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Abstract 

Affirming recent positive results for the possible eradications of dual HIV-
pathogen infectivity as identified in the literature of this work, the present 
paper using ordinary differential equations sought and formulated an extended 
8-dimensional mathematical dual delay HIV-pathogen dynamic model. The 
study seek and addressed the epidemiological dynamic optimal control for the 
application of dual-pair treatment functions following the interplay of dual 
delay HIV-pathogen infections with host target immune system cells. The 
novelty of this model is informed by the combination of dual chemotherapy and 
dual components of cytotoxic T-lymphocytes (CTLs) as dual-pair treatment 
functions in the presence of delay intracellular and intrinsic virulence index. We 
articulated the model as an optimal control problem and therefore, adopted 
classical Pontryagin’s maximum principle of the optimal control theory for its 
analysis. System stability analysis was equally conducted and optimality 
system of model established. Using Runge-Kutta of order 4 in a Mathcad 
surface, model validity was numerically illustrated. Results emphatically 
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indicated tremendous maximization of healthy TCD4+  cells and maximal 
sustainability of precursors and effectors of CTLs. Furthermore, elimination of 
both virions infected T-cells and infectious virions were achieved at faster time 
rate under minimized systemic cost and overall commercial value on 
chemotherapy acquisition established. The model thus, exhibited intellectual 
proceeding worthy of replication on other related infectious diseases. 

1. Introduction 

In affirmation to the fact that the human immunodeficiency virus 
(HIV) and its lethal consequence – acquired immunodeficiency syndrome 
(AIDS) is the most dreaded disease, it has become obvious that this 
deadly infection is yet without any outright medical cure. Therefore, the 
assertion that HVI/AIDS is an integral component of the human immune 
system with the CD4 T lymphocytes the primary victim cannot be 
overemphasized. This ugly situation is said to be routed to the fact that 
the biological activities of this deadly disease is still not clearly known. 
This is due to a number of factors, which includes: the indistinguishable 

nature of healthy TCD4+  cells from infected TCD4+  cells at set point      
[1, 2] and the varying levels of natural anti-HIV immune response – the 
cytotoxic T-lymphocytes (CTLs) [3, 4]. 

Moreso, HIV infectivity has concurrently been aggravated by the 
multiplicity of its allied infections, which includes dual infections of the 
type: HIV-tuberculosis, HIV-hepatitis, HIV-parasitoid pathogen, etc.     
[5-7]. Nonetheless, since the discovery of HIV at the early 80’s, 
understanding the infection dynamics and the methodological application 
of treatments, (i.e., suppressive and preventive) have been through 
mathematical modelling. Thus, a number of appreciable models have 
been formulated with the prime aim of improving the quality and 
prolongation of lifespan of infected patients. 

Furthermore, apprehensive of the vast views and/or literatures on 
HIV infection preventions, we intend to conduct the present investigation 
based on some notable related HIV/AIDS models. For instance, a more 



DYNAMIC OPTIMAL CONTROL MODEL FOR … 3

recent simplified yet standard model [3] had formulated using single 
treatment function, a 3-dimensional mathematical model that accounted 
for the optimal HIV treatment with complete maximization of the 
immune response. The governing equations of that model was given as: 

,xyxdt
dx β−δ−λ=  

,yzayxydt
dy ρ−−β′=  

,hzcxyzdt
dz −=  (1) 

where ( )tx  and ( )ty  are uninfected and infected TCD4+  cell population 

at time t. Here, viral load was considered as directly proportional to 
source of inflow of infected cells (see [8] for details). The last state 
component ( )tz  represented natural immune response population. Other 

variables of the equation are the parameter components with detail 
descriptions as contained in cited reference. The model was simulated via 
analytic continuation with recommendation focused on treatment 
interruption strategies, which allows rebuild of immune response. 

As an extension of model (1), with the introduction of viral load as an 
entity of state component and sustaining single treatment function, the 
study [4] formulated 4-dimensional mathematical equations that 
investigated the dynamics of a HIV-1 infection model. The model 
incorporated cell-mediated immune response and intracellular delay. The 
results that follow indicated the eradication of HI-virus in the presence of 
significant intracellular delay, while the activities of CTLs can only help 

reduced the virus and thus, increase healthy TCD4+  cell population. 

