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1. Introduction and Preliminaries

Let G = (V; E) be a simple graph, with vertex set V and edge set
E € VxV, on p =|V| vertices and g = |E| edges. The complement of a

graph G, denoted by G, is a simple graph on the same set of vertices V(G)

in which two vertices u and v are connected by an edge wv, if and only if

they are not adjacent in G. Obviously, E(G)u E(G) = E(K,), where

(p-1)
X pp2

is complete graph of order p, and |E(C_;)| = - q. The degree

p
d, of a vertex v is the number of vertices joining to v and the degree d,
of an edge e € E(G), where d, is the number of its adjacent vertices in
V(L(G)), where L(G) is the simple graph whose vertices are the edges of
G, with w € E(L(G) when u and v have a common end point in G. In

structural chemistry, line graph of a graph G is very useful. The first
topological indices on the basis of line graph was introduced by Bertz in

1981 (see [1]). For more details on line graph, see the articles [2-7].

Topological indices are the numerical quantities which represent the
structure of any simple finite graph. They are invariant under the graph
isomorphisms. The idea of topological index appears from work done by
Wiener (see [8]) in 1947 although he was working on boiling point of para
n. He called this index as Wiener index and then theory of topological

index started. The Wiener index of graph G is defined as follows:

W(G) =5 3 du. v), M
(w,v)

where (u; v) is any ordered pair of vertices in G and d(u; v) is u —v
geodesic.
The Zagreb indices were first introduced by Gutman in [9], they are

important molecular descriptors and have been closely correlated with

many chemical properties (see [10]) and defined as:
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M@= ) di, @
ueV(G)

MyG)= ) dd,. ®)
uwekE(G)

In fact, one can rewrite the first Zagreb index as

M(G)= ) ldy +d,].

wekE(G)

The third Zagreb index, introduced by Fath-Tabar in [11]. This index 1is

defined as follows:

MS(G) = Z |du - dvl' (4)
wekE(G)

The hyper-Zagreb index was first introduced in [12]. This index is defined

as follows:

HM(@G)= Y (d, +d,). (5)
wekE(G)

The first Zagrab coindex is defined as:

E = E(G) = Z [du + dv]
weE(G)

The second Zagrab coindex is defined as:

My = My(G) = . dyd,.
weE(G)

The degree distance index for graphs developed by Dobrynin and
Kochetova in [13] and Gutman in [14] as a weighted version of the Wiener
index. The degree distance of G, denoted by DD(G), is defined as follows:

DD@G) = Y dw,v)ld, +d,] 6)
{u,v}cV(G)
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Randic index introduced by Randic in 1975 (see [15]). This index is

defined as follows:

R(G) = (M)

1
uuezE(G) Vdyd,
Later, this index was generalized by Bollobas and Erdos (see [16]) to the

following form for any real number, and named the general Randic index:

R(x(G) = Z dudva‘ (®
wekE(Q)

The atom-bond connectivity index (ABC), introduced by Estrada et al. in
[17] which has been applied up until now to study the stability of alkanes
and the strain energy of cycloalkanes. The ABC index of G is defined as:

d,+d, -2
ABCG)= Y ,/%. ©)
wekE(G) urv

For more details, see the article [18]. In 2010, the general sum-connectivity
index (G) has been introduced in [19]. For more detail on sum connectivity,

we refer the articles [20, 21]. This index is defined as follows:

(10)

1
wWG) = —
uu;G)*/du +d,

Vukicevic and Furtula introduced the geometric arithmetic (GA) index in
[22]. The GA index for G is defined by

2d,d
GA(G) = S (11)
u v

wekE(G)

Inspired by the work on the ABC index, Furtula et al. proposed the
following modified version of the ABC index and called it as augmented
Zagreb index (AZI) in [28]. This index is defined as follows:

dyd,

_aa, 3
du+dv—2)' (12)

AZI(G) = (
wekE(G)
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The fourth member of the class of ABC index was introduced by Ghorbani
et al. in [24-26] as:

S S, -2
ABC,(G) = Y P (13)
wekE(G) urv

where S, is the summation of degrees of all neighbours of vertex u in G.

