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Abstract

Affirming recent positive results for the possible eradications of dual HIV-
pathogen infectivity as identified in the literature of this work, the present
paper using ordinary differential equations sought and formulated an extended
8-dimensional mathematical dual delay HIV-pathogen dynamic model. The
study seek and addressed the epidemiological dynamic optimal control for the
application of dual-pair treatment functions following the interplay of dual
delay HIV-pathogen infections with host target immune system cells. The
novelty of this model is informed by the combination of dual chemotherapy and
dual components of cytotoxic T-lymphocytes (CTLs) as dual-pair treatment
functions in the presence of delay intracellular and intrinsic virulence index. We
articulated the model as an optimal control problem and therefore, adopted
classical Pontryagin’s maximum principle of the optimal control theory for its
analysis. System stability analysis was equally conducted and optimality
system of model established. Using Runge-Kutta of order 4 in a Mathcad

surface, model validity was numerically illustrated. Results emphatically
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indicated tremendous maximization of healthy CD4*T cells and maximal

sustainability of precursors and effectors of CTLs. Furthermore, elimination of
both virions infected T-cells and infectious virions were achieved at faster time
rate under minimized systemic cost and overall commercial value on
chemotherapy acquisition established. The model thus, exhibited intellectual

proceeding worthy of replication on other related infectious diseases.

1. Introduction

In affirmation to the fact that the human immunodeficiency virus
(HIV) and its lethal consequence — acquired immunodeficiency syndrome
(AIDS) is the most dreaded disease, it has become obvious that this
deadly infection is yet without any outright medical cure. Therefore, the
assertion that HVI/AIDS is an integral component of the human immune
system with the CD4 T lymphocytes the primary victim cannot be
overemphasized. This ugly situation is said to be routed to the fact that
the biological activities of this deadly disease is still not clearly known.

This is due to a number of factors, which includes: the indistinguishable

nature of healthy CD4"T cells from infected CD4*T cells at set point
[1, 2] and the varying levels of natural anti-HIV immune response — the
cytotoxic T-lymphocytes (CTLs) [3, 4].

Moreso, HIV infectivity has concurrently been aggravated by the
multiplicity of its allied infections, which includes dual infections of the
type: HIV-tuberculosis, HIV-hepatitis, HIV-parasitoid pathogen, etc.
[6-7]. Nonetheless, since the discovery of HIV at the early 80,
understanding the infection dynamics and the methodological application
of treatments, (i.e., suppressive and preventive) have been through
mathematical modelling. Thus, a number of appreciable models have
been formulated with the prime aim of improving the quality and

prolongation of lifespan of infected patients.

Furthermore, apprehensive of the vast views and/or literatures on
HIV infection preventions, we intend to conduct the present investigation

based on some notable related HIV/AIDS models. For instance, a more
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recent simplified yet standard model [3] had formulated using single
treatment function, a 3-dimensional mathematical model that accounted
for the optimal HIV treatment with complete maximization of the

immune response. The governing equations of that model was given as:

dx

E =A—-0x — Bxy,

y _

;= Py - ay - pyz,

dz

i cxyz — hz, (1)

where x(¢) and y(¢) are uninfected and infected CD4"T cell population

at time t. Here, viral load was considered as directly proportional to
source of inflow of infected cells (see [8] for details). The last state

component z(t) represented natural immune response population. Other

variables of the equation are the parameter components with detail
descriptions as contained in cited reference. The model was simulated via
analytic continuation with recommendation focused on treatment

interruption strategies, which allows rebuild of immune response.

As an extension of model (1), with the introduction of viral load as an
entity of state component and sustaining single treatment function, the
study [4] formulated 4-dimensional mathematical equations that
investigated the dynamics of a HIV-1 infection model. The model
incorporated cell-mediated immune response and intracellular delay. The
results that follow indicated the eradication of HI-virus in the presence of

significant intracellular delay, while the activities of CTLs can only help

reduced the virus and thus, increase healthy CD4" T cell population.

Elevating the innovative investigation of [4], the study [9] introduced
dual chemotherapy control functions, which led to the optimal control of a
delayed HIV infection model with immune response using an efficient

numerical method. The intent of this model was the of treatment
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efficiency in inhibiting viral load population and prevention of new
infections. Pontryagin’s maximum principle was utilized in the system
analyses and simulated using algorithm based on forward and backward
difference approximation. The outcome of the investigation indicated that

optimal treatment strategies actually reduced viral load and increases

the concentration of uninfected CD4" T cells after five days of therapy.

Empathized by the experimental investigations of [10-19], which had
focused on crucial role of cell-mediated CTLs, the study [20] gave an
articulated analysis of CTLs enforced by sub-divisive account of CTLs (as
precursors of CTLs denoted as CTLp and effectors of CTLs denoted as
CTLe), respectively. In that study, the model incorporated CTLp and
CTLe as state variables. This led to the formulation of 5-dimensional
mathematical model primed with the investigation of specific regimen
that could cause long-term control of HIV. The result remained
quantitatively similar to those of preceding models with the assumption

that high level of viral load increases the amount of immune impairment.

Of note, the seeming insurmountable nature of viral load had let to
further analysis of the biological behaviour and transmission dynamics of
the virus in terms of its aggressiveness. Thus, model [20] was extensively
modified by model [21] with the incorporation of intrinsic virulence index

denoted by r(f) as a state component. This later model, using dual

treatment factors, accounted for the maximization of asymptomatic stage
of fast progressing HIV infected patient using embedding method. The
optimal control for this model was analyzed using approximation
approach of linear programing method. The results were in affirmation of
the method used. Related model in this direction can be found in [22]

Recently, triggered by diverse cases of HIV complicity, dual HIV-
pathogen infections was first studied by [2], where a 5-dimensional
mathematical model was formulated to account for the analysis of
parameter estimation of treatment of Pathogen-Induced HIV infectivity.

The model using discretization method tested for the compatibility of
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optimal control strategy for the estimation of model parameters. The
numerical result that follows suggested the incompatibility of the
technique with the model due to large error derivatives. Further dual

infectivity studies can be found in [23-25].

Therefore, consumed by the aforementioned literatures, it 1is
evidently that a number of weaknesses are identified, which includes:
non-cohesive inclusion of key state components in either of the models,
somewhat incoherent application of chemotherapies alongside crucial
roles of immune effectors response and delay intracellular to the
observatory effect of intrinsic virulence index. Precipitated by the above
lapses, the present study is specifically thought to formulate a classical
8-dimensional mathematical HIV-pathogen dynamic model, which seeks
to address the dynamic optimal control of dual-pair treatment functions
for dual delayed HIV-pathogen infections. Furthermore, we seek to
maximize the performance index, which borders around the benefits base

on CD4"T cell count concentration and the positive sustainability of
CTLs (= CTLp + CTLe) under targeted minimized optimal chemotherapy
cost. The model involves 8-subpopulation with the incorporation of
subdivided cytotoxic T-lymphocytes designated as precursors of CTLs and
effectors of CTLs and intrinsic virulence index. The model is design to
explore classical Pontryagin’s maximum principle for the system

numerical analysis.