Elevating the innovative investigation of [4], the study [9] introduced 
dual chemotherapy control functions, which led to the optimal control of a 
delayed HIV infection model with immune response using an efficient 
numerical method. The intent of this model was the of treatment 
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efficiency in inhibiting viral load population and prevention of new 
infections. Pontryagin’s maximum principle was utilized in the system 
analyses and simulated using algorithm based on forward and backward 
difference approximation. The outcome of the investigation indicated that 
optimal treatment strategies actually reduced viral load and increases 

the concentration of uninfected TCD4+  cells after five days of therapy. 

Empathized by the experimental investigations of [10-19], which had 
focused on crucial role of cell-mediated CTLs, the study [20] gave an 
articulated analysis of CTLs enforced by sub-divisive account of CTLs (as 
precursors of CTLs denoted as CTLp and effectors of CTLs denoted as 
CTLe), respectively. In that study, the model incorporated CTLp and 
CTLe as state variables. This led to the formulation of 5-dimensional 
mathematical model primed with the investigation of specific regimen 
that could cause long-term control of HIV. The result remained 
quantitatively similar to those of preceding models with the assumption 
that high level of viral load increases the amount of immune impairment. 

Of note, the seeming insurmountable nature of viral load had let to 
further analysis of the biological behaviour and transmission dynamics of 
the virus in terms of its aggressiveness. Thus, model [20] was extensively 
modified by model [21] with the incorporation of intrinsic virulence index 
denoted by ( )tr  as a state component. This later model, using dual 

treatment factors, accounted for the maximization of asymptomatic stage 
of fast progressing HIV infected patient using embedding method. The 
optimal control for this model was analyzed using approximation 
approach of linear programing method. The results were in affirmation of 
the method used. Related model in this direction can be found in [22] 

Recently, triggered by diverse cases of HIV complicity, dual HIV-
pathogen infections was first studied by [2], where a 5-dimensional 
mathematical model was formulated to account for the analysis of 
parameter estimation of treatment of Pathogen-Induced HIV infectivity. 
The model using discretization method tested for the compatibility of 
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optimal control strategy for the estimation of model parameters. The 
numerical result that follows suggested the incompatibility of the 
technique with the model due to large error derivatives. Further dual 
infectivity studies can be found in [23-25]. 

Therefore, consumed by the aforementioned literatures, it is 
evidently that a number of weaknesses are identified, which includes: 
non-cohesive inclusion of key state components in either of the models, 
somewhat incoherent application of chemotherapies alongside crucial 
roles of immune effectors response and delay intracellular to the 
observatory effect of intrinsic virulence index. Precipitated by the above 
lapses, the present study is specifically thought to formulate a classical                      
8-dimensional mathematical HIV-pathogen dynamic model, which seeks 
to address the dynamic optimal control of dual-pair treatment functions 
for dual delayed HIV-pathogen infections. Furthermore, we seek to 
maximize the performance index, which borders around the benefits base 

on TCD4+  cell count concentration and the positive sustainability of 
CTLs (= CTLp + CTLe) under targeted minimized optimal chemotherapy 
cost. The model involves 8-subpopulation with the incorporation of 
subdivided cytotoxic T-lymphocytes designated as precursors of CTLs and 
effectors of CTLs and intrinsic virulence index. The model is design to 
explore classical Pontryagin’s maximum principle for the system 
numerical analysis. 

