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Abstract 

In the field of statistical modelling, the distance or divergence measure is a 
criterion widely known and widely used tool for theoretical and applied 
statistical inference and data processing problems. In this paper, we deal with 
the well-known Alpha-Beta-divergences (which we shall refer to as the            
AB-divergences), which are a family of cost functions parametrized by two 
hyperparameters and their tight connections with the notions of Hilbertian 
metrics and positive definite (pd) kernels on probability measures. An attempt 
is made to describe this dissimilarity measure, which can be symmetrized using 
its two tuning parameters, alpha and beta. We compute the degree of symmetry 
of the AB-divergence on the basis of Hilbertian metrics. We investigate the 
desirable properties that the proposed approach needs to build a positive 
definite kernel ( )yx,K  corresponding to this symmetric AB-divergence. 
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We establish the effectiveness of our approach with experiments conducted on 
Support Vector Machine (SVM) and the applicability of this method is described 
in an algorithm from this symmetric divergence in image classification. 

We perform experiments using the conditionally defined positive K  and the 

kernel transformed tK  and show that these kernels have the same proportion 

of errors for the Euclidian divergence and the Hellinger divergence. We also 
observe large reductions in error for the Itakura-Saito divergence with the tK  

kernel in classifications than classical kernel methods. 

1. Introduction 

Over the last few years, the need for specific design of kernels for a 
given data structure has been recognized by the kernel community. 
Recently, a Hilbert space embedding for probability measures has been 
proposed, with applications including dimensionality reduction, 
independence testing, and machine learning. Therefore, the use of 
specialized metrics and divergences measures in the successful design of 
dimensionality reduction techniques has been progressively acquiring 
much recognition. There are numerous real scenarios and applications for 
which the parameters of interest belong to non-flat manifolds, and where 
the Euclidian geometry results are unsuitable to evaluate the 
similarities. Indeed, this is usual case in the comparison of probability 
density functions. So, for better results the kernel should be adjusted as 
accurately as possible to the subjacent structure of the input space. 
Kernel on probability measures are very handy for dealing with graph 
problems, trees, manifolds, acoustic and signal processing and they 
became very popular because of their many applications. In probability 
theory, the distance between probability measures is used in studying 
pattern analysis, see John Shawe Taylor and Nello Cristianini [20]. 
Another application is in giving a bounded probability space X  and using 
the kernel to compare arbitrary sets in that space, by putting, e.g., the 
uniform measure on each set. This is extremely useful to compare data of 
variable length, sequence data in bioinformatics, for example, kernel 
methods for predicting protein-protein in interactions (Asa Ben-Hur and 
Willian Stafford Noble [3]). 
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The 20th century witnessed tremendous efforts to exploit new 
distance/similarity measures for a variety of applications. There are a 
substantial number of distance/similarity measures encountered in many 
different fields, such as biology, chemistry, computer science, ecology, 
information theory, geology, mathematics, physics, statistics, etc. 
Distance or similarity measures are essential to solve many pattern 
recognition problems, such as classification, clustering, and retrieval 
problems. Various distance/similarity measures that are applicable to 
compare two probability density functions. The advantages of 
discriminative learning algorithms and kernel machines are combined 
with generative modelling using a novel kernel between distributions. In 
the probability product kernel, data points in the input space are mapped 
to distributions over the sample space and a general inner product is 
then evaluated as the integral of the product of pairs of distributions. 
Recently, developments in machine learning, including the emergence of 
support vector machines, have rekindled interest in kernel methods 
(Vapnik [29]; Hastie et al. [13]) and take full advantage of well known 
probabilistic models. These kernel methods have been widely employed to 
solve machine learning problems such as classification and clustering. 
Although there are many existing graph kernel methods for comparing 
patterns represented by undirected graphs, the corresponding methods 
for directed structures are less developed. In particular, for domains such 
as speech and images kernel functions have been suggested as good ways 
to combine an underlying generative model in the feature space and 
discriminant classifiers such as SVM. 

Of particular concern to mathematicians is that several divergence 
measures are asymmetric. 

However, in support vector machine classifier, asymmetric kernel 
functions are not used so far, although they are frequently used in other 
kernel classifies. 
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In this paper, we suggest an alternative procedure by exploiting the 
symmetric AB-divergence measures, and present an information 
theoretic kernel method for assessing the similarity between a pair of 
directed graphs. 

