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Abstract 

In this paper, we study the estimation of the spectral density function and 
properties of the resulting estimator which called the periodogram. The 
statistical properties for this periodogram in case of actual observations and 
forecasted observations of the fuzzy time series are studied. Depending on 
MSEs which based on these statistical properties, the periodogram results can 
be compared in both cases. For this purpose a program that transfer the 
observed time series to fuzzy time series with large sizes is constructed. 

1. Introduction 

In physical sciences experimentalists often measure quantities with 
respect to an independent variable that is ordered such as time, depth or 
distance along a line. Time series analysis is the study of the statistical 
properties of such ordered measurements. The spectral analysis is an 
important technique in time series analysis. This technique can be of 
value in understanding physical and other kinds of data. The spectral 
analysis of time series is one of the oldest and most widely used 
techniques in the physical sciences. The basic idea behind spectral 
analysis is to decompose the variance (covariance) of a time series into a 
number of components. Each components can be associated with a 
particular frequency. Although the basic ideas and concepts behind 
spectral analysis are quite old two early references are Stokes [1] and 
Schuster [2]. The current wide spread use and interest in the subject 
arose because of three important events in late 1950 and mid 1960 the 
publication of the influential exposition by Blackman and Tukey [3]; the 
rediscover of the fast Fourier transform algorithm Cooley and Tukey [4]; 
and the increasing availability of powerful electronic computers which 
allowed practitioners to carry out the necessary computations. Spectral 
analysis is an industry standard in the physical sciences and can be 
readily done on general purpose computers using software in a variety of 
forms. As early as the late 19th century, Lee [5] introduced the 
periodogram which may be regarded as the origin of spectral analysis. 
There are many improvements for this periodogram by addition taper or 
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multitaper for this periodogram, also there are many of statistical studies 
and analytical conducted on this side (see Anderson [7] and Teamah [8], 
[9], [10], [11], [12], and [13]). The latter technique is a classical 
nonparametric tool for analyzing time series. Although the periodogram 
is an asymptotically unbiased estimate of the spectral density of an 
underlying stationary process, it is not consistent. Parzen [6] concerned 
with the spectral analysis of wide sense stationary time series which 
possess a spectral density function and whose fourth moment functions 
satisfy an inegrability condition (which includes Gaussian process). Here 
we have actual observations in our life which is a realizations of a process 
but it is not easy to find it, and seek to find spectral density function 
estimator which called the periodogram. By using Chen [17], the actual 
observations can be transformed into fuzzy observations and then to 
forecasted observations which carry numerical values. The statistical 
properties for this periodogram in case of actual observations and 
forecasted observations are studied. Depending on MSEs which based on 
these statistical properties, the periodogram results can be compared in 
case of actual observation and forecasted observations. We applied this 
on the maximum temperatures of Al Nuzha airport station in Alexandria 
for year 2016 as Table 1. 

 

 

 

 

 

 

 

 

 



Table 1. The maximum temperatures of Al Nuzha airport station in Alexandria for 
year 2016 