Thoughtfully, the entire study is generated as a manuscript of seven 
sections with Section 1 covering the introductory aspect. In Section 2, we 
present the material and methods, which consist of mathematical 
formulation for an untreated dual HIV-pathogen infection. This is 
followed by a corresponding schematic representation of the model. Here, 
we also ascertain the state variables as representative of living 
organisms by verifying the positivity and boundedness of solutions for the 
state components. The study further investigates the stability status of 
the model. In Section 3, following the application of multiple 
chemotherapies, we transform the derived system to a classical optimal 
control problem; determine the optimal control characteristics and the 
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existence of optimal control. Section 4 is devoted to the derivation of 
optimality system and establishment of uniqueness of optimal control 
solutions using Pontryagin’s maximum principle. We demonstrate the 
validity of our resulting optimality system numerically in Section 5. The 
clinical implications of achieved results are discussed in Section 6. 
Finally, in Section 7, we draw succinct conclusion and incisive 
recommendations based on findings. It is anticipated that this present 
study will overcome the aforementioned intellectual weaknesses of dual 
infections. 

2. Material and Methods 

The material and methods as outlined in Section 1 will be developed 
around the derivation of system mathematical equations for an untreated 
dual HIV-pathogen model, followed by a corresponding schematic 
representation. Also, in this section, we affirmed the non-negativity and 
existence of boundedness of solutions for the state variables and finally, 
stability analysis of the model equations. 

2.1. Mathematical formulation for an untreated dual delayed 
HIV-pathogen model 

For a smooth formulation of the present model, we desirably bring to 
bear, two closely related models from those highlighted in the literature 
[2, 21]. From [21], the governing equations were derived as: 

,νrxdxx −−λ=�  

,yzyrxy ρ−α−= ν�  

,bwqywcxyww −−=�  (2) 

,hzqywz −=�  

( ) ,1 νν τ−−= yupk�  

.0 Rurr −=�  



DYNAMIC OPTIMAL CONTROL MODEL FOR … 7

Model (2) represents the interplay of single HIV-infection on the target 

TCD4+  cells and the articulated role of natural immune response (CTLp 
and CTLe) with ( ) ( ) ( ) ( ),,,, tztwtytx  and ( )tr  as the state variables. The 
last component ( )tr  represents an index of virus aggressiveness (intrinsic 
virulence). This index is assumed to increase linearly for an untreated 
HIV-infected patient having its growth rate constant .0r  For details of 
this model, we refer readers to cited reference. 

For the case of dual HIV-pathogen infections, we recall the governing 
equations of model [2], which was derived as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),puuuppu PTVTTPVbT δ−β−µ−α+σ+=
•

νν  

( ) ( ) ( ) ( ) ( ),1 νννν IIVTI u k−τ−β=
•

 

( ) ( ) ( ) ( ) ( ),2 pppup dIIPTI −τ−δ=
•

 (3) 

( ) ( ) ( ),ννν VcIV σ+−=
•

k  

( ) ( ) ,ppp PedIP α+−=
•

 

where ( ) ( ) ( ) ( ),,,, νν VIIT upu  and ( )pP  represented the model state 

variables. We also refer readers to cited reference for more details on 
model descriptions. 

Therefore, leaping on the innovative ideas of models (2) and (3), we 
establish a clinical 8-dimensional equation that adequately represents 
the epidemiological and biological interplay of dual delayed                 

HIV-pathogen infections on host target TCD4+ -lymphocytes studied 
under quadrupled treatment functions. The model equally accommodates 
the intracellular delay and the role of intrinsic virulence. This is to say 
that if the population subgroups are measured in units’ volume of 

3mm/cell  such that uT -uninfected TCD4+  cells, V-viral load,                

P-parasitoid-pathogen; then for viral load and pathogen infected TCD4+  
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cells, we shall denote by νI  and ,pI  respectively. Other state variables 

includes  W-precursors of cytotoxic T-lymphocytes (CTLp), Z-effectors of 
cytotoxic T-lymphocytes (CTLe) and virions ingress denoted by R. The 
resulting model equation is further guided by the following assumptions. 

Assumption 1. 

(i) The dynamics between virions and cytotoxic T-lymphocytes (CTLs) 
is dependent on host target cells and virions parameters. 

(ii) Precursors of CTLs exhibit dual characteristic behaviour such as 
immune memory replication and effective contamination by virions. 

(iii) The effective development of CTL memory by precursor of CTL 
depends on the efficacy and threshold of therapy administered at set point. 