In particular, we show that our kernel method provides an efficient 
tool in statistical learning theory, and SVM have demonstrated highly 
competitive performance in numerous real-world applications, such as 
medical diagnosis, bioinformatics, face recognition, image processing, and 
text mining, which has established SVM as one of the most popular, 
state-of-the-art tools for knowledge discovery and data mining. Similar to 
artificial neural networks, SVM possess the well-known ability of being 
universal approximators of any multivariate function to any desired 
degree of accuracy. 

The remainder of this paper is organized as follows. In Section 2, we 
set out the basic notations, the definitions and assumptions. We will 
show the close relationship between Hilbert metrics and pd kernels so 
that in general, statements for one category can be easily transferred to 
another. In Section 3, we define a Hilbertian metrics the Alpha-Beta-
Symmetric divergence (ABS-divergence) and the property of this 
divergence are studied and we are given a corresponding positive definite 
kernels. In Section 4, the results of the simulations are presented. 
Therefore, we evaluated the performance of the proposed metrics and 
kernels in tree classifications. And we proposed and apply an algorithm 
in experimental dataset to analysis the robustness of the divergence 
proposed. In the last section we presented the conclusion. 

2. Basic Notation and Some Results 

For a class of Hilbertian metrics, that are metrics which can be 
isometrically embedded into a Hilbert space. We will also use the 
following function class to define this subclass of metrics. 
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2.1. Hilbertian metrics, positive definite kernels 

The positive definite kernel ( )yx,K  corresponds to an inner product 

Hyx φφ ,  in some feature space .H  The class of conditionally positive 

definite (cpd) kernel is less well known. Nevertheless this class is of great 
interest since Schölkopf show in (Moreno et al. [26]) that all translation 
invariant kernel methods can also use the larger class of cpd kernels. 
Therefore we give a short summary of this type of kernels and their 
connection to Hilbertian metrics. 

Definition 2.1. A real valued function K  on XX ×  is positive 
definite (pd) (resp., conditionally positive definite (cpd)) if and only if K  is 

symmetric and ( ) ,0,, ≥∑ jiji
n

ji xxcc K  for all ,,,1,, nixn i …=∈∈ XN  

and for all ,,,1, nici …=∈ R  (resp., for all nici ,,1, …=∈ R  with 

0=∑ i
n
i c ). 

The following theorem describes the class of Hilbertian metrics: 

Theorem 2.2 (Schoenberg [15]). 

A metric space ( )d,X  can be embedded isometrically into a Hilbert 

space if and only if ( )yxd ,2−  is conditionally positive definite (cpd). 

Lemma 1 (van den Berg et al. [19]). 

Let K  be a kernel defined as ( ) l ( ) l ( ) l ( )0 0, , , ,x y x y x x x y= − −k k kK  

l ( )0 0, ,x x+ k  where .0 X∈x  Then K  is pd if and only if lk  is cpd. 

Similar to pd kernel one can also characterize cpd kernel. Presently, 

one can write all cpd kernel in the form : ( ) +φ−φ−= 2
2
1, HK yxyx  

( ) ( ).yfxf +  The cpd kernel corresponding to Hilbertian (semi)-metrics 

are characterized by ( ) 0=xf  for all ,X∈x  whereas if K  is pd it follows 



MACTAR NDAW et al. 80

that ( ) ( ) .0,2
1 ≥= xxxf K  We also would like to point out that for SVM 

the class of Hilbertian (semi)-metrics is more important than the class of 
pd kernels. Namely, one can show (see Hein and Bousquet [24]), which 
the solution and optimization problem of the SVM only depends on the 
Hilbertian (semi)-metric, which is implicitly defined by each pd kernel. 
Moreover a whole family of pd kernels induces the same metric. 
Hilbertian metrics since, using Lemma 1, one can always define a 
corresponding pd kernel. Nevertheless for the convenience of the reader 
we will often explicity state the corresponding pd kernels. 