Thoughtfully, the entire study is generated as a manuscript of seven
sections with Section 1 covering the introductory aspect. In Section 2, we
present the material and methods, which consist of mathematical
formulation for an untreated dual HIV-pathogen infection. This is
followed by a corresponding schematic representation of the model. Here,
we also ascertain the state variables as representative of living
organisms by verifying the positivity and boundedness of solutions for the
state components. The study further investigates the stability status of
the model. In Section 3, following the application of multiple
chemotherapies, we transform the derived system to a classical optimal

control problem; determine the optimal control characteristics and the
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existence of optimal control. Section 4 is devoted to the derivation of
optimality system and establishment of uniqueness of optimal control
solutions using Pontryagin’s maximum principle. We demonstrate the
validity of our resulting optimality system numerically in Section 5. The
clinical implications of achieved results are discussed in Section 6.
Finally, in Section 7, we draw succinct conclusion and incisive
recommendations based on findings. It is anticipated that this present
study will overcome the aforementioned intellectual weaknesses of dual

infections.
2. Material and Methods

The material and methods as outlined in Section 1 will be developed
around the derivation of system mathematical equations for an untreated
dual HIV-pathogen model, followed by a corresponding schematic
representation. Also, in this section, we affirmed the non-negativity and
existence of boundedness of solutions for the state variables and finally,

stability analysis of the model equations.

2.1. Mathematical formulation for an untreated dual delayed

HIV-pathogen model

For a smooth formulation of the present model, we desirably bring to
bear, two closely related models from those highlighted in the literature

[2, 21]. From [21], the governing equations were derived as:
X =A—dx —rxv,
Y =TXv - oy - pyz,
w = exyw — qyw — bw, 2)
z = qyw — hz,
U=kl -uy)y - w,

F=T19— UR.
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Model (2) represents the interplay of single HIV-infection on the target

CD4"T cells and the articulated role of natural immune response (CTLp
and CTLe) with x(¢), y(¢), w(¢), 2(¢), and r(t) as the state variables. The

last component r(t) represents an index of virus aggressiveness (intrinsic

virulence). This index is assumed to increase linearly for an untreated
HIV-infected patient having its growth rate constant ry. For details of

this model, we refer readers to cited reference.

For the case of dual HIV-pathogen infections, we recall the governing
equations of model [2], which was derived as:

Tw) = b(p) + oVy) + aFp) = 1T(w) = BTw)Viv) = 8T(w)Hp),

I(]}) = BT(M)V(V) — Tll(v) — kI(U),

L(p) = 8T(w)Pp) — t21(p) — dI(p), @)
"/U = kI(y) - (C + G)‘/(,,),

}p = dl(p) —(e + )P,,

where T(,), (), I(yp), V(v), and B represented the model state

variables. We also refer readers to cited reference for more details on
model descriptions.

Therefore, leaping on the innovative ideas of models (2) and (3), we
establish a clinical 8-dimensional equation that adequately represents
the epidemiological and biological interplay of dual delayed
HIV-pathogen infections on host target CD4"T-lymphocytes studied
under quadrupled treatment functions. The model equally accommodates
the intracellular delay and the role of intrinsic virulence. This is to say
that if the population subgroups are measured in units’ volume of

cell/mm® such that 7} -uninfected CD4*T cells, V-viral load,

P-parasitoid-pathogen; then for viral load and pathogen infected CD4*T
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cells, we shall denote by I, and I,, respectively. Other state variables

includes W-precursors of cytotoxic T-lymphocytes (CTLp), Z-effectors of
cytotoxic T-lymphocytes (CTLe) and virions ingress denoted by R. The
resulting model equation is further guided by the following assumptions.

Assumption 1.

(1) The dynamics between virions and cytotoxic T-lymphocytes (CTLs)
1s dependent on host target cells and virions parameters.

(11) Precursors of CTLs exhibit dual characteristic behaviour such as

immune memory replication and effective contamination by virions.

(i11) The effective development of CTL memory by precursor of CTL
depends on the efficacy and threshold of therapy administered at set point.

(iv) High re-establishment of CTL memory is dependent on early

initiation of chemotherapy treatment.

Thus, the present model is governed by:

Ty = b, + 6V + AP — oy T, - (BV + SP)RT,,

I, = Be” *2°VRT, — (ag + k)1, — q11,Z,

Ip =8¢ “°PRT, - (ag + d)I, - q51,Z, (4)

V = kI, - (0y +S)V,

P =dI, (a5 + )P,

W=cl I,TW-pl,I,W-ocW,

Z =pl,I,W - aqZ,

R=R,-R,
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with initial values T,(0) = T{y)0, 1,(0) = I(,)0, I5(0) = I(p)0, V(0) = Vo,
P(0)= Py, W(0) =W, Z(0) = Z,, and R(0) = R, at ¢ = t;, and satisfying
the biological state variables and parameter values as describe in Tables
1 & 2. Therefore, model (4) is the standard equation that satisfies the

scope of the present study with biological behaviour schematically

represented as in Figure 1, below:

e,

o, P

Figure 1. Schematic representation of dual delayed HIV-pathogen
infections with dual-pair treatment functions (RT1, PIs, CTLp, CTLe).

The logical descriptions of epidemiological terms of model (4) are as
follows: from the first equation, the first term represents the natural
source rate of uninfected CD4*T cells, which is infiltrated by rates of

inflow of second and third terms representing viral load and pathogen
virions denoted by oV and AP, respectively. The last term — (BV + 8P)

RT, describe the sum differential product of uninfected CD4*T cells

that becomes infected by both viral load and pathogen with R

representing the aggressiveness of virions.
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The second and third equations represent the biological dynamics of
susceptible T-cell becoming infected following the invasion by both viral

-o090wVRT,

load and pathogen virions. Their respective first terms Pe and

5e ®3°PRTu  describes the rates of inflow of infectious T-cells by both

virions as product of ingress rate R and exponential rate e *® reflect the
death rate with ® denoting the lag between the time the virions contacts
target cell and the time the cell becomes actively infectious. This stage
includes the progression of virions attachment and actual penetration

into the cell. The second terms (ag +k)I, and (ag +d)I, presents

infected T cells death rates and replications of virions by infected T cells.

The last terms ¢;1,Z and gpl,Z denotes clearance rates of infected
T cells by immune effectors response.

From fourth and fifth equations, we define the epidemiological
interplay of both virions with its host. Their respective first terms &I,
and dI,, describe the productive capacities of both virions by infectious T
cells. The last terms — (a4 + o)V and - (a5 + A)P denotes virions death

rates and rates of infections. In the sixth equation, the first term

cl, I, T,2W denotes the proliferation of CTLp population, which is

dependent on the generation constant ¢ and directly proportional to I,,(t)

and [ p(t); healthy CD4"T cells helper and the levels of CTLs. Hence,

the quadruple term with CTLs acting as both target cells and treatment
functions. The second term pI,,I,W, which also appear as the first term

of the sixth equation is the rate of differentiation of CTLp into effectors —
CTLe. Both CTLp and CTLe are cleared at the rates ogW and o7Z,
respectively. Finally, the eighth equation defines the intrinsic virulence
dynamics with index R and having linear incremental rate R,. Of note is
the linear growth of R for an untreated dual delayed HIV-pathogen
infected patient. Therefore, if treatment is applied (as will be specify in
Section 3), then R will experience loss rate h;(¢)R.
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Remark 1. Precursors of CTLp are responsible for the development

of immune memory, which differentiate into effectors of CTLs responsible

for the active defense of foreign agents, i.e., elimination (killing) of virions.