(iv) High re-establishment of CTL memory is dependent on early 
initiation of chemotherapy treatment. 

Thus, the present model is governed by: 

( ) ,1 uupu RTPVTPVbT δ+β−α−λ+σ+=
•

 

( ) ,122 ZIqIVRTeI u ννν −+α−β= ωα−
•

k  

( ) ,233 ZIqIdPRTeI ppup −+α−δ= ωα−
•

 (4) 

( ) ,4 VIV σ+α−=
•

νk  

( ) ,5 PdIP p λ+α−=
•

 

,6WWIIWTIcIW pup α−ρ−=
•

νν  

,7ZWIIZ p α−ρ=
•

ν  

,0 RRR −=
•
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with initial values ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,0,0,0,0 0000 VVIIIITT ppuu ==== νν  

( ) ( ) ( ) ,0,0,0 000 ZZWWPP ===  and ( ) 00 RR =  at 0tt =  and satisfying 

the biological state variables and parameter values as describe in Tables 
1 & 2. Therefore, model (4) is the standard equation that satisfies the 
scope of the present study with biological behaviour schematically 
represented as in Figure 1, below: 

 

Figure 1. Schematic representation of dual delayed HIV-pathogen 
infections with dual-pair treatment functions (RTI, PIs, CTLp, CTLe). 

The logical descriptions of epidemiological terms of model (4) are as 
follows: from the first equation, the first term represents the natural 

source rate of uninfected TCD4+  cells, which is infiltrated by rates of 
inflow of second and third terms representing viral load and pathogen 
virions denoted by Vσ  and ,Pλ  respectively. The last term ( )PV δ+β−  

uRT  describe the sum differential product of uninfected TCD4+  cells 

that becomes infected by both viral load and pathogen with R 
representing the aggressiveness of virions. 
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The second and third equations represent the biological dynamics of 
susceptible T-cell becoming infected following the invasion by both viral 

load and pathogen virions. Their respective first terms uVRTe ωα−β 2  and 

uPRTe ωα−δ 3  describes the rates of inflow of infectious T-cells by both 

virions as product of ingress rate R and exponential rate ωα− ie  reflect the 
death rate with ω  denoting the lag between the time the virions contacts 
target cell and the time the cell becomes actively infectious. This stage 
includes the progression of virions attachment and actual penetration 
into the cell. The second terms ( ) νIk+α2  and ( ) pId+α3  presents 

infected T cells death rates and replications of virions by infected T cells. 
The last terms ZIq ν1  and ZIq p2  denotes clearance rates of infected        

T cells by immune effectors response. 

From fourth and fifth equations, we define the epidemiological 
interplay of both virions with its host. Their respective first terms νIk  

and pdI  describe the productive capacities of both virions by infectious T 

cells. The last terms ( )Vσ+α− 4  and ( )Pλ+α− 5  denotes virions death 

rates and rates of infections. In the sixth equation, the first term 
WTIcI upν  denotes the proliferation of CTLp population, which is 

dependent on the generation constant c and directly proportional to ( )tIν  

and ( );tI p  healthy TCD4+  cells helper and the levels of CTLs. Hence, 

the quadruple term with CTLs acting as both target cells and treatment 
functions. The second term ,WII pνρ  which also appear as the first term 

of the sixth equation is the rate of differentiation of CTLp into effectors – 
CTLe. Both CTLp and CTLe are cleared at the rates W6α  and ,7Zα  

respectively. Finally, the eighth equation defines the intrinsic virulence 
dynamics with index R and having linear incremental rate .0R  Of note is 

the linear growth of R for an untreated dual delayed HIV-pathogen 
infected patient. Therefore, if treatment is applied (as will be specify in 
Section 3), then R will experience loss rate ( ) .1 Rth  
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Remark 1. Precursors of CTLp are responsible for the development 
of immune memory, which differentiate into effectors of CTLs responsible 
for the active defense of foreign agents, i.e., elimination (killing) of virions. 