In other words, S,, = Z d,. Similarly for S,,.
wekE(G)

The 5-th GA index was introduced by Graovac et al. in [27] as:

248,88
GA5(G) = S .5 fSU . (14)
u 1%

wekE(G)
The prediction power is better than the ABC index in the study of heat of

formation for heptanes and octanes (see [27]).
The Sanskruti index S(G) of a graph G is defined in [29] as follows:

SuS,

3
Su+SU—2)' (15)

s@= Y (
wekE(G)

Theorem 1.1 ([14]). Let G be a graph of order p and size q. Then

My(G) = My(G)+ p(p —1)* — 4q(p - 1); (16)
M, (G) = 2q(p - 1) - M;(G); (17)
My(G) = 2q(p - 1) - My(G). (18)

Theorem 1.2 ([30]). Let G be a graph of order p and size q. Then:

" 29p -3
M3(G) = 5 p(p ~1)* —3q(p - 1)* + 2¢° +pT, (19)

My(G) - My(G); My(G) = 2¢% - 5 My(G) - Ma(@);  (20)

My(G) = q(p - 1% - (p - 1)M;(G) + M5 (G). 21)
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Theorem 1.3 ([23]). Let G be a graph of order p and size q. Then
M;(G) = 2W(G) - 2M;(G) + 6q(p —1) - p° + p2. (22)

Theorem 1.4 ([23]). Let G be a nontrivial graph of diameter d > 2. Then

DD(G) - M;(G)

M;(G) < 5

(23)

with equality if and only if d = 2.

The following lemma is helpful for computing the degree of a vertex

of line graph.
Lemma 1.5. Let G be a graph with u; v € V(G) and e = uwv € E(G).
Then d, =d, +d, — 2.

Lemma 1.6 ([31]). Let G be a graph of order p and size q, then the line
graph L(G) of G is a graph of order p and size 1/2M;(G) - q.

O

Figure 1. The Jahangir graph 3. 4.
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Figure 2. The Jahangir graph Jg. 5.

2. Main Results and Discussions

Jahangir graph o/, for m > 3, a graph consisting of a cycle C,,,
with one additional vertex which is adjacent to m vertices of C,,, at
distance n to each other on C,,,, (see [32]). The J,,, has order nm +1

and size m(n +1). The graphs J5.4 and Jg 5 are shown in the Figures 1

and 2, respectively.

Theorem 2.1. Let G be the line graph of the Jahangir graph J,,. ,,,. Then
@) M4(G) = — 2m? + 2m;
() HM(G) = 16mn + 38m + 2m(4 + m)® + 2m(m — 1) (m + 1)%;

(I M;(G)=M;(G)=m>n+2m?n? +5m>n—6mn+2m> +4m? + 32m;
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av) My(G) = m>n® + m3n - 3m2n? - 14m®n — 4m? + Imn + 18m;
1
V) Mo (G :4mn+6m2+15m+lmm—1 m+12;
2 2
VD) M G :lm n+l)(m(n+1)-1 3_3 m2 +3m+2mn)(mn+m—-1)°
2 2 2
1, 2 2 2
+§(m +3m + 2mn)” + 2(2mn + 2m — 3)mn — 4m
—4m - 4mn + m® —%m(m—l)(m+1)2;
(VII) Mo (G) = 2m3n + 6m?n + 2mn? — 6mn + 2m> — 2m? - 20m;
2
(VIII) M, (G) = lm4n2 +mn® + Zm?’n2 +m?n - 6m?n? - 20m?n
2 2 2

+9mn — 6m? + 27m;

(IX) W(G) < (%m2 +%m+ mn)(m(n +1) - 1) + 2mn + 18m + 3m?

+%m(m2 —1)—%(m2 +3m + 2mn)(mn + m - 1)
+%m3(n +1)3 —%mQ(n+1)2;

X) DD(G) = 4(%m2 3ms mn)(m(n +1)—1) - 4mn + 36m + 6m>

2
+3m(m? - 1);

2+ m
m+1

(XI)ABC(G)——(n—3)m\/_+m«/_+—m+— m3

+ —m(m 1IV2

(m + 1)2
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2m 1 m(m —-1)
v3m + 3 2\/(m+1)2 ’

(XIT) R(G):%(n—3)m+%mx/€+%m+

AmV3m+3 m(m—1n(m+1)*
4+m

4
(XIIT) GA(G)=(n-3)m +gm«/€ +m+ A ,

2m 1 m(m-1).

1 2 1
XI G)==n-3m+2m5 +=-m6 + + ;
(I #(6) 2( ) 5 6 Va+m  22m+2

3 6
1753m+54m(m+1) +Lm(m 1)(m+1) '

XV) AZI(G)=8(n—-3)m +

64 2+m)®> 16 m?
[ ®
. ..’..-\‘_. rd
® El
® [
® ®
- . . -

Figure 3. The line graph of Jahangir graph Jg. 5.

Proof. The graph G for n = 6 and m = 3 is shown in Figure 3. By using
Lemma 1.5, it is easy to see that the order of G is m(n + 1) out of which
2m vertices are of degree 3, m vertices are of degree m +1 and (n — 2)m

vertices are of degree 2. Therefore by using Lemma 1.6, G has size
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m? + 2mn + 3m
2

. We partition the size of G into edges of the type
E(qu;qv), where uv is an edge. In G, we get edges of the type E(g;3),
E(9,3), E(3;3)> E(3;m+1)> and E(p11,m+1)- The number of edges of these
types are given in the Table 1.