2.2. Hilbertian metrics on probabilitity measures 

For simplicity, we are dealing with the case of discrete probability 
measures on { },,,2,1 ND …=  where .1 ∞≤≤ N  Given a Hilbertian 

metrics d on ,+R  it is easy to see that the metric on 1
+M

d  given by  

( ) ( )ii
N
i qpdQPD ,, 2

1
2

1 ++
∑ =

= RM
 is a Hilbertian metric on ( ).1 D+M  The 

following proposition extends the simple discrete case to the general case 
of a Hilbertian metrics on a probability space .X  In order to simplify the 
notation, we define ( )xp  to be the Radon-Nikodym derivative ( )( )xddP µ   

of P with respect to the dominating measure .µ  

Proposition 1. Let P and Q be two probability measures on µ,X  be 

an arbitrary dominating measure of P and Q and 
+Rd  (where 

+Rd  is the 

positive part of the real line with 0 included) be a 21 -homogeneous 

Hilbertian metrics on .+R  Then 
( )

2
1 XM+

D  defined as 

( ) ( ) ( )( ) ( )xdxqxpdQPD µ++ ∫= ,:, 22
1 RXM

  (1) 

is a Hilbertian metrics on ( )
( )

21
1.
XM

XM
+

+ D  is independent of the 

dominating measure .µ  
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Proof. First we show by using the 21 -homogeneity of 1
+R

d  is 

independent of the dominating measure .µ  We have 

( ) ( ) ν
ν

ν
ν

ν
ν

dd
d

d
d

d
dQ

d
d

d
dPddd

dQ
d
dPd µ

µµ
=µ

µµ ++ ∫∫ ,,, 22
11 MXMX

 

( ) ,,2
1 ν

νν
dd

dQ
d
dPd

+∫=
MX

 

where we use that 2
+Rd  is 1-homogeneous. It is easy that ( )X

M
2

1
+

− D  is 

conditionally positive definite, simplicity take for every nPPn ,,, 1 …N∈  

the dominating measure n
Pi

n
i∑ =1  and use that 2

+
− RD  is conditionally 

positive definite. 

Remark 1. It is in principe very easy to build Hilbertian metrics on 

( )XM1
+  using arbitrary Hilbertian metrics on +R  and plugging it into 

the Equation 1. 

But the key property of the method we propose is the independence of 

the metric d on ( )XM1
+  of the dominating measure. That is we have 

generated a metric which is invariant with respect to general coordinate 
transformations on ,X  therefore we call it a covariant metric. 

2.3. λ-homogeneous Hilbertian metrics and positive definite 
kernels on +R  

In this paper, we consider the class of Hilbertian metrics on 
probability measure, therefore the Hilbertian metrics on +R  is the main 

element of our approach. This is the event we require that the Hilbertian 
metrics on +R  is λ-homogeneous. The class of λ-homogeneous Hilbertian 

metrics on +R  was characterized by Fuglede: 
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Definition 2.3 (Topsøe [12] and Fuglede [5]). 

A Hilbertian metrics is λ-homogeneous if and only if ( ) =cqcpd ,2  

( )qpdc ,2λ  for all .+∈ Rc  

Theorem 2.4 (Fuglede [5]). 

A symmetric function +++ →× RRR:d  with ( ) yxyxd =⇔= 0,  

is a γ-homogeneous, continuous Hilbertian metrics d on +R  if and only if 

there existe a (necessarily unique) non-zero bounded measure 0≥ρ  on 

+R  such that 2d  can be written as 

( ) ( ) ( )., 22 λρ−= λ+γλ+γ∫
+

dyxyxd ii
R

  (2) 

Using Lemma 1, we define the corresponding class of pd kernel on 

+R  by choosing .00 =x  We will see later that this corresponds to 

choosing the zero-measure as origin of the RKHS (reproducing kernel 
Hilbert space). 

Corollary 1. A symmetric function +++ →× RRR:k  with ( )yx,k  

00 =⇔= x  is a 2γ-homogeneous continuous pd kernel K  on +R  if and 

only if there exists a (necessarily unique) non-zero bounded symmetric 
measure 0≥κ  on R  such that K  is given as 

( ) ( ) ( ) ( )., λ= λ−γλ+γ∫ κdyxyx ii
R

K   (3) 

Proof. If we have the form given in (2), then it is obviously               

2γ-homogeneous and since ( ) ( )Rκγ= 2, xyxK  we have ( ) .00, =⇔= xxxK  

The other direction follows by first noting that ( ) 0,0,0 00 =φφ=K  

and then by applying Theorem 2.4, where κ  is the symmetrized version 
of ρ  around the origin, together with Lemma 1 and ( ) =φφ= yxyx ,,K  

( ( ) ( ) ( )).0,0,,2
1 222 ydxdyxd ++−    
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Andrezej Cichocki et al. ([2]) proposed an interesting two-parameter 
family of metrics, the AB-divergence defined: 