Remark 2. The constants d,k  in the second-fifth equations of model 

(4) are related to the coefficient β  of model [26] and the state variable R 

in collaboration with the intrinsic virulence index ( )tr  of models [21, 22]. 

Thus, following the detail description of model (4) and Remarks 1 and 
2, the validity of the model becomes imperative if we can generate clinical 
compactible data for both state variables and parameters. Tables 1 and 2 
presents the summary for the desired clinical data. 

Table 1. Description of state variables with values for model (4) 

Dependent variables 
Variables 

Description 

Initial
values Units 

uT  Uninfected T-lymph cells population 0.6 3cell/mm  

νI  Viral load infected slymphocyte-T4CD +  population 0.02 3cell/mm  

pI  Pathogen infected slymphocyte-T4CD +  population 0.02 3cell/mm  

V Infectious free viral load population 0.08 1ml/copies −  

P Infectious free pathogen population 0.07 1ml/copies −  

W Precursors of CTLp 0.02 3cell/mm  

Z Effectors of CTLe 0.04 3cell/mm  

R Intrinsic virulence index 0.025 11dmlcopies −−  

Note: Table 1 is extracted from validated data of models [2, 21, 22]. 
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Table 2. Summary of constants and parameter values for model (4) 

Parameters and constants Parameter 
symbols Description 

Initial 
values Units 

pb  Inflow source of uninfected TCD4+  cells population 0.05 13dmm −  

1α  Death rate of uninfected TCD4+  cells 0.02 1d−  

2α  Death rate of viral load infected TCD4+  cells 0.02 1d−  

3α  Death rate of pathogen infected TCD4+  cells 0.02 13dmm −  

4α  Death rate of viral load 0.1 13dmm −  

5α  Death rate of pathogen 0.02 13dmm −  

6α  Clearance rate of precursors of CTLp 0.017 1d−  

7α  Clearance rate of precursors of CTLe 0.006 1d−  

2,1=ih  Treatment control functions for PVIIT pu ,,,, ν  [ )1,0∈ih   

σ  
Rate viral load infection on uninfected TCD4+  cells 0.2 3mm  

λ  Rate pathogen infection on uninfected TCD4+  cells 0.4 3mm  

β  Replication rate of viral load 0.5 13dmm −  

δ  Replication rate of pathogen 0.5 13dmm −  

ω  Time delay lag 0.5 1d−  

k  Viral load replication by infected cells 5.0 13dmm −  

d Pathogen replication by infected cells 5.0 13dmm −  

1q  Clearance rate of νI  by immune effectors response 0.05 13dmm −  

2q  Clearance rate of pI  by immune effectors response 0.05 13dmm −  

c CTLp proliferation 0.005 123 dcellsmm −−  

ρ  CTLp differentiation 0.006 113 dcellsmm −−  

0R  Growth rate of virulence 710−  21mldcopies −−  

1B  Optimal weight ratio 1h  2000  

2B  Optimal weight ratio 2h  25  

Note: Table 2 is a modification of data from models [2, 21, 23, 25]. 
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Next, we verify that the key components of model (4) are all 
representative of living organisms by demonstrating the positivity of the 
state variables and boundedness of solutions. 

2.2. Positivity of state variables and boundedness of solutions 

From the composition of model (4), we see that the model is a set of 
delay differential equations and so requires specification of initial 

functions and their boundedness. This is to say that if ([ ] )8,0, ω−=BC  

be the Banach space of continuous mapping in the interval [ ]0,ω−  into 

8  equipped with the sup-norm (topology of uniform convergence). Then 
from [4, 23, 27], we apply the fundamental theory of functional 
differential equations (FDEs) to show that there exists unique solutions 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )trtztwtpttititt pu ,,,,,,, νν  to model (4) with initial values 

( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )) .,,,,,,, Crzwpiit pu ∈θθθθθθθθ νν   (5) 

From biological point of view, these initial value functions 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )θθθθθθθθ rzwpiit pu ,,,,,,, νν  are assumed to be non-

negative, i.e., 

{ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ]}.0,for,0,,,,,,, ω−∈θ≥∈θθθθθθθθ CCrzwpiit pu νν  

(6) 

Therefore, the non-negative and boundedness of model (4) for which 
initial value functions satisfy conditions (5) and (6) is define by the 
following theorem. 