  Months 

  Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec 

1 19.00 19.78 23.28 21.39 25.5 26.22 30.00 31.00 31.00 28.00 26.00 23.28 

2 19.00 22.00 22.00 20.78 28.28 27.00 31.22 30.39 31.72 28.22 26.39 23.22 

3 19.00 20.00 24.00 22.39 35.5 35.22 30.78 31.22 35.22 28.00 25.00 21.28 

4 20.00 20.22 22.00 23.78 40.39 39.78 30.39 31.39 37.00 27.61 24.22 26.22 

5 19.00 18.00 30.00 27.00 31.61 26.39 29.00 32.78 32.00 27.39 23.39 26.00 

6 20.00 18.00 23.22 33.00 24.00 26.61 29.39 32.61 31.00 28.61 26.00 23.00 

7 19.00 19.39 22.61 24.22 23.00 27.00 30.50 31.89 31.22 29.00 26.00 23.00 

8 19.22 20.00 20.61 24.39 24.39 27.00 29.39 32.00 31.39 29.00 28.39 21.72 

9 16.00 19.00 20.00 22.39 24.39 27.61 31.00 31.00 31.22 29.00 26.00 21.00 

10 19.22 21.39 20.22 22.61 25.39 28.00 31.00 31.39 31.00 28.39 25.22 22.50 

11 20.00 22.22 22.00 27.22 24.00 28.61 35.00 31.39 30.78 28.00 25.11 23.00 

12 19.00 22.00 20.00 24.61 24.39 28.00 32.00 31.61 30.22 28.22 25.22 19.61 

13 19.00 20.22 18.28 25.00 26.00 27.78 28.00 32.00 30.00 29.39 25.78 21.50 

14 20.39 19.22 19.00 27.22 28.00 29.00 30.00 32.89 31.00 26.22 25.61 22.00 

15 21.00 16.00 20.39 25.00 35.39 31.50 29.61 33.5 31.22 27.22 24.50 21.28 

16 17.61 20.00 26.78 23.00 26.00 36.22 30.00 31.61 34.00 28.00 24.28 22.39 

17 20.00 19.72 21.00 26.72 26.00 29.61 30.00 32.61 30.00 28.61 24.00 22.22 

18 21.00 20.22 20.78 23.61 27.00 30.00 29.00 32.00 30.39 29.50 25.00 22.00 

19 21.00 20.61 22.00 22.00 26.00 34.00 30.00 31.39 29.28 28.00 25.11 21.78 

Days 

20 21.00 22.00 22.00 22.61 34.61 28.61 31.00 31.22 29.22 27.00 24.50 20.22 

 



Table 1. (Continued) 

  Months 

  Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec 

21 20.61 27.61 21.61 23.00 26.00 28.39 31.00 32.22 29.39 25.61 23.39 20.39 

22 22.00 21.22 21.39 30.61 26.00 29.00 30.22 32.39 30.39 27.61 22.39 20.61 

23 20.00 21.00 24.00 32.00 25.00 29.00 32.61 33.00 31.00 29.39 22.00 19.00 

24 21.22 20.72 21.61 34.22 26.00 33.00 30.78 33.00 34.00 32.28 21.00 20.61 

25 19.22 20.39 25.00 24.22 27.61 29.00 30.72 33.00 30.00 33.00 21.39 21.39 

26 20.61 20.00 25.00 24.11 30.78 32.22 31.00 34.00 30.39 29.00 21.00 20.72 

27 19.11 19.00 27.39 30.00 34.61 34.61 31.00 31.39 33.00 27.00 22.22 21.22 

28 18.72 20.00 30.22 24.78 27.28 36.22 32.00 32.00 28.39 26.22 22.00 20.00 

29 22.28  22.22 30.00 30.22 29.22 34.78 32.22 28.00 26.28 22.00 21.00 

30 21.39  21.39 27.00 42.39 29.00 31.00 31.39 28.22 27.00 22.39 21.00 

Days 

31 20.22  23.61  26.22  32.00 30.78  26.00  22.22 
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2. Properties of the Periodogram Method 

The periodogram ( )wI  is compute as the squared modulus of the 

discrete Fourier transform at frequencies w, and take the form 

( ) ( ) ,,1
2

1
π≤≤π−= ∑

=

− wetZnwI
n

t

iwt  (1) 

where ( )tZ  observation at time t. The analysis of the statistical 

properties of ( )wI  is important in that it shows the poor quality of the 

periodogram as an estimator of the PSD and, in addition, provides some 
insight into how we can modify the periodogram so as to obtain better 
spectral estimators. We split the analysis in two parts: bias analysis and 
variance analysis (see Priestley [14]). 