Definition 2.5. The function RRR →× ++:d  defined as: 

( )( )

( ( ) ( ) )

( ( ) )

( ( ) ( ) )

( ( ) )

( )



















=βα−

≠β=α+−
β

≠β−=α−+
α

=β≠α+−
α

≠β+αβα
β+α

β−
β+α

α−
αβ

−

=

αβ
α

β
β

−
α

α

α

α

αα
α

α
α

β+αβ+αβα

βα

,0,forloglog2
1

,0;0forlog1

,0for1log1

,0,0forlog1

,0,,for1

,

2

2

1
2

2

,

yx

xy
x
yy

x
y

x
y

yx
y
xx

yxyx

yxdAB
 

(4) 

where ( )( )yxdAB ,,βα  is a divergence on .+R  

2.4. A brief recall of support vector machine (SVM) 

SVM were developed by Cortes and Vapnik [9] for binary 
classification. Their approach may be roughly sketched as follows: 

● Class separation: basically, we are looking for the optimal 
separating hyperplane between the two classes by maximizing the 
margin between the classes closest points, the points lying on the 
boundaries are called support vectors, and the middle of the margin is 
our optimal separating hyperplane. 

● Nonlinearity: when we cannot find a linear separator, data points 
are projected into an (usually) higher-dimensional space where the data 
points effectively become linearly separable (this projection is relised via 
kernel techniques). 

● Problem solution: the whole task can be formulated as a quadratic 
optimization problem which can be solved by known techniques etc. 
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An implicit mapping Φ  was used by SVM of the input data into a 
high-dimensional feature space defined by a kernel function, the inner 
product ( ) ( )yx ΦΦ ,  between the images of two data points yx,  was 

returning by the function in the feature space. The kernel function can be 
represented as 

( ) ( ) ( ) ,,, yxyx ΦΦ=K   (5) 

where HX →Φ :  is the projection function, this function project x and 
y into the feature space H. 

Relationship between the kernel method and SVM: Schölkopf showed 
that the class of cpd kernel can be used in SVM due to the translation 
invariant of the maximal margin problem in the RKHS, and the kernel 
can be used in SVM to the classification, the regression etc. if we found a 
good kernel function. The advantage of kernel method and SVM is that 
we can found and used a kernel for a problem particular that could be 
applied directly to data without the need for a feature extraction process. 
This was used in (Hein and Bousquet [24]) to show that the properties of 
the SVM only depend on the Hilbertian metrics. That is all cpd kernel are 
generated by a Hilbertian metric ( )yxd ,  through ( )yx,K  

( ) ( ) ( ),,2 ygxgyxd ++−=  where R→X:g  and the solution of the 

SVM only depends on the Hilbertian metric ( )., yxd  

3. Main Results 

Generally the AB-metrics is not symmetric. We extend and improve 
this family a two-parameter symmetric. The metrics we propose is very 
interesting since it is a symmetric and smoothed variant from               
AB-metrics. This allows us to recover all property in Hilbertian metrics 

on ( )XM1
+  from the family of two-parameter. 
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Theorem 3.1. The function +++ →× RRR:d  defined as: 

( )

( ) ( )

( ) ( )

(( ) ( ) ( ) ( ) )

( ) ( )

( )



















=β=α−

≠β=α−
β

≠β−=α−++−
α

=β≠α−
α

≠βα−−
αβ

=

β

β
ββ

−
α

α
−

α

α

α

α
αα

α

α
αα

ββαα

βα

,0loglog2
1

,0,0log1

,02log1

,0,0log1

,0,1

,

2

11
2

2

,

foryx

for
y
xyx

for
x
y

y
x

y
xyx

for
y
xyx

foryxyx

yxdABS
 

(6) 

is a γ-homogeneous Hilbertian metrics on ,+R  note that ( )βα,
ABSd  is 

symmetric. 

Proof. The proof for the symmetry is trivial because this function is 

symmetric by construction and ( )( ) ( )( ),,, ,, yxdccycxd ABSABS
βαβ+αβα =  where  

,β+α=γ  then ( )βα,
ABSd  is γ-homogeneous. Second for simplicity note that 

( ) ( ),,, 2 yxdyx −=K  where 2d  is a Hilbertian metrics. The all 

conditions for theorem of Schoenberg satisfied we have 2d−  cpd.  