By using Formulas (1)-(12), Table 1 and by employing the Equations

(16)-(23), we can obtain the required results. O

Table 1. The size partition of G

(dy, d,), where
2,2 @23 | 33 (3, m+1) (m+1,m+1)
wv € E(G)
Number of edges m(n - 3) 2m m o2m m(m2— 1)
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Theorem 2.2. Let G be the line graph of the Jahangir graph J,,.,,. Then

ABC,4(G) =

2m+10 1 om? +8
(m+6) (m*+5)

2
om m°+m+9 +lm\/§ m+10

(m? +5)(m+6) 3 m+6’
2m+10 1 2m? +8
(m+6) 2 (m* +5)

+2m M+gm£1/m+9, if n=4,
(m?+5)(m+6) 5 m+6
2
lmx/£+m —2m+1(; +lm(m—1) —2’7; +82
5 V(m+6)? 2 (m? +5)
2
fom M tm+9 2 /m_+9, if n=5;
(m?+5)(m+6) 5 m+6
2
l(n—5)mx/§+lmx/£+m ,2m—+12 +lm(m—1) ,%
4 5 (m+6) 2 (m*+5)
vom | mitm+9 2 = [m+9 ifn>s.
(m?+5)(m+6) O m+6’

Proof. We partition the size of G into edges of the type (S,,S, ), where

if n=3;

uv € E(G) as shown in Tables 2, 3, 4, and 5 for the case n=3,n=4,n =5,

and n > 5, respectively.
We know that

S,+S,-2

1%

ABC,(G) = —
u~v

wekE(G)

Hence we get the required results by using Tables 2-5. O
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Table 2. The size partition of G for n =3

(Sy>Sy), where
() (m+6,m+6) | (m2+5 m?2+5) | (m*+5,m+6) | (m+86,6)
uv €
Number of edges m w 2m 2m
Table 3. The size partition of G for n =4
(Sy, Sy), where
() (m+6m+6) | (m?+5 m?2+5) | (m?+5m+6) | (m+6,5)
uv €
Number of edges m w 2m 2m

Table 4. The size partition of Gforn=5

(Sy» Sy), where
) 4,5 | (m+6,m+6) | (m?2+5 m?2+5) | (m?+5m+6) | (m+6,5)
uv €
Number of -
umber o om . m(m2 1) om o9m

edges
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Theorem 2.3. Let G be the line graph of the Jahangir graph J,,.,,. Then

GA5(G)=

_— m(m—1)+ 4my(m? +5)(m +6)

m

2

2

m +m+11

+ 4m~N6m+ 36

m+12

N m(m-1) N amal(m? +5)(m+6)

’

2

gm@mm(

+ 4m~'5m + 30

m2

+m+11

N 4m~N5m + 30

m+11

m—l)+ am+(m? +5)(m +6)

’

2

m+11

(n—5)m+§mx/g+m+

. amy(m? +5)(m+6) . 4mABm+30

m2+m+11

>

m(m-1)

if n=3;

if n=4,

if n=5;

2

m®+m+11 m+11

Table 5. The size partition of G for n > 5

, if n>5.

(Su. Sv),
where

w e E(G)

4, 4)

(4, 5)

m+6,m+6) | (m?+5 m?+5)

(m2+5,m+6)

(m+86,5)

Number of edges

m(n-5)

2m

m(m —1)
2

2m

Proof. We know that

GA;5(G) =

28,8,

wekE(G) Su+ Sy

Hence we get the required results by using Tables 2-5.
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Theorem 2.4. Let G be the line graph of the Jahangir graph J,,.,,. Then

m(m+6)° 1 m(m-1)(m? +5)°
(2m+10> 2 (2m?+8)?
2 3 3 3
Jr2m(m2+5) (m;r6) Jr432m(m+§5) ifn=3:
(m*+m+9) (m+10)
m(m+6)° 1 m(m-1)(m? +5)°
(2m+10® 2 (2m2+8)3
2 3 3 3
+Zm(m +5) (m;r6) +250m(m+36) ’ ifn=4;
S(G)= (m%+m+9) (m+9)
16000  m(m+6)° 1 m(m-1)(m?+5)°
m+ 3+ 2 3
343 2m+10)® 2 (2m%+8)
. 2m(m?+5)>(m+6)° . 250m(m+6)°> —
(m%+m+9)° (m+9)° ’
6 3 2 =\6
E(n_5)m+16000m+m(m+6)3+1 m(m-1)(m ;5)
27 343 (2m+10® 2 (2m%+8)
2 3 3 3
+Zm(m +5) (m;G) +250m(m4;)6) , if n>5.
(m?+m+9) (m+9)
Proof. We know that
_ SuSU 3
SURED I

wekE(G)

Hence we get the required results by using Tables 2-5.
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