Theorem 1. Suppose ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )trtztwtpttititt pu ,,,,,,, νν  is the 

solution to model (4) and satisfying conditions (5) and (6), then ( ),ttu  

( ) ( ) ( ) ( ) ( ) ( ) ( )trtztwtpttiti p ,,,,,, νν  are all positive and bounded for all 

0≥t  at which the solution exists. 
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Proof. Here, collaborating the result of (Theorem 1, p.7-8, [23]; 
Theorem 2.1, p. 514-515, [27]), we see from model (4) that 

( ) ( )
{ [ ( ) ( )] ( )} { [ ( ) ( )] ( )}

,0
1

0

1
0 η+=

ξξξξδ+ξβ+α−ξξξδ+ξβ+α− ∫∫
η∫ debettt

ddrp

p

t

t

drp

uu

ft
f

ft

t
νν

 

( ) ( )
{( ) ( )} ξξ++α− ∫

=
dzq

ft

teiti
12

00
k

νν  

( ) ( ) ( ) ( )
{( ) ( )}

,
12

02

0

ηω−ηωητηω−ηβ+
ξξ++α−

ωα−
∫

∫ deetr
dzq

u

t

t

ft

t
f k

−ν−ν  

( ) ( )
{( ) ( )} ξξ++α− ∫

=
dzqd

pp

ft

teiti
23

00  

( ) ( ) ( ) ( )
{( ) ( )}

,
23

03

0

ηω−ηωητηω−ηδ+
ξξ++α−

ωα−
∫

∫ deetr
dzq

u

t

t

ft

t
f k

−ν−ν  

( ) ( ) ( ) ( ) ( ) ( ) ,0 4

0

4 ηη+= η−σ+α−σ+α−

∫∫ deiet t
t

t

t
f

ννν k  

( ) ( ) ( ) ( ) ( ) ( ) ,0 5

0

5 ηη+= η−λ+α−λ+α−

∫∫ dedieptp t
p

t

t

t
f

 

( ) ( ) ( ( ) ( ) ( ) ( ) ( ) ) ,0 6
0

6 ξα−ξξρ−ξξξ+= ∫α− diiticiewtw pup

t

t

t
f

νν  

( ) ( ) ( ( ) ( ) ( ) ) ,0 7
0

7 ξα−ξξξρ+= ∫α− dwiieztz p

t

t

t
f

ν  
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and 

( ) ( ) ( ( ) ) .10 0
0

ξ−ξ+= ∫− drertr
ft

t

t  

Positivity follows immediately from the above integral forms and 
conditions (5) and (6) are satisfied. Next, we verify the boundedness of 
solutions. We define 

( ) ( ) ( ) ( ) ( ) [ ] ( ) ( )[ ]ω+ω++++++= ωα+α− tptciidcttedctJ pu νν 2
32 kk  

( ) ( ),21 ω+++ tzqqdk  

and { }.,,,,2,2,min 7654321 ααααααα=x  By positivity of the solution, 
it follows that 

( )[ ] ( ) ( ) [ ( ) ( ) ( ) ( )( ) ( ) ( )]tttrtpttptbedctJdt
d

up δ+β−λ+σ++= ωα+α− νν32k  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ω+ω++α−βδ++ ωα+α− titidctttptedc pu νν kk 232  

( ) ( ) ( ) ( ) ( ) ( ) [( ) ( )]ω++
+α

+ω+ω+ω++− tiidctwtitiqqdc pp νν 2
2

21
kk  

( ) ( ) ( ) ( ) ( ) [( ) ( )] ( )ω+ω++++ω+ω+
α+α

− tztiiqqdctptc
pνν 21

54
2 k  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )trtrdtztwqqd 07621 +−α+αρ+− kk  