We can now apply the principle to construct Hilbertian metrics on 

( ),1 XM+  of building Hilbertian metrics on ( )XM1
+  and use the family of 

γ-homogeneous Hilbertian metrics ( )βα,
ABSd  on .+R  

Definition 3.2. We proposed two ways to build the symmetry 
divergence: 

Type-1: 

( ) [ ( )( ) ( )( )].,,2
1 ,,, PQDQPDD ABABABS

βαβαβα +=  (7) 
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Type-2: 

( )( ) [ ( )( ) ( )( )].2,2,2
1, ,,, QPQDQPPDQPD ABABABS

+++= βαβαβα  (8) 

For the construction ABS-divergence, we used the definition above 
and we apply the Proposition 1 from the Section 2. We obtain the 
symmetric ABS-divergence (Type-1) defined as: 

Definition 3.3. Let P and Q be two probability measures on X  

(probability space) and µ  be an dominating measure of P, Q and ( )βα,
ABSd  

be a γ-homogeneous Hilbertian metrics on ,+R  then ( )βα,
ABSD  defined as: 

( )( )

( ) ( ) ( )

( ) ( ) ( )

(( ) ( ) ) ( )

( ) ( ) ( )

( ) ( )



















=β=αµ−

≠β=αµ−
β

≠β−=αµ−++−
α

=β≠αµ−
α

≠β≠αµ−−
αβ

=

∫
∫
∫
∫
∫

β

β
ββ

α

α

α

α

α

α
αα

α

α
αα

ββαα

βα

,0forloglog2
1

,0,0forlog1

,0for2log1

,0,0forlog1

,0,0for1

,

2

2

,

xdyx

xd
q
pqp

xd
q
p

p
q

q
pqp

xd
q
pqp

xdqpqp

QPDABS

X

X

X

X

X

 

(9) 

is a γ-homogeneous Hilbertian metrics on ( ).1 XM+  

The ABS-divergence has the following basic properties: 

Properties 1.  

(1) Convexity: ( )( )QPDABS ,,βα  is convex with respect to both P and Q. 

(2) Strict Positvity: ( )( ) 0,, ≥βα QPDABS  and ( )( ) 0,, =βα QPDABS  if and 

only if .QP =  
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(3) Continuity: The ABS-divergences is continuous function of real 
variant ( )βα,  in the whole range including singularities. 

(4) Symmetric: ( )( ) ( )( ).,, ,, PQDQPD ABSABS
βαβα =  

(5) γ-homogeneous: ( )( ) ( )( ).,, ,, QPDccQcPD ABSABS
βαβ+αβα =  

We used the instrument of building Hilbertian metrics on ( )XM1
+  

and use the family of ( )β+α -homogeneous Hilbertian metrics ( )βα,
ABSd  on 

.+R  This yield as special case the following measures on ( ).1 XM+  

( ) ( ) ( )( ) ( )., ,
, xdxqxpQPDABS µϕ= βα
βα ∫X  

Table (a). ( )QPDABS ,,βα  divergence 

Divergence ( )QPDABS ,,βα  Function ( ) ( )( )xqxpβαϕ ,  Name 

( ) ( )QPDABS ,1,1  ( ) ( )( )2xqxp −  Euclidian 

( )( )QPDABS ,1,21  ( ( ) ( ) ) ( ) ( )( )xqxpxqxp −−2  1V -Hellinger 

( )( )QPDABS ,1,21 −  ( ( ) ( ) ) ( ) ( )( )
( ) ( )xqxp

xqxpxqxp −
−2  2V -Hellinger 

( ) ( )QPDABS ,21,21  ( ( ) ( ) )24 xqxp −  Hellinger 

( ) ( )QPDABS ,0,1  ( ) ( )( ) ( ( )
( ) )xq
xpxqxp log−  Jeffrey 

( )1,1
ABSD  corresponds to the square of Euclidian metric, ( )21,21

ABSD  

corresponds to the Hellinger metric which is well known in the statistics 

community, ( )0,1
ABSD  correspond to the Jeffreys metric, ( )1,21

ABSD                 

1V -Hellinger and ( )
2

1,21 VDABS
− -Hellinger is a variant of Hellinger metrics. 
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For completeness we also give the corresponding pd kernels on 

( ),1 XM+  where we take in Lemma 1 the zero measure as ( ).1
0 XM+∈x  

This choice seems strange at first since we are dealing with probability 
measures. But in fact the whole framework presented in this paper can 
easily be extended to all finite, positive measure on .X  For this, set zero 
measure is a natural choice of the origin. 