The bias and variance of an estimator are two measures often used to 
characterize its performance. A primary motivation is that the total 
squared error of the estimate is the sum of the bias squared and the 
variance. To see this, let a denote any quantity to be estimated, and let 
la  be an estimate of a. Then the mean squared error (MSE) of the 

estimate is: 

( l ) { l }2MSE a E a a≅ −  

{ l { l } { l } }2E a E a E a a= − + −  

{ l { l } } { l }2 2E a E a E a a= − + −  

l { l }{ } ( { l } ) + − − 2 Re .E a E a E a a  

( l ) { l }= + 2Var bais .a a  (2) 

By separately considering the bias and variance components of the MSE 
as following: 
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2.1. Bias analysis of the periodogram 

Since the expected value of the periodogram is defined (Stoica and 
Moses [69]) as: 

( )( )
( )

l( )1

1
,

n iw
n

E I w E e
− −
=− −

= γ∑ k
kk

  (3) 

where lγ k  denotes an estimate of the autocovariance sequence kγ  and 

defined as: 

l
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The sequence (8) is called triangular window, or the Bartlett window. By 

using ( ),kBw  we can write (7) as a DTFT: 

( ){ } [ ( ) ] .kkk
k iw

B ewwIE −∞

−∞=
γ= ∑   (9) 
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The DTFT of the product of two sequences is equal to the convolution 
of their respective DTFTs. Hence, (9) leads to 

( )( ) ( ) ( ) ,2
1 ψψ−ψ∅
π

= ∫
π

π−
dwWwIE B   (10) 

where ( )wWB  is the DTFT of the triangular window and ( )ψ∅  is spectral 

density function as mentioned in the first chapter. Previously, it has been 
concluded that this periodogram is asymptotically (for large n) unbiased, 
this can be expressed mathematically by 

( )( ) ( ).lim wwIEn ∅=∞→   (11) 

For more details, please refer to (Stoica and Moses [15]). 

2.2. Covariance analysis of the periodogram 

The finite-sample variance of ( )wI  can be easily established only in 

some specific cases, such as in the case of Gaussian white noise. The 
asymptotic variance of ( ),wI  however, can be derived for more general 

signals. In the following, we present an asymptotic (for 1≥n ) analysis of 
the variance of ( )wI  since it turns out to be sufficient for showing the 

poor statistical accuracy of the periodogram (for a finite sample analysis). 
Some preliminary discussion is required. A sequence ( ){ }te  is called 

complex (or circular) white noise if it satisfies 

{ ( ) ( )} ,,
2

stseteE δσ=∗  

and 

( ) ( ){ } .andallfor,0 stseteE =   (12) 
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Note that { ( ) }22 teE=σ  is the variance of ( ).te  Equation (12) can be 

rewritten as 

( )[ ] ( )[ ]{ }

( )[ ] ( )[ ]{ }

( )[ ] ( )[ ]{ }
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Hence, the real and imaginary parts of a complex white noise are real-

valued white noise sequences of identical power equal to ,22σ  and 

uncorrelated with one another. In what follows, we shall also make use of 

the symbol l ( )α
1 ,

n
O  for some ,0>α  to denote a random variable which 

is such that the square root of its second-order moment goes to zero at 

least as fast as ,1
αn

 as n tends to infinity. The asymptotic variance/ 

covariance of ( )wI  in the general case are: 

{ ( ) ( )( )[ ] ( ) ( )( )[ ]2211lim wIEwIwIEwIE
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Previously it has been concluded that this periodogram has a large 
variance, even for large n. For more details, please refer to (Stoica and 
Moses [15]). 

3. Proposed Method 

In this section, we present a method [16] for Chen to convert the 
ordinary time series into fuzzy time series and forecasting observation for 
the last series. This method aimed to attain better forecasting accuracy 
by using fuzzy time series and summarized in the following six steps: 
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(1) Define the universe of discourse and partition it into equally 
lengthy intervals. 

(2) Calculate the number of observations in each interval, and by 
doing so, there will be a re-division for each interval based on the number 
of observations contained in these interval. 

(3) Define linguistic values represented by fuzzy set iA  based on the 

re-divided intervals. 

(4) Fuzzify the actual observations. 

(5) Identify and establish fuzzy logical relationships based on the 
fuzzified observations. 