Remark 2. The constants k, d in the second-fifth equations of model

(4) are related to the coefficient $ of model [26] and the state variable R

in collaboration with the intrinsic virulence index r(¢) of models [21, 22].

Thus, following the detail description of model (4) and Remarks 1 and

2, the validity of the model becomes imperative if we can generate clinical

compactible data for both state variables and parameters. Tables 1 and 2

presents the summary for the desired clinical data.

Table 1. Description of state variables with values for model (4)

. Dependent variables Initial .
Variables T values Units
Description
T, Uninfected T-lymph cells population 0.6 cell/mm3
I, Viral load infected CD4" T-lymphocytes population 0.02 cell/mm?
I . N : 0.02 3
p Pathogen infected CD4™ T-lymphocytes population cell/mm
1% Infectious free viral load population 0.08 : -1
copies/ml
P Infectious free pathogen population 0.07 copies Jml~L
w Precursors of CTLp 0.02 cell/mm3
Z Effectors of CTLe 0.04 3
cell/mm
R Intrinsic virulence index 0.025

mlcopies_ld_1

Note: Table 1 is extracted from validated data of models [2, 21, 22].
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Table 2. Summary of constants and parameter values for model (4)
Parameter Parameters and constants Initial .
symbols D values Units
bP Inflow source of uninfected CD4™ T cells population 0.05 mm3d1
a1 Death rate of uninfected CD4* T cells 0.02 a’t
o2 Death rate of viral load infected CD4™ T cells 0.02 a’t
a3 Death rate of pathogen infected CD4" T cells 0.02 mm3d !
oy Death rate of viral load 0.1 mm?’d_l
as Death rate of pathogen 0.02 mm?’d_l
ag Clearance rate of precursors of CTLp 0.017 a1
ag Clearance rate of precursors of CTLe 0.006 d71
hi-1,2 Treatment control functions for Ty, I,,, I, V, P h; €[0,1)
° Rate viral load infection on uninfected CD4*T cells 0-2 mm?®
A Rate pathogen infection on uninfected CD4™T cells 0.4 mm?
B Replication rate of viral load 0.5 mm3d-1
8 Replication rate of pathogen 0.5 mm3d-!
® Time delay lag 0.5 a1
k Viral load replication by infected cells 5.0 mm3d-!
d Pathogen replication by infected cells 5.0 mm3d-1
q1 Clearance rate of I, by immune effectors response 0.05 mm3d1
q9 Clearance rate of I, by immune effectors response 0.05 mm3d-1
c CTLp proliferation 0.005 mm3cells—2d4-1
P CTLp differentiation 0.006 mmscells71d71
Ry Growth rate of virulence 1077 copies_lmld_2
B Optimal weight ratio Ay 2000
By Optimal weight ratio Ao 25

Note: Table 2 is a modification of data from models [2, 21, 23, 25].
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Next, we verify that the key components of model (4) are all
representative of living organisms by demonstrating the positivity of the

state variables and boundedness of solutions.
2.2. Positivity of state variables and boundedness of solutions

From the composition of model (4), we see that the model is a set of

delay differential equations and so requires specification of initial
functions and their boundedness. This is to say that if C=B([- o, 0], ®®)

be the Banach space of continuous mapping in the interval [-w, 0] into

RS equipped with the sup-norm (topology of uniform convergence). Then
from [4, 23, 27], we apply the fundamental theory of functional
differential equations (FDEs) to show that there exists unique solutions

ty(t), i, (), ip(t), vt), p(t), w(t), 2(t), r(t) to model (4) with initial values

(t.(0), i,,(0), i, (0), v(6), p(6), w(B), 2(6), (8)) € C. (5)
From biological point of view, these initial value functions
t,(6), 1,(6), i,(0), v(6), p(6), w(6), 2(8), r(6) are assumed to be non-
negative, i.e.,

(£,(0), 1,(6), i,(0), v(0), p(0), w(6), 2(6), r(0) € C|C > 0, for 6 € [-w, O}

©)

Therefore, the non-negative and boundedness of model (4) for which
initial value functions satisfy conditions (5) and (6) is define by the

following theorem.

Theorem 1. Suppose t,(t), i,(t), i,(t), v(t), p(t), w(t), (), r(t) is the
solution to model (4) and satisfying conditions (5) and (6), then t,(t),
1,(t), ip(t), v(t), p(t), w(t), 2(¢), r(t) are all positive and bounded for all

t > 0 at which the solution exists.
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Proof. Here, collaborating the result of (Theorem 1, p.7-8, [23];
Theorem 2.1, p. 514-515, [27]), we see from model (4) that

tf t/
- [Hor+[BuE)+dp@IrE)ide b - [ {ay+[pu(&)+8p(E)r(e)ldede
t,(t) = t,(0)e 0 ; j bye " dn,

to
i
[ {(ag+k)+qr2(2)}de
i,(t) = i,(0)e

if
b - [{(ag+k)+q12(e)}de
+ [ Br(n = o —thin—ok,(n - v 2% © n,
to
if
~ [ {(ag+d)+q92(2)}de
i,(t) = ip(0)e
tf
i {(ag+k)+qo2(8)}dE
+ [8r(n - opin-pin-ok,(n - w)e % © dn,
to

t

f

oe) = v0)e 5 [k (e (4t
io
i

p(t) = p(O)e_J.(%%)t + dip(n)e_(%%)(t_n)dn,
to

b
w(t) = w(0)e 6" + J (ci, (©)ip (), (€) = piy ()i (§) — a6 )dE,
to

i
2(0) = 2(0)e ™" + [ (pi, (i (BH(®) - a7 )z,
to
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and
tf
r(t) = 10)e™ + [ (ro(8) - 1)z
to

Positivity follows immediately from the above integral forms and
conditions (5) and (6) are satisfied. Next, we verify the boundedness of
solutions. We define

J() = clk + d)e 27800 (1) 4 c(k + d)[i, +1i,]+ S+ o)p(t + o)

+ (k + d)q1q92(t + ©),

and x = min{o;, a9/2, ag/2, oy, as, og, o7 }. By positivity of the solution,
it follows that

LI = ek + d)e™ 2793 b, + ou(t) + 2p(e) ~ (Bu(e) + Sp(E)r(e), (0]
+ ok + d)Bde 2 Ut (1) — age(k + iy (t + 0y (t + )
~ elk + d) (ara )i (¢ + )iyt + ol + )+ DGy )

_ clay +as)
2

= (k + d)p(q192) (a6 + a7 )w(t)z(t) - (k + d)ro()r(2)

u(t + 0)p(t + o) + clk + d)(q192) [(iy, + i) (t + 0)]2(t + ©)

= c(k + d)bpef(“2+°‘3)“’ — coy (k + d)ef(a2+°‘3)‘°tu(t) —c (ag ‘; o3)

(k + d)i, (t + )i, (t + ©)

- C—((x4 + 05) u(t + o)p(t + ©) - (k + d)[qroe + goaq Jw(t + w)z(t + ©)

< clk +d)b, - xJ(2).