( )( ) ( ) ( ) ( ),,1,1 xdxqxpQP µ= ∫XK  

( )( ) ( ( ) ( ) ( ) ( ) ) ( ),,1,21 xdxqxpxpxqQP µ+= ∫XK  

( )( ) ( ) ( ) ( ),4,21,21 xdxqxpQP µ= ∫XK  

( )( ) ( ( ( ) ( )) ( ( )
( ) ) ( ) ( )) ( ).log2

1,0,1 xdxqxpxq
xpxpxqQP µ−−−= ∫XK  

Using two-parameters is so difficult in practice that is the reason why 
we will proposed a one-parameter family to improve the ABS-divergence. 

Proposition 2. The function +++ →× RRR:d  defined as: 

( )
( )

( )








=−

≠−

=
,0loglog2

1

,02
1

,
2

2

tforyx

tfort
yx

yxd

tt

t  (10) 

is a 2t-homogeneous Hilbertian metric on +R  if .0≠t  

Proof. Note that 2
td  is symmetric by construction and it’s easy to 

verified the property of Hilbertian metric. Therefore, we show that: 

( ) ( ( ) ( ) ) ( ) ( ).,22
1, 222222 yxdct

yxc
t

cycxcycxd t
t

ttttt
t =−=−=   
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We used the Proposition 1 of building Hilbertian metrics on ( )XM1
+  

and use the family of 2t-homogeneous Hilbertian metrics 2
td  on .+R  

Therefore, we obtain as special case the following measures on ( ).1 XM+  

( ) ( ) ( )( ) ( ).,2 xdxqxpQPD tt µϕ= ∫X  

Table (b). Divergence using 2t-homogeneous Hilbertian metric 

Divergence ( )QPDt ,2  Function ( ) ( )( )xqxptϕ  Name 

( )QPD ,2
1  ( ) ( )( )22

1 xqxp −  Euclidian 

( )QPD ,2
1−  ( ( ) ( ) )

211
2
1

xqxp −  S-Euclidian 

( )QPD ,2

2
1−

 ( ( ) ( ) )22 xqxp −  Hellinger 

( )QPD ,2

2
1  (

( ) ( )
)2112

xqxp
−  S-Itakura Saito 

2
1D  correspond to the square of Euclidian metric, 2

1−D  is an other 

version of Euclidian metric, 2
21D  corresponds two Hellinger metric. The 

Hellinger metric is well-known in the statistics community. 
2
1−D  is a 

symmetrized Itakura-Saito distance (called also the COSH distance) 
modified. 

For completeness we also give the corresponding pd kernels on 

( ),1 XM+  where we take in Lemma 1 the zero measure as ( ).1
0 XM+∈x  

This choice seems strange at first since we are dealing with probability 
measures. But in fact the whole framework presented in this paper can 
easily be extended to all finite, positive measures on .X  For this, set zero 
measure is a natural choice, the origin. 
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( ) ,2
1, 2 µ= ∫ d

t
yxQP

tt
t

X
K  

( ) ( ) ( ) ( ),2
1,1 xdxqxpQP µ= ∫XK  

( ) ( ) ( ) ( ),1
2
1,1 xdxqxpQP µ= ∫−

X
K  

( ) ( ) ( ) ( ),2,
2
1 xdxqxpQP µ= ∫XK  

( )
( ) ( )

( ).12,
2
1 xd

xqxp
QP µ= ∫− X

K  

4. Numerical Studies 

To show the interest of our study the examples of applications have 
been proposed. For the SVM, we made studies on the classification of the 
genes and on the sex of the cats knowing the weight of the heart and the 
body. As regards classification of images, we use our divergences to 
separate them into two classes. 