(6) Use set of rules to determine whether the trend of the forecasting 
goes up or down, this mean we defuzzify the fuzzy output into forecasted 
output. 

4. Stages of Building Simulation Experiments 

Depending on the program, the simulation experiments for this part 
consists of seven stages. 

(1) Stage of choosing the default parameters values by randomly 
select both of the sample sizes n and the default values for frequencies w. 

(2) Stage of bringing random observations from our life which is a 
realizations of a process but it is not easy to find it. We bringing here the 
maximum temperatures of Al Nuzha airport station in Alexandria for 
year 2016 as shown in Table 1. 

(3) Depending on the size of the sample, we randomly take some 
actual observations in the previous step and transform them to fuzzy 
observations. Defuzzify the fuzzy observations into forecasted 
observations which carrying numerical values. This transformation and 
defuzzification are completed by Chen [16]. 
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(4) Substituting by both types of observations in Equation (1) to 
obtain the periodogram in the case of actual observations, which is 
symbolized by ( )wI1  and in the case of the forecasted observations, which 

is symbolized by ( ).2 wI  

(5) Study the statistical properties which are the bias and the 
variance of both ( )wI1  and ( ).2 wI  

(6) Compare between ( )wI1  and ( )wI2  by using the MSE which 

depends on the statistical properties. 

(7) Repeat this comparison a lot with another sample sizes and with 
change of the default values for frequencies. 

5. Creating Program for the Large Sample Size 

Because of the time series maybe deals with large size samples and 
takes into account the length of the proposed method, we created 
program implemented this proposed method for the large sample size as 
hundreds, thousands or millions. Also use this program to apply 
simulation experiments. 

 

 

 

 

 

 

 

 

 



ABD EL-MONEIM A. M. TEAMAH et al. 162

6. The Results 

Table 2. The periodogram in case of actual observations and forecasted 
observations 

n w ( )wI1  ( )wI2  n w ( )wI1  ( )wI2  

0.02 170.35819 134.82559 0.02 29.900976 29.135670 

0.009 706.53464 708.50856 0.009 112.75412 112.69812 

0.03 66.333260 65.758763 0.03 10.796615 10.685451 

0.01 683.46336 686.85087 0.01 154.12567 152.65525 

0.004 2107.6057 2112.8801 0.004 938.27178 936.55098 

0.007 1595.1627 1609.2737 0.007 286.89489 272.98740 

0.08 13.156406 13.094207 0.08 0.9794824 0.9734677 

0.06 6.5554032 6.5023031 0.06 2.0878158 2.0975654 

0.05 13.156474 13.094223 0.05 1.4669779 1.4546001 

50 

0.07 4.4869086 4.4707815 

250 

0.07 2.1061621 2.0518602 

0.02 83.221004 83.430600 0.02 2.1061612 2.0518656 

0.009 221.75856 218.17692 0.009 150.23381 149.87430 

0.03 25.532098 24.927336 0.03 7.8455078 7.7762468 

0.01 683.46330 686.85080 0.01 121.86160 120.45476 

0.004 1800.4151 1744.5509 0.004 818.90386 814.34466 

0.007 1595.1627 1609.2737 0.007 261.42247 258.86507 

0.08 1.1639950 1.1696846 0.08 0.7119543 0.7162692 

0.06 2.6701001 2.6880069 0.06 1.3778661 1.4110343 

0.05 4.6687745 4.6221076 0.05 1.9238701 1.8791745 

120 

0.07 2.3167680 2.2773975 

 

310 

0.07 1.4343323 1.4370867 
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Table 2. (Continued) 

n w ( )wI1  ( )wI2   n w ( )wI1  ( )wI2  

0.02 44.525100 44.991901 0.02 22.036070 21.442731 

0.009 238.15376 238.25316 0.009 119.56787 118.68913 

0.03 12.743045 12.551134 0.03 9.6866210 9.6240370 

0.01 181.86370 181.66016 0.01 96.398410 97.428834 

0.004 974.86659 974.29167 0.004 703.96809 696.79300 

0.007 448.98284 455.87200 0.007 200.7328 201.87159 

0.08 0.4488206 0.4509409 0.08 0.5133610 0.5080475 

0.06 2.4200968 2.3885979 0.06 1.340107 1.3490445 

0.05 4.8805215 4.9670604 0.05 2.939900 2.9147945 

180 

0.07 2.0315685 2.0340340 

 

