G finite group and if RG is Frobenius, then R is Frobenius. Wood 
proved the converse of this result for finite Frobenius rings. 
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Proposition 2.11 ([4], Example 4.4 (v)). Let R be a finite Frobenius 
ring and G be a finite group. Then RG is Frobenius. 

Theorem 2.12 (Maschke’s Theorem [2], Theorem 3.4.7). Let G be a 
group and R be a ring. Then, the group ring RG is semisimple if and only 
if the following conditions hold: 

(i) R is a semisimple ring; 

(ii) G is finite; 

(iii) G  is invertible in R. 

3. New Results 

Let R be an artinian ring, G be a finite group, and RG be the group 
ring of G over R. We denote by ( )RJ  the Jacobson radical of R and by 

( )RGJ  the Jacobson radical of RG. 

Since R is artinian ring, the ideal ( )RJ  is nilpotent ideal and, it is 

not difficult to see, the set 

( ) ( )












∈= ∑
∈

RJagaGRJ gg
Gg

 

is an ideal of RG and ( ) ( )( ) .GRJRGRJRG ≅  Since ( )RJ  is nilpotent, 

the ideal ( )GRJ  is also nilpotent so ( ) ( ).RGJGRJ ⊆  

Definition 3.1. Given a finite group G, we say that an artinian ring 
R is a Jacobson ring for G if the equality ( ) ( )RGJGRJ =  holds. 

Proposition 3.2. Given a finite group G, an artinian ring R is a 
Jacobson ring for G if and only if ( )( ).RJRG U∈  
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Proof. Suppose that ( )( ).RJRG U∈  Since R is artinian, the factor 

ring ( )RJR  is semisimple ring, so ( )( )GRJR  is also semisimple by 

hypothesis. Thus, ( )( )( ) .0=GRJRJ  Consequently, ( )( ) 0=GRJRGJ  

and the equality ( ) ( )RGJGRJ =  holds. 

Now, suppose that the equality ( ) ( )RGJGRJ =  holds. Since 

( )( )( ) ( )( ) 0== GRJRGJGRJRJ  and ( )( )GRJR  is artinian, the 

group ring ( )( )GRJR  is semisimple, then, by Maschke’s theorem, 

( )( ).RJRG U∈   

Corollary 3.3. Let R be an artinian local ring and G be a finite group 

such that ( )Rcharm =  does not divide ,kG  where k  denotes the 

nilpotency index of ( ).RJ  Then R is a Jacobson ring for G. 

Proof. Let R be an artinian local ring. Then, ( )RJR  is a division 

ring. We shall show that ( )( ).RJRG U∈  If ( )( ),RJRG U∈/  then 

( ).RJG ∈  Since k  denotes the nilpotency index of ( ),RJ  we have that 

.0=kG  This implies .kGm   

Notice that if m is prime number, we can re-write Corollary 3.3 as 
follows: 

Corollary 3.4. Let R be an artinian local ring and G be a finite group 
such that ( )Rcharm =  prime does not divide .G  Then R is a Jacobson 

ring for G. 

The next result shows that we can give a precise description of the 
socle of RG if R is a Jacobson ring for G. 

Proposition 3.5. Let G be a finite group and R be a Jacobson ring for 
G. Then, the following equality holds: 

( ) ( ) ( ) .












∈== ∑
∈

RsocagaGRsocRGsoc gg
Gg
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Proof. Since, by hypothesis, R is a Jacobson ring for G, we have 
( ) ( ) .GRJRGJ =  Let x be an element of ( ),RGsoc  so by Lemma 2.1, 

0=⋅α x  for all ( ) ( ) .GRJRGJ =∈α  Write ,gxx g
Gg
∑
∈

=  then =⋅ xr  

( ) 0=⋅∑
∈

gxr g
Gg

 for all ( )RJr ∈  and for all .Gg ∈  So 0=⋅ gxr  and 

then ( ).Rsocxg ∈  This implies that ( ) ( ) .GRsocRGsoc ⊆  

On the other hand, if gxx g
Gg
∑
∈

=  with ( )GRsocxg ∈  and if 

gyy g
Gg
∑
∈

=  with ( ) ,GRJyg ∈  then ( ) 0
,

=⋅=⋅ ∑
∈

ghxyxy hg
Ghg

 so 

( )RGsocx ∈  by Lemma 2.1. 

Consequently, we have ( ) ( ) .GRsocRGsoc =   

Now we are ready to prove the main result of this paper. 

Theorem 3.6. Let G be a finite group and R be an artinian ring. If R 
is Frobenius and a Jacobson ring for G, then RG is Frobenius. 

Proof. First of all, it is not difficult to see that the set ( )( )GRJR  is a 

RG-module with the following multiplication =⋅ ∑∑
∈∈

:gbga g
Gg

g
Gg

 

.
,

ghba hg
Ghg

∑
∈

 

Claim 1. ( ) ( )( )GRJRGRsoc R ≅  as RG-modules. 

Proof. Since R is Frobenius, there exists an isomorphism of              
R-modules 

( ) ( ),: RJRRsoc R →ϕ  

and its linear extension ( ) ( )( )GRJRGRsoc R →ϕ :~  is an isomorphism 

of RG-modules and the proof of Claim 1 is completed. 
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Claim 2. ( )( ) ( )GRJRGGRJR ≅  as RG-modules. 

Proof. The following mapping ( ) ( )( )GRJRGRJRG →φ :  given 

by gaga g
Gg

g
Gg

∑∑
∈∈

=









φ  is the desired isomorphism. 

Finally, since R is Frobenius, we have the following isomorphism of 
RG-modules: ( ) ( ) ( )( ) ( ) ( ).RGJRGGRJRGGRJRGRsocRGsoc RG =≅≅=  

  

Corollary 3.7. Let R be a commutative artinian ring with 
( ) 0=Rchar  and let G be a finite group. The following conditions are 

equivalent: 

(i) R is Frobenius; 

(ii) RG is Frobenius. 

Proof. Let R be an artinian ring with ( ) .0char =R  By Corollary 3.3, 

R is a Jacobson ring for G so, if R is Frobenius, by Theorem 3.6, RG is 
Frobenius. 

On the other hand, if RG is Frobenius, then RG is QF so R is also QF 
and, by Lemma 2.9, R is Frobenius. 

Corollary 3.8. Let R be a commutative artinian ring with 
( ) 0=Rchar  and let G be a finite group. The following conditions are 

equivalent: 

(i) RG is QF; 

(ii) RG is Frobenius. 

Proof. Suppose that RG is Frobenius. Then, by definition, RG is QF. 
Now, if RG is QF, then R is QF and, again by Lemma 2.9, R is Frobenius. 
Thus, by Theorem 3.6, RG is Frobenius.  
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