This implies that J(¢) is bounded and so are ¢t,(t), i,(t), i,(t), v(t), p(t),

w(t), z(¢), and r(¢). Whence, proof completed. O
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Remark 3. The outcome of Theorem 1 in conjunction with conditions
(5) and (6) indicates that for i,(0), i,,(0) > O or such that v(0), p(0), then
ty(t), i,(t), ip(t), v(t), p(t), w(t), 2(t), and r(t) are obviously nonnegative

and therefore, boundedness of solution exist for all ¢ > 0.
2.3. Stability analysis of untreated dual delayed model

Due to the multiplicity of both state components and accompanying
parameters, model (4) is a complex non-linear system and as such, we are
bound to encounter somewhat level of complex stability analysis.
Nonetheless, we show the ability of the model to exhibit multiple locally

asymptomatically stable steady states.

Fundamentally, model (4) has an infection-free equilibrium

Ey = (by/ay, 0,0,0,0,0,0,0) corresponding to the maximal level of
healthy CD4*T cells. This meaningful biological equilibrium holds only
if reproductive number

(‘RO = (k + d)ei(a2+a3)wbp % < 1.

Thus, infected cells, viral load, pathogen and immune effectors response
are at zero. Of note, for a system of such with zero immune response may
not be commendable for immune system surrounded by infectious virions.

For R > 1, there exist several other biological meanings. Thus, in a more
specific analytical stability view of model (4), let u=(T,, I,,
I P V, P, W, Z, R) represent the vectorial capacity of the model, then in

vector form, model (4) is written as:

du(t) _ :
dt - f(tr ua x), (7)
where f(t, u; x) is the right side of the ODEs system and x is the vector

parameters of Table 2. Therefore, for parameter values of Table 2, we

compatibly explore Runge-Kutta of order 4, to conveniently solve the
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equation f(¢, u; x) = 0 for the equilibria x;. This is followed by the

computation of the Jacobian matrix of system partial derivatives, i.e.,

of (¢, u; x) _ [afi(t, u; x)} (8)

ou ou j

Since model (4) is that of an untreated model, then the Jacobian for an off

treatment is derived as:

-0y = (BV
0 0 o - BRT, A - 8RT, 0 0 0
+8P)
~(og + k)
Be “2°VR 0 Be “2°RT, 0 0 —ql, 0
-qZ
~ (o3 +d)
0 0 0 de “3°RT, 0 ~asl, 0
J- -q2Z
B 0 k 0 —(oy +0) 0 0 0 0|
0 0 d 0 — (a5 + 1) 0 0 0
el T,W I, T,W el 1,7,
0 0 0 0 0
-pl,W -pl W -pl, I, -ag
0 ol W pl W 0 0 pl, I, - oy 0
0 0 0 0 0 0 0 -1
©)

Then, we obtain the dynamic ODE of the system that is linearized about

the equilibrium x; by simply substituting computed x, steady state for

x in Equation (9). The linearization is necessary as it ascertain the fact
that if eigenvalues of the matrix all have negative real parts, then the
equilibrium x; 1is locally asymptomatically stable. Therefore, with
parameter values as in Tables 1 and 2, model (4) exhibits in addition to
infection-free equilibrium E,, two other physical steady states and

several non-physically steady states (omitted here for brevity). More

details on this aspect can be found in [3, 4].

Finally, it is important not to undermine the fact that the
motivational goals of this study is the derivation of the mathematical and

quantitative approach for the maximization of susceptible immune
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system performance index adjudged by the benefit on CD4™ T cells and
CTLs concentration via optimal chemotherapy cost. Therefore, we are
oblige to transform our model (4) to an optimal control problem in order

to accommodate treatment functions with define objective functional.
3. Optimal Control Problem and Characterization

Here, with the application of treatment schedule, we represent our
system as an optimal control problem and then establish the
characteristics of the optimal control as well as show the existence of

optimal control strategy.
3.1. Optimal control formulation

Taking a leap from [25] for the definition of an optimal control
problem, then for a typical system of model (4), which is established base
on dual delay HIV-pathogen infection and studied using dual-pair

treatment functions, we seek to maximize the levels of healthy CD4"T
cells as well as maximal sustainability of CTLp and CTLe. We also target
at minimized systemic cost and maximal suppression of virions below
detectable assay. Therefore, it becomes necessary for the introduction of

chemotherapy and accompanying control functions, i.e., h;(t) and hg(t)

as representing the immune boosting and viral suppressing drugs,

respectively. This control functions have domain normalize at, a;, b; € [0, 1],
i =1, 2 such that if h; = 1, we have total effective chemotherapy and for
h; = 0, we have off treatment situation. This is to say that model (4) is

justified for A; = 0.
Therefore, we seek an optimal control pair A;, h5 such that
O, 15) = max (O, hg)\ (. hy) & A},

where A :={(hy, hg)\ h; is Lebesgue — measurable with a; < h; < b;,
t € [ty, t], for i =1, 2} is the control set. Mathematically, the objective

functional of the optimal control problem is formulated as:
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i
O hy) = [ 1T, (0) + W) + Z() = [By(m ) + Ba(hs@0)Jidt ~ (10)

2]

subject to the state system

Tu =b, + 6V + AP - o,T, - (1 - hy)[BV + 8P]RT,,

v = (1= hy)Be “2°VRT, — (ag + k), — q11,Z,
Ip = (1~ hy)se ™°PRT, — (as +d)l, - q21,Z,

‘./' =1 -ho)kl, — (ay +0)V, (11)

Pz(l—h2)dlp —((l5 +)M)P,

W=c I, TW-pl,I,W-agcW,

Z = pl, I, W - aqZ,

R =R, -R,

where virions differentiation from CD4" T cells under chemotherapy is
(1-h;)(B+38) and virions production by infected CD4"T cells under
chemotherapy is given by (1-hy)(k+d), respectively. Related
mathematical models to Equations (10)-(11) can be found in [3, 9, 28].

Remark 4. The introduction of optimal function B;_; 5 >0 is

defined as the optimal weight factors and this accommodates the fact
that benefit on cost functional is nonlinear. Otherwise, the issues of drug
side-effects may not be under control, thus, the simple nonlinear controls
[7,29].
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Proposition 1. Assume there exist drug hazardous side-effect, then

the inequality of the optimal weight factors B;_j o is such that 0 < q; <

hi < bi <1 holds.
3.2. Characterization of an optimal control

A realistic and précised formulation of an optimal control A; (t)

requires the definition of an optimal control characteristic, i.e., the
penalty terms on the constraints. To achieve this, we invoke classical
Pontryagin’s maximum principle [30] for which the objective functional is

the Hamiltonian argument define by the Lagrangian as:

M(T, @), 1,(t), 1,(t), V), P@), W(t), Z(t), R(t), h(2),
ho(t), M1 (), n2(@), M3(t), M4 (t), n5(), ne(t), n7(2), ns(t))
= T,(6)+ W) + Z(t) = [Bi(m (t)*) + By(hs(1))°]
+m[b, + oV + AP — oy T, — (1 - Iy )BV + S8P]RT, ]
+ Mol(1 = hy )Be “2°VRT, — (0rg + K)I,, — q11,Z]
+ 31 - hy )8e *3°PRT, — (003 + d), — qo1 2]
+ Na[(@ = hg)kI, — (ary + o)V ]
+ np[(1 = hg)dl, — (a5 + 1)P]
+ nglel, I,T,W — pI,I,W — agW]
+ MqlpI, I, W - a7 Z] + ng[Ry - R]
+ wiq(6) (by = hy) + wip(t) (g - aq)

+ wa1(t) (bg — hy) + w(t) (hy — ay),
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where w1 (t), wig(t), woy(t), wog(t) = 0 are penalty multipliers satisfying
wy1@)(b; =) =0, wig(t)(hy —a1) =0 at the optimal A7,

and
wo1(t)(by — hg) = 0, w(t)(hy —ag) =0 at the optimal hj.
This ensures that A; remain bounded in the domain A; < [0, 1].