365 

0.07 0.8918780 0.8948026 

One can see that: 

(I) From Table 3, the properties for each periodogram are achieved 
and are, whenever the sample size increased, each periodogram has less 
bias and large variance. 
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Table 3. The statistical properties for ( )wI1  and ( )wI2  

n w Bias ( )( )wI1  Bias ( )( )wI2  Var ( )( )wI1  Var ( )( )wI2  

0.02 – 224557202.981 – 200091291.760 5.0425937657e+16 4.0036525968e+16 

0.009 – 656894.326104 – 654912.62493 431510155759.900 428910545086.960 

0.03 – 7103483098.99 – 7069851571.00 5.045947295e+19 4.9982801567e+19 

0.01 – 525393.716107 – 522131.492994 276038558018.985 272621295232.064 

0.004 – 88513.1139124 – 88296.6119801 7834571310.02340 7796291646.06844 

0.007 – 142193.850029 – 141797.602325 20219085064.0954 20106566682.0654 

0.08 – 4.7993412e+23 – 4.7392040e+23 2.3033694023e+47 2.2460055094e+47 

0.06 – 1.5625907e+18 – 1.5469760e+18 2.4416887760e+36 2.3930558523e+36 

0.05 – 5.7256706e+18 – 5.6789678e+18 3.2783395672e+37 3.2249990847e+37 

50 

0.07 – 2.4245668e+22 – 2.3858168e+22 5.8785303125e+44 5.6921344663e+44 

0.02 – 3.5505896e+15 – 3.5024568e+15 1.2606633823e+31 1.2267157447e+31 

0.009 – 9157262358.04 – 9067727911.96 8.3855453832e+19 8.2223689466e+19 

0.03 – 8.7279759e+21 – 8.6890388e+21 7.6177562257e+43 7.5499398293e+43 

0.01 – 1867793320.34 – 1864548872.95 3.4886518856e+18 3.4765424912e+18 

0.004 – 1074513.00503 – 1057174.35016 1154579268506.96 1117617535623.00 

0.007 – 39830787.6043 – 39661359.3056 1.5864916687e+15 1.573023403e+15 

0.08 – 1.5992230e+67 – 1.5960070e+67 2.557515878e+134 2.547239791e+134 

0.06 – 3.0362189e+41 – 3.0109025e+41 9.2186242696e+82 9.0655313641e+82 

0.05 – 1.0416784e+40 – 1.0317544e+40 1.0850943216e+80 1.0645179414e+80 

120 

0.07 – 1.585075e+48 – 1.5753440e+48 2.5124646525e+96 2.4817088478e+96 

0.02 – 1.1545569e+22 – 1.1334863e+22 1.3330016655e+44 1.2847912728e+44 

0.009 – 389973235721 – 388305826844 1.5207912454e+23 1.5078141517e+23 

0.03 – 1.1858283e+34 – 1.1682750e+34 1.4061888013e+68 1.3648665446e+68 

0.01 – 3465297794158 – 3462772765086 1.2008288801e+25 1.1990795226e+25 

0.004 – 96068332.9404 – 95618874.0045 9.2291244711e+15 9.1429691206e+15 

0.007 – 6571255367.03 – 6568378754.59 4.3181397093e+19 4.3143599467e+19 

0.08 – 7.374350e+112 – 7.365770e+112 5.438105592e+225 5.425467027e+225 

0.06 – 5.2982047e+61 – 5.2424564e+61 2.807097394e+123 2.748307283e+123 

0.05 – 5.3017752e+51 – 5.2413556e+51 2.810882094e+103 2.747180886e+103 

180 

0.07 – 5.2388512e+71 – 5.0640549e+71 2.744559524e+143 2.564465247e+143 
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Table 3. (Continued) 