4.1. Application in SVM 

The performance of metrics and kernels has been compared in 
classification using some data sets. All data sets were split into a training 
(80%) and a test (20%) set. For the problem we use SVM method. For all 

experiments we use the one-parameter family 2
td  of Hilbertian metric, 

the corresponding kernel cpd is 2
tD−=K  with varying penality constants 

C in the SVM, and we use the transformed kernel (Gaussian 
transformation): 

( ) ( ) .,
22 2, σ−= QPD

t teQPK  

The test error was evaluated by the best parameters C and .σ  The best 
constant penality C and σ  was found by cross-validation. 
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We evaluated the performance of the proposed metrics and kernels in 
three classifications tasks. Firstly, we generated a artificial data and we 
consider the test error for kernels proposed. Secondly as a real world 
application, let us test the ability of SVM to predict the class of a tumour 
from gene expression data. We use a publicly available datasets of gene 
expression data for 128 differents individuals with acute lymphoblastic 
leukemia (ALL). Here we focus on predicting the type of the disease       
(B-cell or T-cell). Therefore we test a SVM classifier for cancer diagnosis 
from gene expression data, and we test the ability of a SVM to predict the 
class of the disease from gene expression. Finally, we apply the data from 
support functions and datasets for Venables and Ripley’s MASS. We use 
the anatomical data from domestic cats, the heart and body weights of 
samples of male and female cats used for digitalis experiments. The cats 
were all adult, over 2kg body weight. We presented the classification 
error according to the sex of the cats. 

The tables shows the test errors for the kernels corresponding to 
{ }1;21;21;1 −−=t  from the ABS-divergence resp. and their 

Gaussian transformation. The first line shows the kernels directly (dir) 
and the second line the Gaussian transformation (tran). 

Table 1. Test error using data artificial 

Euclidian Hellinger Itakura-Saito S-Euclidian 
Divergence 

error C σ error C σ error C σ error C σ 
Data (dir) 0.0001 10 – 0.005 10 – 0.26 100 – 0.13 10 – 

 Artificial (tran) 0.0001 10 1.5 0.005 10 0.5 0.125 100 1.5 0.17 100 1.5 

Table 1 shows that the errors committed using the conditionally 
defined positive K  and the kernel transformed tK  are in the same 

proportion for the Euclidian divergence and the Hellinger divergence 
with 5.1=σ  and the constant C = 10. While for the Itakura-Saito 
divergence the errors committed in the classifications with the tK  kernel 

are smaller than that of the K  kernel with 5.1=σ  and C = 100. So the 
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classification with the transformed core is better than the one used 
directly. For the S-Euclidian divergence by varying the constant C, C = 10 
for the kernel K  and C = 100 for the kernel transforms ,tK  we find that 

the transformed nucleus offers a better classification result. Thus in all 
cases we notice that the transformed nuclei give the best results. For the 
sake of using the transformed nuclei for artificial data. 

Table 2. Test error using data “ALL” gene 

Euclidian Hellinger Itakura-Saito S-Euclidian Divergence 
error C σ error C σ error C σ error C σ 

Data “ALL” (dir) 0.679 10 – 0.414 10 – 0.257 10 – 0.461 10 – 
 gene (tran) 0.0234 10 0.5 0.156 100 1.5 0.0468 100 1.5 0.164 100 1.5 

With the data gene (ALL), we find that the kernel transformed offers 
the best results for the classification. However with the use of kernels K  
it is the kernel constructed with the divergence of Itakura-Saito that 
gives the best classification results, followed by Hellinger, S-Euclidian 
and the Euclidian divergence. Whereas if we use kernel transformed, it is 
those built with Euclidian divergence that give the best results, followed 
by that of Itakura-Saito, Hellinger and S-Euclidian. 

Table 3. Test error using data cats “MASS” 

Euclidian Hellinger Itakura-Saito S-Euclidian Divergence 
error C σ error C σ error C σ error C σ 

Data “MASS” (dir) 0.236 1 – 0.326 1 – 0.340 1 – 0.326 10 – 
cats (tran) 0.194 1 0.5 0.326 10 0.5 0.368 1 0.5 0.181 1 0.5 

With the data cats (MASS), if we use kernel K  we have almost the 
same results for all measures of divergence. However with the modified 
kernel the classification obtained with the S-Euclidian divergence and 
the Euclidian divergence offer the best results. It should also be noted 
that for the divergence of Itakura-Saito it is the kernel K  that gives the 
best results. In conclusion, we retain that the choice of the best method 
depends on data and constants. 
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4.2. Applications in images classifications 

In this work, we apply the above proposed algorithm and also 
implement with the metrics proposed in the section above, to color image 
segmentation. The divergence we proposed gives a good classification 
with different threshold (k). In our experiments we used the data from 
the image (a) and apply our algorithm with different threshold. From 
these figures, we can see the results experimented by our algorithm. 
These results have been obtained with our divergences following some (k) 
values. 