The functions nj(t), j=1,2,...,8 are the model adjoint variables,

which determine the adjoint system. This adjoint system together with
the state system determines the model optimality system. Furthermore,

we examine all possible controls for and including boundaries of

ki, (ie,0<h; <1),i=1,2.
(i) The case of the set {0 < A (t) <1} : w; = 0,1, j =1, 2.

Pontryagin’s maximum principle state that the wunconstrained

optimal control A (t) satisfies

oM _ oM

-=0 and —=0.
ohy Ohg
. 6M . * * .
Then, we find T =0,i=1,2 and solve for 2] and hy by setting our
oh;

partial derivative of M equal to zero, i.e.,

= B+ BV + SPIRTm(0) B VRT, ny0)
1
— 8¢ " PRT,m3(t) — wy1 +wyg =0 at hy.
Also,
oM * *
= — 2Blh2(t) + kIun4(t) + deT]5(t) — W91 + Wo9 = 0 at hl .

oS
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Solving for the optimal controls h; for w;; = 0, we have

_ (eI _ —03m
hE(E) = (BV +3P)RT,m; — Be zgRTunz de 3°PRT,m3 , (13)
1
and
kI +dI
hy(t) = M_ (14)

2B,

To complete the characteristics of A;(t), we consider the boundaries for

h{ =0 and h; =1 as well as nonboundary cases.
(i) The case of the set {¢|h;(t) =0, i =1, 2}:wy; > 0, wjy = 0, i, j=1.
Then, the optimal control is given by

(BV +8P)RT,n; — Be“?*VRT,ng — 8¢ ***PRT,n3 — wy
2B, ’

since wy; > 0 the above implies that

(BV + 8P)RT,n; — Pe“2°VRT,m, — S¢ “3°PRT,

3
2B, -

So, to ensure that hf 1s not negative, we use the notation:

i (t) = ((BV +8P)RT,ny — Be“*"VRT,ny — 56_“3°’PRTun3j+ -0
1 2B, -

l.e.,

hi(O) = ((BV + 3P)RT,my — Pe“2°VRT,n, - 8¢ *3°PRT, g }
2B, ‘
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Similarly,

. kg —dIms\"
ho(t) = (Tp .

(iii) The case of the set {¢[h; (1) = 1,7 =1, 2} : w; =0, wg; 20,1, j = 2.
The optimal control is obtain as

(BV +8P)RT,n; — Be“?“VRT, g — de” *3°PRT,m3 + wy;
2B, ’

which implies that
0 < w;e = BV +8P)RT,n; — Be“2°VRT,ny — de *3*PRT,n3 — 2B;.

Therefore,

{(BV + 8P)RT,m; — Be“2°VRT,ny — 6e_°‘3°)PRTun3J N 1} g
2B, T

Similarly,

{[klvn4 - deﬂ5j > 1} _ h*
2B3 ) >

So, on this set, we must choose

R ,090 g, —030
R = min{(BV + 8P)RT,m, — Pe . ;/RTun2 Se “3°PRT,ns ] 1}’
1

and

kI -dl
2B

Thus, we complete the characterization of the optimal controls by
compatibly taking the three cases for hy(t) and hy(t) as define by the

following proposition.
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Proposition 2. The optimal controls for the optimal control problem
of Equation (11) with bounds 0 <a; <h; <b; >1 is completely

characterized by

hy (¢) = min
1 +
{max{al, ﬁ ((BV + SP)RTuTh - BeaQwVRTuT]Q - Se_o“SmPRTun3)} , bl}’
1

(15)

N
hy(t) = min{max{az, ﬁ(k[vrm - den5)} , bz}. (16)

Remark 5. From Proposition 2, we see that control functions are

define concurrently in relation to the circulating terms associated with

healthy and infected CD4"T cells as well as virions and their adjoint

variables.

The last part of this section deals with the existence of an optimal

control pair for dual delay HIV-pathogen model.
3.3. Existence of optimal pair-dual controls

A critical view of Equations (10) and (11) shows that certain
parameter restrictions are imposed on our system in order that the model

is realistic. For instant, if 7T,,,, 1s the maximum limit of uninfected

CD4"T cells such that if death rate at T,,,, is to be greater than the

source supply rate, then an assumption of the form
OLleax > bp (17)

holds.
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The implication is that we must have a steady state population size
that should be below 7T, such that the differential invasion of CD4"T

cells by infectious virions can be adequately accommodated. Moreso,

population growth will slow if population size ever gets near Ty, [31].

Furthermore, the establishment of existence of an optimal control
and uniqueness proof of the optimality system requires upperbounds.
Therefore, for 7T,(¢) < Tmax, the upperbounds on the solutions of the

actively infectious state components are determined as follows:

dl 907 i

dty = Pe 0t2mVRT(u)max I,(t) = I(V)O’
di i .
2 = 8 PRI ymax (o) = Iipyo,

where B, 5 > 0; at;_9 3 >0 and @ > 0

W, V) -V
‘fd—f =k,  Pl)=P.
Or
1) (o 0 e l™®RT,) nax 0 i,
I, [o o 0 8¢~ RT ) max || 1
1% _ k0 0 0 1%
P 0 d 0 0 P

It becomes obvious that we have a finite time linear system with bounded
coefficients and thus, the supersolutions I v I P V, P are uniformly

bounded. Therefore, we establish the existence of an optimal control for
our dual-pair problem taken queue from models {([23], Theorem 2, pg.
10-11), ([30], Theorem 4.1, pg. 68-69)}, respectively.
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Theorem 2. Given Proposition 1 and assumption (17), there exists an
optimal control pair (hy, hy) € A that maximizes the objective functional

O(hy, hy) such that

A Q(hl’ hZ) = Q(hf’ h; ) (18)

max
(M, hg)e

Proof. If we recall the results of [23, 30], then we have to show that

the following conditions are satisfied:

(1) The class of all control sets A;(¢), i =1, 2 are Lebesgue-integrable
functions on [¢y, tf] with values in the admissible control sets and such
that the corresponding state variables are satisfied and not empty.

(11) The admissible control set A, is convex and closed.

(1i11) The right-hand side (RHS) of the state system is continuous and

bounded by a linear function of h;_; 9 with coefficients depending on
Proposition 1 and on the control variables.
(iv) The integrand of the objective functional is concave on A.

(v) There exist constants kqy, kg >0 and y >1 such that the

integrand L(T,, W, Z, hy, hy) of the objective functional satisfies

L(Tlu W7 Z7 hl’ hZ) < k2 - kl(lh’ll2 + |h2|2 )Y/2'

Now invoking result of ([31], Theorem 9.2.1. pg. 182) we establish the
existence of solution for Equation (11) with bounded coefficients and
which satisfies condition (1). We note that the solutions are bounded.
Then, by definition, the control set is closed and convex and thus,

condition (ii) is satisfied. Since, our state system is bilinear in h;_; 5 the

RHS of Equation (11) satisfies condition (iii) and are a priori bound.