n w Bias ( )( )wI1  Bias ( )( )wI2  Var ( )( )wI1  Var ( )( )wI2  

0.02 – 6.7970150e+29 – 6.7362127e+29 4.6199414144e+59 4.5376562866e+59 

0.009 – 5.4694453e+17 – 5.4272701e+17 2.9914831966e+35 2.9455261515e+35 

0.03 – 3.7551217e+43 – 3.6687603e+43 1.4100939285e+87 1.3459802725e+87 

0.01 – 2.1144902e+16 – 2.1015432e+16 4.4710689754e+32 4.4164842274e+32 

0.004 – 452890930.054 – 452164010.982 2.0511019504e+17 2.0445229243e+17 

0.007 – 2485300482977 – 2423037390157 6.1767184905e+24 5.8711101942e+24 

0.08 – 2.413215e+113 – 2.357223e+113 5.823615974e+226 5.556494464e+226 

0.06 – 1.9678505e+85 – 1.9435608e+85 3.872470163e+170 3.777428951e+170 

0.05 – 2.7371720e+87 – 2.7148932e+87 7.492111423e+174 7.370645545e+174 

250 

0.07 – 2.5271875e+99 – 2.4971292e+99 6.386676723e+198 6.235656316e+198 

0.02 – 3.1964833e+36 – 3.1600646e+36 1.0217506004e+73 9.9860087475e+72 

0.009 – 9.590586e+17 – 9.5272425e+17 9.1979341593e+35 9.0768350106e+35 

0.03 – 4.7235960e+53 – 4.6945753e+53 2.231236005e+107 2.203903776e+107 

0.01 – 4.2875181e+19 – 4.2468007e+19 1.8382811615e+39 1.8035316877e+39 

0.004 – 8449197625.95 – 8440890732.94 7.1388940518e+19 7.1248636356e+19 

0.007 – 4.7825890e+10 – 4.7196455e+10 2.2873156136e+29 2.2275041505e+29 

0.08 – 2.302463e+140 – 2.275953e+140 5.301340316e+280 5.179965604e+280 

0.06 – 2.898353e+105 – 2.822471e+105 8.400454206e+210 7.966344824e+210 

0.05 – 1.3996074e+88 – 1.3875873e+88 1.958901157e+176 1.925398655e+176 

310 

0.07 – 1.062746e+123 – 1.050332e+123 1.129429306e+246 1.103198905e+246 

0.02 – 4.3695133e+42 – 4.3233904e+42 1.9092647045e+85 1.8691705126e+85 

0.009 – 4.6992576e+20 – 4.6982559e+20 2.2083022400e+41 2.2073608606e+41 

0.03 – 9.0300037e+62 – 9.0192242e+62 8.154096736e+125 8.134640555e+125 

0.01 – 4.6046619e+22 – 4.4041645e+22 2.1202911255e+45 1.9396665287e+45 

0.004 – 136150186382 – 135044170675 1.8536873254e+22 1.8236928037e+22 

0.007 – 5.911374e+16 – 5.9110935e+16 3.4944349532e+33 3.4941020871e+33 

0.08 – 4.251415e+152 – 4.229428e+152 1.807453025e+305 1.788806866e+305 

0.06 – 1.344969e+124 – 1.325507e+124 1.808942415e+248 1.756969275e+248 

0.05 – 4.356043e+103 – 3.211722e+103 1.897511227e+207 1.031516223e+207 

365 

0.07 – 3.480709e+144 – 3.474175e+144 1.211533806e+289 1.206989423e+289 
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(II) From Table 4, the MSE for ( )wI2  less than the MSE for ( )wI1  

along this table. Through these notes, we find that ( )wI2  is better than 

( )wI1  as an estimators for the spectral density function and which means 

the estimation improvement by the fuzzy time series method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. The MSEs for ( )wI1  and ( )wI2  