( ) ( ) ( ) ( ) ( ) ( )
2

32
1 3232 α+α

−+α−+= ωα+α−ωα+α− cttedcebdc up kk  

( ) ( ) ( )ω+ω++ titid pνk  

( ) ( ) ( ) ( ) [ ] ( ) ( )ω+ω+α+α+−ω+ω+
α+α

− tztwqqdtptc 7261
54

2 kν  

( ) ( ).txJbdc p −+< k  

This implies that ( )tJ  is bounded and so are ( ) ( ) ( ) ( ) ( ),,,,, tpttititt pu νν  

( ) ( ),, tztw  and ( ).tr  Whence, proof completed.  
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Remark 3. The outcome of Theorem 1 in conjunction with conditions 
(5) and (6) indicates that for ( ) ( ) 00,0 >piiν  or such that ( ) ( ),0,0 pν  then 

( ) ( ) ( ) ( ) ( ) ( ) ( ),,,,,,, tztwtpttititt pu νν  and ( )tr  are obviously nonnegative 

and therefore, boundedness of solution exist for all .0≥t  

2.3. Stability analysis of untreated dual delayed model 

Due to the multiplicity of both state components and accompanying 
parameters, model (4) is a complex non-linear system and as such, we are 
bound to encounter somewhat level of complex stability analysis. 
Nonetheless, we show the ability of the model to exhibit multiple locally 
asymptomatically stable steady states. 

Fundamentally, model (4) has an infection-free equilibrium 
( )0,0,0,0,0,0,0,10 α= pbE  corresponding to the maximal level of 

healthy TCD4+  cells. This meaningful biological equilibrium holds only 
if reproductive number 

( ) ( ) ( )
( ) .1

541
0 32 <

α+αα
δ+β+= ωα+α−

pbedk  

Thus, infected cells, viral load, pathogen and immune effectors response 
are at zero. Of note, for a system of such with zero immune response may 
not be commendable for immune system surrounded by infectious virions. 
For ,1>  there exist several other biological meanings. Thus, in a more 

specific analytical stability view of model (4), let ( ,, νITu u=  

)RZWPVI p ,,,,,  represent the vectorial capacity of the model, then in 

vector form, model (4) is written as: 

( ) ( ),;, xutfdt
tdu =  (7) 

where ( )xutf ;,  is the right side of the ODEs system and x is the vector 

parameters of Table 2. Therefore, for parameter values of Table 2, we 
compatibly explore Runge-Kutta of order 4, to conveniently solve the 
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equation ( ) 0;, =xutf  for the equilibria .kx  This is followed by the 

computation of the Jacobian matrix of system partial derivatives, i.e., 

( ) ( ) .;,;,








∂

∂
=

∂
∂

j
i

u
xutf

u
xutf  (8) 

Since model (4) is that of an untreated model, then the Jacobian for an off 
treatment is derived as: 

(

)
( )

( )

( )

( )

.

10000000

0000

00000

000000

000000

00000

0000

00000

7

6

5

4

2
2

3

1
1

2

1

3

22



























































−

α−ρρρ
α−ρ−ρ−ρ−

λ+α−

σ+α−

−δ
−

+α−

−β
−

+α−
β

δ−λβ−σ
δ+

β−α−

=

ωα−

ωα−ωα−

p

p

upu

p

up

pu

u

uu

IIWIWI
II

TIcI

WI

WTcI

WI

WTcI
d

IqRTe
Zq

d

IqRTe
Zq

VRe

RTRT
P

V

J

ννν

ν

ν

ν

ν

ν

k

k  

(9) 

Then, we obtain the dynamic ODE of the system that is linearized about 
the equilibrium kx  by simply substituting computed kx  steady state for 

x in Equation (9). The linearization is necessary as it ascertain the fact 
that if eigenvalues of the matrix all have negative real parts, then the 
equilibrium kx  is locally asymptomatically stable. Therefore, with 

parameter values as in Tables 1 and 2, model (4) exhibits in addition to 
infection-free equilibrium ,0E  two other physical steady states and 

several non-physically steady states (omitted here for brevity). More 
details on this aspect can be found in [3, 4]. 