Furthermore, the integrand in the functional T),(t) + W(t) + Z(t) — [ By (h{
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(t))2 + B2(h§(t))2] is concave on the admissible control set. Finally, we

complete the existence of an optimal control by stating that
(T, () + W) + 2() - [By (B (0) + Ba(hs () 1} < kg = by (I + |haf?),

where k9 depends on the upper bound on 7, W, Z and k > 0, since
{B;, By} > 0. Hence, this completes the proof. O

4. Derivation of Optimality System and Uniqueness

We devote this section to the derivation of our optimality system

followed by the validity of uniqueness of the optimality system.
4.1. Optimality system

Optimality system is a vital component of the optimal control
problem since it observes the biological behaviour of the system upon the
application of chemotherapy. The growth rate or clearance rates of state

variables are determined by the optimality system.

Definition 4.1. The optimality system consists of the state system
couple with the adjoint system with the initial conditions and

transversality conditions together with the derived optimal control pair.

Now, the adjoint system is given by

dT]i _ oM
dt  OA;’
where A;,i=1,..., 8 are the state variables. The final components in

the optimality system are the set of transversality conditions, which
reduces and terminate the conditions on the adjoint variables. Then, for a

maximization problem of the type
tf

Ol ) = F(T,@)+ [ fo(Ty. by, hy)do,

max
(hl s h2 )6
to
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subject to the system dT%t = f(t, T,, hy, hy) and such that T,(¢)

belong to some target set g(Ty(¢)), we have the following transversality

conditions on the adjoint variables:

n;(¢) = vF(T, (@) + ) c;g;(T({)), (19)

n
=1
where the function F' is the terminal cost. Of note, our problem has no

terminal cost, so F(T,(t)) = 0. Also, we do not have target set here and so

we have desired end result with free-state variables. Here, the
summation term is zero too. This is to say that the transversality

condition for the adjoint variables is

nit;)=0,i=1,..,8. (20)

Therefore, applying Definition 4.1, and differentiating Equation (12) for
n; followed by the substitution of Equations (15) and (16) into Equation

(11), we obtain the following optimality system:
l."u =b, +oV +AP -oyT, - (1+hy)[BV +SP]RT,,
Tv = (1- B Be VBT, - (ay + ), — 1,7,
Ip = (1-h e " PRT, — (ay +d), - gol 2.
V= (1= B, - (og + )V,
P=(1-h3)l, - (a5 + WP,

W =cl,I,T,W-pl,I,W-oagW,

Z =pl, I, W —oqZ,
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R - Ry - hiR,
M = —Hml - oy — (1 - A @) BV +8P)R] + no[(1 - A (t))Be “2°VR]
+n3[(1 - hy (2))3e” *3°PR]},
Ny = ~1{ng[ - (ag + k) - @1 Z]+ ny(1 = A )k + ng(cI ,T,W - pI ,W)
+ T]7(PIpW)},
N3 = -1ng[ - (a3 + d) - qoZ] + n5(1 - h3(t))d + ng(cI,T,W — pI, W)
+ n7(le/W)}’
Ny = -1 (o - (1 - A ©)BRT, ]+ na[(1 - i (¢))pe *2°RT, ]
+ ny(ay +0)},
N5 = - (A — (1 - hy ©)BRT, ] + ng[(1 - hf'(t))se *3°RT,, ]
+ n5(as + 15,
1’16 = _1{n6(CIquTu - pIqu ) —Mele },
7.17 = -1{no( - aq11,) + n3( = qal,) —m7a7},

R = —1m[( - A @) BV + PYT, ]+ na[(1 - Af (£))pe 22V, ]

F gl - A{@)8e°PT, ] - ngqr ), (1)
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where n;(tf) = 0,i=1,..., 8 and

hy (t) = min

.
{max{al, o (BV + 8P)RT,n; - pe“2°VRT,m, - 8e°‘3“PRTun3)} , bl},
1

+
hy(t) = min{max{ag, ﬁ(k[lﬂu - dlpn5)} , bz}.

4.2. Uniqueness of optimality system

To complete this section, we necessary have to define and prove the
uniqueness of the optimality system. From the existence of optimal

system, since T, < T(;)max, We see that the state system have finite

upperbounds. These upperbounds are needed for the uniqueness proof.
The lemma below followed by a uniqueness theorem yields the desired

result.
Lemma 4.1. The function h*(s) = (min(max(s, a, b))) is Lipschitz
continuous in s, where a < b are some fixed positive constants.

Theorem 3. Given t; as sufficiently small time interval, then bonded

solutions of the optimality system re-unique.

Proof. Let that (Tu, IU’ Ip, V, P, W, Z, N1, N2> M35 N4> N5 Nes> N7 T]S)

and

(T, I1,,1,,V,P,W,Z, @, My, i3, N4> Ns» Tg» T7» Tg ) betwo different

solutions of our optimality system (21). Suppose
T, =g"ve, I, = g"f I, =g"e,V=g"iP=g"jW=g" Z=g",

R = g"n,
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and
m = g"m, ng = g%p, mg = gVq, ny = g"r, n5 = g"s, mg = g,

nr = gntu, ng = gntx,

ﬁl = gntmv ﬁ2 = gntl_jﬁ ﬁ.?) = gnta’ ﬁ4 = gntfa ﬁ5 = gntg’ ﬁG = gﬂtf’ ﬁ7

t— — t—
= g"u, mg = g"'x,

where n > 0 is to be chosen.

From Equation (15) and (16), if we substitute the above variables into

the two different solutions, then the optimal pair solution become:

hy (t) = mini max{ay, 1 (Bi + 8j)nem — Be“2®i(nep) — de” *3% j(neq) +, byt
2B;

h3(t) = min{max{ag, ﬁ(k(rf) _ d(cs))}+, 52},

and

Ry (¢) = min{ max (JLl,L (Bi + &) Jnem — pe®2®i(nep) — de~*3°j(neq))t , by +;

ho(t) = min{max{az, ﬁ (k(7) - d(@))y, bz}.
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Now, we substitute T, = g"e, and all corresponding terms into first

ODEs of Equation (21) and differentiate to get
e +me=b, +og"i+1g"j—oygMe—(1-h@)[pe"i + g™ j]g™ (ne),
f'+nf = (1-h{@)Be *2"g"i(ne) - (0 + )" f — 12" (If),
¢ +me = (1- Ry (£))5e *3g" j(ne) - (a3 + k)g"e — go8™ (lc),
i+ i = (1-R3(0)kg"'f - (o + o)™,
J i = (1-h3(0)dg"e - (o5 + Mg,
k+nk = cg"(feek) - pg™ (fék) - o6k,
U+l = pg"(fék) - azg"l,
n'+nmn =Ry —hg"n,
m' +nm = —1{g"m[-a;— (1 - A (¢)g" (Bi + 5)g"'n] + gV p[(1 - A{ (1))
Be “2°g" (ni)]
+g"4[(1 - A{ (t))3e 3 g ngl},
p +np = -1g"p[ - (g + k) — gog™1]+ gVr[(1 - h3(t))k] (22)
+ g"Mtleg" (ek) — pg™ (¢k)]+ g ulpg™ (¢k)]},
' +ng = -1{g"q[(az + d) - gag™1]+ g"'s(1 - Ai (t))d] + g"t[cg™ (fek)
~ pg"(ék)] + gMulpg™ (fk)]},
r+mr = —1{g"m[(c — (1 - A (t))Bg" (ne)] + g™ p[(1 — Ay (t))Be*2°g™ (ne)]

+8"r(ay + o)},
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s'+ms = —1{g"m[( - (1 - hy(£))5™ (ne)] + g"G[(1 — Ay (£))5e~*3"g" (ne)]
+ g"s(as + 1)},
t'+nt = —1{g""t[(cg™ (¢fe) — pg" (¢f)] - 8"t ),
u' +mu = -1{g" p[(- g"q1 /)] + g"4(- g"qe¢)- gMuaz},
x' +mx = -1{g"m[(1 - h{ (£))g" (Bi + &))" e] + g" p[(1 — Ry (£))Be 272" (ei)]
+g"g[(1 - hy(2))3e 3 g" (ef)] - &M xqy ).