n w MSE ( )( )wI1  MSE ( )( )wI2  n w MSE ( )( )wI1  MSE ( )( )wI2  

0.02 1.00851805e+17 8.00730500e+16 0.02 9.23988282e+59 9.07531257e+59 

0.009 863020311519 857821090173 0.009 5.98296639e+35 5.89105230e+35 

0.03 1.00918946e+20 9.99656020e+19 0.03 2.82018780e+87 2.69196054e+87 

0.01 552077116036 545242590464 0.01 8.94213795e+32 8.83296845e+32 

0.004 15669142620 15592583293 0.004 4.10220390e+17 4.08904584e+17 

0.007 40438170128 40213133364 0.007 1.23534369e+25 1.17422203e+25 

0.08 4.60673896e+47 4.492011006e+47 0.08 1.1647231e+227 1.1112988e+227 

0.06 4.88337755e+36 4.78611176e+36 0.06 7.7449403e+170 7.5548579e+170 

0.05 6.55667908e+37 6.44999813e+37 0.05 1.4984225e+175 1.4741291e+175 

50 

0.07 1.17570607e+45 1.13842687e+45 

250 

0.07 1.2773353e+199 1.2471312e+199 

0.02 1.52355124e+44 1.50998796e+44 0.02 2.04350120e+73 1.99720174e+73 

0.009 1.67710907e+20 1.64447378e+20 0.009 1.83958683e+36 1.81536700e+36 

0.03 1.25109002e+50 1.22650352e+50 0.03 4.4624720e+107 4.4078075e+107 

0.01 6.97730377e+18 6.95308499e+18 0.01 3.67656232e+39 3.60706337e+39 

0.004 2309158537012 2235235071247 0.004 1.42777881e+20 1.42497272e+20 

0.007 3.17298333e+15 3.14604680e+15 0.007 4.57463125e+29 4.45500830e+29 

0.08 5.1150317e+134 5.0944795e+134 0.08 1.0602680e+281 1.0359931e+281 

0.06 1.84372485e+83 1.81310627e+83 0.06 1.6800908e+211 1.5932689e+211 

0.05 2.17018864e+80 2.12903588e+80 0.05 3.9178023e+176 3.8507973e+176 

120 

0.07 5.02492930e+96 4.96341769e+96 

 

310 

0.07 2.2588586e+246 2.2063978e+246 

 

 



Table 4. (Continued) 

n w MSE ( )( )wI1  MSE ( )( )wI2   n w MSE ( )( )wI1  MSE ( )( )wI2  

0.02 2.66600333e+44 2.56958254e+44 0.02 3.81852940e+85 3.73834102e+85 

0.009 3.04158249e+23 3.01562830e+23 0.009 4.41660448e+41 4.41472172e+41 

0.03 2.81237760e+68 2.72973308e+68 0.03 1.6308193e+126 1.6269281e+126 

0.01 2.40165776e+25 2.39815904e+25 0.01 4.24058225e+45 3.87933305e+45 

0.004 1.84582489e+16 1.82859382e+16 0.004 3.70737465e+22 3.64738560e+22 

0.007 8.63627941e+19 8.62871989e+19 0.007 6.98886990e+33 6.98820416e+33 

0.08 1.0876211e+226 1.0850934e+226 0.08 3.6149060e+305 3.5776137e+305 

0.06 5.6141947e+123 5.4966145e+123 0.06 3.6178848e+248 3.5139385e+248 

0.05 5.6217641e+103 5.4943617e+103 0.05 3.7950224e+207 2.0630324e+207 

180 

0.07 5.4891190e+143 5.1289304e+143 

 

365 

0.07 2.4230676e+289 2.4139788e+289 
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7. Conclusion 

The fuzzy time series technique is applied to realistic real 
observations. We got the estimator of spectral density function 
“periodogram” in case of real observations and forecasted observations of 
the fuzzy time series. The statistical properties of this estimator are 
studied. It is noted from Table 4 that: the fuzzy time series technique 
improves the estimation using the spectral analysis based on the mean 
square errors. 
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