Algorithm 

( )RclMX ,∈   matrix origin 

( )RclMX ,∈′   matrix sortie 

X ′   matrix null order cl ×  

for i rang ( ) :1,1 −l   

1P   1, −jiX  

2P   jiX ,1−  

If norm ( ) k<21, PP   

0P   (225, 225, 225) 

else:   

0P   (0, 0, 0) 

X ′   0P  
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4.2.1. Facial image segmentation 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

Figure 1. Results facial image segmentation. 
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In this part of the work we will make a brief presentation of the 
classification of an image. A presentation of the transformation with the 
corresponding divergence and the optimal threshold. The color image 
segmentation results is that: (a) corresponds to the original image,         

(b) image ( )0,1
ABSD -divergence with k = 2.4, (c) image ( )1,1

ABSD -divergence 

with k = 1354, (d) image ( )1,21 −
ABSD -divergence with k = 2.5, (e) image 

( )1,21 −
ABSD -divergence with k = 3.4, (f) image ( )0,1

ABSD -divergence with k = 3.5,             

(g) image ( )21,21
ABSD -divergence with k = 4.5, (h) image ( )1,1

ABSD -divergence 

with k = 1350, (i) image ( )21,21
ABSD -divergence with k = 5.5, (j) image 

( )1,21
ABSD -divergence with k = 50, and (k) image ( )1,21

ABSD -divergence with   

k = 80. 

From these figures (Figure 1), we can observe the experimental 
results of our algorithm on a facial image. Using on divergences in the 
proposed algorithm, we can observe the separation into two classes of our 
image according to the metric used with an adequate threshold. We can 
see some differences between the segmentation results images (b)-(k). For 

example, the images (b) and (f) given by the ( )0,1
ABSD  divergence showed a 

bleary delimitation of the original image (a); for the images (c), (e), (h), (i) 

we used (resp.,) ( ) ( ) ( ) ,,, 1,11,211,1
ABSABSABS DDD −  and ( )21,21

ABSD  divergences they 

correctly delineates the contour of the image (a); for the images (d), (g), (j) 

the ( ) ( ),, 21,211,21
ABSABS DD −  and ( )1,21D  divergences results are relatively 

homogeneous and do a good work. 
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4.2.2. Fruit image segmentation 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

Figure 2. Fruit image segmentation. 
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The images in Figure 2 correspond to a classification using the 
proposed algorithm. The classification uses our divergences with a 
certain decision threshold k. Image (a) corresponds to the original 
images. The image (b) corresponds to the classification using the 

divergence ( )1,1
ABSD  with a threshold k = 0.1, the image (c) is that of this 

divergence with the threshold k = 0.5. The images (d) and (e) correspond 

to the classification the divergence 
( )2

1
2
1 ,

ABSD  with the thresholds k = 0.1 

and k = 0.5, respectively. The classification made with the divergence 

( )1,2
1

ABSD  with the threshold k = 0.1 and k = 0.5, respectively corresponding 

to the (f) and (g). The images (h) and (i) are obtained with the divergence 

( )1,2
1 −

ABSD  with the thresholds k = 0.1 and k = 0.5. The images (j) and (k) 

correspond to the classification with the divergence ( )0,1
ABSD  with k = 0.1 

and k = 0.5, respectively. 

From these figures (Figure 2), we can observe the experimental 
results of our algorithm on a fruit image. Using on divergences in the 
proposed algorithm, we can observe the separation into two classes of our 
image according to the metrics used with an adequate threshold. For        
k = 0.1 figures (b), (d), (f), (h) present the better representation image 
than k = 0.5 images (c), (e), (g), (k). The fruits images representations 
depend on two things k and the divergences. But in this case we have a 
few differences between our divergences. 

5. Conclusion 

A general method to build Hilbertian metrics on probability measures 
from Hilbertian on +R  was presented. Using results from Cichocki and 

Amari from the Alpha-Beta-divergence, then we generalized this 
framework by incorporating the symmetry property. We propose a new 
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variant of Alpha-Beta-Symmetric divergence metrics (ABS-divergence) 
and kernels associated. Our main contributions consist of, first is to 
construct a new family of metrics, ABS-divergence and kernels, and 
second is to be integrated into SVM and algorithm classification. Our 
results, which are based on a choice of ABS divergence parameters 
leading to symmetric kernel ,tK  are very efficient compared to classical 

K-based methods. 
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