Next, we subtract the equations Tu from T, fv from I, ..., R from
R, m; from mp,..., and mg from ng and then multiply the result
obtained by appropriate difference of functions and integrates from ¢, to
tr. Finally, we sum the sixteen integral equations and using estimation

approach, to derive the uniqueness of optimality system. By Lemma 4.1,

we have
SO ﬁ (me — 72) + (kt — k) + (ul - m‘)‘,
and
R3(t) - B < 2;2 (pf +qu +ri+ s + nx) - (Bf +qv + i + 5 + n%)|.

For the first case of T,(¢), we perform the estimate (using Ay — A*

estimate), 1.e.,
i
1 — _
Se-r()+m[(e-ePa
to

b b b
< Ia1|e —eldt + [j hie - hidle — eldt] + g”tﬂ(i 4+ )= (0 + )| - elat
to t to
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b
~ 72 _ _
S\ulj[|e—5|2 +|m—ﬁ|2+‘k—k‘ =T+ =1 + - a? ae
to

b
~ 72 _ 71
+ Wzgntfj[|e—§|2 +|m —W|2 +‘k _k‘ + e _t|2 +|l_l|2 +|u_ﬁ|2]dt’
to

where y; and yo are constants determined upon the coefficients and

bounds on state and adjoints variables. Combining the sixteen estimates,
we obtain as follows:

SRt + 5 (F = PPtp) + oot 5 (=7t ) + 5 (m = 7 (0o

5 (0=BPlto) + ot 5 (- F00)

Ly
. nj[(e_a)2 (TRt =)+ (m -0 + (- D)+t (x - D) at,
to
L
<ty + e [e 2R (7P k0 nP (- mP (o PP
to

+o+(x —E)Q]dt,

holds for all ¢, = 0. Therefore, from the result above, we inferred that

i
(= + 5o )= + (F = + ot (0= + (-7 + (0 - B

N E)Q]dt <0,

where ; + J9 are functions define by the coefficients and bounds on

e, f,..., x. For simplicity, we choose m such that n > y; + 5 and

ty < %ln(n\;—\vl ), thene=e¢, f = f, ..., x = x. Hence, for sufficiently
2

small time, the solution is unique.
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For related results on uniqueness of optimality system, readers are
advised to consult [25, 32, 33]. The mathematical implication of
uniqueness for small time interval is a two-point boundary value problem

due to its opposite time orientation and state equations, which have
initial and final time conditions. The optimal controls hA; and h; are
characterized by the unique solution of the optimality system.

Furthermore, from epidemiological point of view of Theorem 3, if

n > By + By and ¢ < %ln( n;g—Bl) such that By < 0, then infection
2

1s below detectable limit of clinical assay. Ironically, if ¢, >31—n ln(n ;;Bl)
2
such that n < By + By, then prevalence of infection is bound to occur and

could be globally asymptomatically stable.
5. Numerical Computation of Optimality System

In this section, we numerically validate our derived optimality
system. Here, the optimality system (21) and its control functions (10),
(15) and (16) are solved using initial conditions of Tables 1 and 2
facilitated using Runge-Kutta of order 4 in a Mathcad surrounding. Of
note, the simulations of Equations (10), (15), and (16) provide us with

option of ascertaining the cost of treatment.

With optimal weight factors (By, By) and bounds (a;, b;),1 =1, 2 on
controls, several treatment schedules can be generated with varying time
interval, which can be regulated to achieve convergence. If we let
a; =0,b =0.2, a9 = 0.2, by = 0.9, which balance the optimal weight
factors B; = 2000, By = 25, then from [7], we illustrate the application

of dual-pair treatment on infectious dual delay HIV-pathogen for as
depicted by Figure 2(a)-(h) below:
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Figure 2(a)-(h). Graphical simulations of pair-dual treatment functions

form dual delayed HIV-pathogen infections with A; and hs.
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From Figure 2(a)-(c), we studied the biological changes of both
healthy and virions infected CD4* T cells, subjected to hy(¢) treatment
function. In Figure 2(a), we investigate the level of healthy CD4*T cells

concentration following the introduction of dual-pair treatment functions

and time delay lag on dual delay HIV-pathogen infections. The graph
shows a smooth convex-like rapid increase for healthy CD4*T cells with

0.6 < T,(t) < 1.541cell/mm?® time interval t; <30 months. In Figure

2(b) & (c), we depict the rapid elimination of viral load infected CD4™ T

cells and pathogen infected CD4" T cells following the commencement of

highly toxic multiple chemotherapies in the presence of boosted
precursors and effectors of CTLs (= CTLp and CTLe). Both infected
T-cells (I,(t), I,(t)) exhibits positive response to treatment functions

with 1,(t) < 6.911x10"° while I,(t) <1.562 x 107 decline at early

15t — 3™ months of adherent to treatment conditions.

The biological behaviours of infectious virions (viral load and
pathogen) are investigated with h3(t) as treatment function. Figure 2(d)
depicts a concave-like initial decline of infectious viral load and gradually
approaches zero elimination with value V(t) < 1.721 x 107° copies/ml at
16 <ty <18 months. Figure 2(e) exhibit similar structural and biological
behaviour for infectious pathogen under similar onset toxic treatment
conditions with elimination value at P(t) < 4.279 x 10~ copies/ml for

11 <¢p <13 months.

The crucial role of subdivided CTLs (CTLp and CTLe) are
represented by Figure 2(f) & (g), respectively. Figure 2(f) exhibits the
biological changes of the immune memory production T-helper, which is
dependent on the rate of concentration of virions present at a given time

interval. The precursors of CTLp shows linear decline after t; < 30
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months. This defines its active role in the early suppression and eventual

elimination of both infected CD4" T cells and virions with value W(¢) <
0.012cell/mm?. On a similar note, Figure 2(g) represents the active role

of effectors of CTLe in clearing both infected CD4*T cells and infectious
virions with value declining to Z(t) < 0.033cell/mm?®. The aggressiveness

of infectious virions is investigated as presented by Figure 2(h). Here,
following the cogent application of dual-pair treatment conditions,

intrinsic  virulence index indicates insignificant increase with
R(t) < 3x10 %ml.copies™'d™! after t; <30 months. Other graphical
representations omitted for brevity are the corresponding adjoint

variables graphs to Figure 2(a)-(h).

Furthermore, we ascertain the quantifiability of each optimal control
pair of chemotherapies by simulating as in Figure 3(a)-(b), the
chemotherapy required for treatment. Accounting for drug severities,

treatment functions were placed under optimal weight factors (B;),_; o

with defined lower and upper bounds (a;, b; )i=1 9, respectively.
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Figure 3(a)-(b). Graphical simulations of optimal control pair with
B, = 2000, By = 25.
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Of note, Figure 3(a)-(b) shows intriguing smooth linear dual-pair-like
characteristics typical of optimal dynamics. The amount of RTI drug is
defined by 0.5 < hy(¢) < 0.5001, which is significantly small. On the
other hand, more of PIs is required to combat virions dual HIV-pathogen

with value at 0.3 < h5(t) < 6.3 for all ¢t < 30 months, respectively.

Finally, we investigate our objective functional, which clearly define
the optimal control pair in relation to healthy and infected organs as well
as chemotherapies applied. This succinct explanation is represented by

Figure 4 below:

410 ) 1
Objectivefunctionallh =0.3.h, =03

0.66

J
3x10%

W+Z@E)=
[
b
=
1
1

(Y+ W
e
"
=
o
I
I

I
cell
P

TG

Figure 4. Simulation of objective functional for pair-dual treatment with
B; = 2000, By = 25.

The smooth linear inclination depicts the overall commercial value of

dual-pair optimal control required to maximize healthy CD4*T cells and
sustain positively, the dual immune responses (CTLp and CTLe),

respectively. We see that for treatment duration of tr < 30 months, the

overall chemotherapy cost is at @[y, he] < 3.073 x 1052,
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6. Discussion

In line with clinical ethics of scientific investigation for infectious
diseases prevention approach as was carefully highlighted in the
literature of this paper, the present study mathematically seek to address
the complexity surrounding the emergence of dual HIV-pathogen
infectivity. Using ODEs, the study had formulated as an extended
version of models [2, 21], an articulated 8-dimensional nonlinear delay-
differential dual HIV-pathogen dynamic model. Not only did the present
model incorporated time delay lag (intracellular delay) as its novelty but
in addition to dual chemotherapy treatment, the dual combination of
precursors and effectors of CTLs as pair state components and as pair

treatment functions informed the uniqueness of this model. Moreso, the

explicit behavioural changes of viral load infected CD4"T cells and
pathogen infected T-cells were clinically uncovered and as well, allows
the investigation of the extent to which virions aggressiveness could be

managed.

To achieve this desired goal, the model was presented as an optimal
control problem with classical Pontryagin’s maximum principle adopted
for its analysis. This led to the establishment of the positivity of state
variables, and conducted stability analysis of the state variables. We also
investigated the existence and uniqueness of optimal control strategies
and finally, derived the model optimality system. The model equally
showed that using linearization method, the matrix of the state
components all have negative real part and hence, the equilibrium state
were locally asymptotically stable. A result that is consistent with the

experimental findings of models [3, 4].

Validation of the derived model was numerically demonstrated using
Runge-Kutta of order 4, in a Mathcad surrounding. Therefore, we had
predominantly sought to the best possible accuracy, the solution for dual-

pair treatment of dual delayed HIV-pathogen infections. The results from
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numerical simulations clearly indicated tremendous maximization of

healthy CD4" T cells under current articulated treatment conditions. Of

note, Figure 2(a) showed increase in T),(t) from 0.6—>1.541cell/mm?, a

value far more positive when compared to that of pilot our model [2],

where 0.25 < T,(¢) < 0.558mm® for all ty <30 months. It is also note

that the seeming smooth parabolic inclination of healthy CD4" T cells of
the present model indicated far reaching outstanding model when

compared to the undulating and unstable outcome of healthy T-cells
achieved by model [21].

From Figure 2(b) & (c), the time taken for the elimination of both
viral load infected cells and pathogen infected cells were far smaller
compared to those of model [2]. Also, both virions infected cells were

eliminated at much earlier time intervals, i.e., 1 < tr <3 months for
I,(t) and 1<ty <2 months for I,(t) as against time intervals of
1 <t; <24 months for 7,(¢) and 1 <t <11 months for I,(t) of model

[2]. In a similar trend, the eradication of infectious viral load and

pathogen, were faster (see Figures 2(d) & (e) with V() at tf <18
months and P(t) at t; <13 months when compared to time taken by

models [2, 23, 26]. On contradiction, from model [21], viral load was only
suppressed after third month but was never eliminated as was the case

in this present study.

We as well presented in this study, an articulated and explicit role of
both precursors and effectors of CTLs as seen in Figure 2(f) & (g),
respectively. Both figures indicated sharp linear decline, which are
consistent when compared to those of models [21, 35]. Obviously, these
decreases are directly correlated to the coherent dual-pair treatment
efficacy. Moreso, these figures depicts is the dynamic representation of
the quantified aggressiveness of both virions under novel treatment

conditions, a situation that is clearly defined only by this present
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investigation. Thus, we see from Figure 2(h), insignificantly quasi-
homeostatic virions aggressiveness as a vindicatory effort of introduced
dual-pair treatment functions. Of interest, the distinct nature of this
study is seen with the numerical representations of included intrinsic
virulence index, which were only discussed at the formulation stage of
models [21, 22]. Furthermore, in fulfilling of study set goal, optimal
maximization treatment cost are discussed by Figures 3 and 4. Figure
3(a)-(b) demonstrated the amount of chemotherapies required to achieve
the desired results. Precisely, under clinical lower and upper bounds on
optimal weight factors, reduced amount of drugs were involved with Pls

needed more. Finally, Figure 4 illustrated the commercial cost of

chemotherapies to maximize both healthy CD4"T cells and precursors

and effectors of cytotoxic T-lymphocytes.
7. Conclusion

We had studied a dual delay HIV-pathogen infection model with pair
immune systems (precursors and effectors) responses and delay
intracellular in the presence of intrinsic virulence index as presented by
model (4). With the alignment of dual role of CTLp and CTLe as
treatment functions, the derived 8-dimensional mathematical model
accounted for the dynamic optimal control of dual-pair treatment
functions for dual delay HIV-pathogen infections. This extended model
allowed the mirroring of the biological interface of dual HIV-pathogen
infections and the evaluation of the effectiveness of dual-pair treatment

functions in terms of dynamics of state variables. The implementation of

classical analysis led to optimum maximization of healthy CD4" T cells

and maximal sustainability of both precursors and effectors of CTLs.
Also, the dependent and independent role of CTLp and CTLe defined the

qualitative and quantitative crucial role of CTLs in maximizing healthy
CD4"T cells and the rapid elimination of I, I p cells and infectious

virions.
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Furthermore, under set novel treatment conditions, virions infected

cells and infectious virions were concurrently eliminated at early time
intervals of 1 <{I,(t), I,(t)} <3 months and 1< {V(t), P(t)} <13

months following cogent application of chemotherapies at set-point.

Results also validated maximal systemic cost of chemotherapy and the

overall commercial benefit on drugs acquisition. Notably, result of this

study not only collaborated with the experimental finding of models

[2, 21, 23, 25] but further achieved sharper and coincides outcome. The

study is therefore, an admirable intellectual proceeding that justified its

investigation and is equivocally recommended for other related infectious

diseases.
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