Finally, it is important not to undermine the fact that the 
motivational goals of this study is the derivation of the mathematical and 
quantitative approach for the maximization of susceptible immune 
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system performance index adjudged by the benefit on TCD4+  cells and 
CTLs concentration via optimal chemotherapy cost. Therefore, we are 
oblige to transform our model (4) to an optimal control problem in order 
to accommodate treatment functions with define objective functional. 

3. Optimal Control Problem and Characterization 

Here, with the application of treatment schedule, we represent our 
system as an optimal control problem and then establish the 
characteristics of the optimal control as well as show the existence of 
optimal control strategy. 

3.1. Optimal control formulation 

Taking a leap from [25] for the definition of an optimal control 
problem, then for a typical system of model (4), which is established base 
on dual delay HIV-pathogen infection and studied using dual-pair 

treatment functions, we seek to maximize the levels of healthy TCD4+  
cells as well as maximal sustainability of CTLp and CTLe. We also target 
at minimized systemic cost and maximal suppression of virions below 
detectable assay. Therefore, it becomes necessary for the introduction of 
chemotherapy and accompanying control functions, i.e., ( )th1  and ( )th2  
as representing the immune boosting and viral suppressing drugs, 
respectively. This control functions have domain normalize at, [ ],1,0, ∈ii ba  

2,1=i  such that if ,1=ih  we have total effective chemotherapy and for 

,0=ih  we have off treatment situation. This is to say that model (4) is 

justified for .0=ih  

Therefore, we seek an optimal control pair ∗∗
21 , hh  such that 

( ) { ( ) ( ) },,\,max, 21211021 Ahhhhhh
ih

∈=
≤≤

∗∗ QQ  

where ( ){ ihhhA \,: 21=  is Lebesgue – measurable with ,iii bha ≤≤  

[ ],,0 fttt ∈  for }2,1=i  is the control set. Mathematically, the objective 

functional of the optimal control problem is formulated as: 
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( ) { ( ) ( ) ( ) [ ( )( ) ( )( ) ]}dtthBthBtZtWtThh u

t

t

f
2

22
2

1121
0

, +−++= ∫Q  (10) 

subject to the state system 

( ) [ ] ,1 11 uupu RTPVhTPVbT δ+β−−α−λ+σ+=
•

 

( ) ( ) ,1 121 2 ZIqIVRTehI u ννν −+α−β−= ωα−
•

k  

( ) ( ) ,1 231 3 ZIqIdPRTehI ppup −+α−δ−= ωα−
•

 

( ) ( ) ,1 42 VIhV σ+α−−=
•

νk  (11) 

( ) ( ) ,1 52 PdIhP p λ+α−−=
•

 

,6WWIIWTIcIW pup α−ρ−=
•

νν  

,7ZWIIZ p α−ρ=
•

ν  

,0 RRR −=
•

 

where virions differentiation from TCD4+  cells under chemotherapy is 

( ) ( )δ+β− 11 h  and virions production by infected TCD4+  cells under 

chemotherapy is given by ( ) ( ),1 2 dh +− k  respectively. Related 

mathematical models to Equations (10)-(11) can be found in [3, 9, 28]. 

Remark 4. The introduction of optimal function 02,1 ≥=iB  is 

defined as the optimal weight factors and this accommodates the fact 
that benefit on cost functional is nonlinear. Otherwise, the issues of drug 
side-effects may not be under control, thus, the simple nonlinear controls   
[7, 29]. 
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Proposition 1. Assume there exist drug hazardous side-effect, then 
the inequality of the optimal weight factors 2,1=iB  is such that ≤≤ ia0  

1<≤ ii bh  holds. 

3.2. Characterization of an optimal control 

A realistic and précised formulation of an optimal control ( )thi
∗  

requires the definition of an optimal control characteristic, i.e., the 
penalty terms on the constraints. To achieve this, we invoke classical 
Pontryagin’s maximum principle [30] for which the objective functional is 
the Hamiltonian argument define by the Lagrangian as: 

( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),,,,,,,,, 1 thtRtZtWtPtVtItItTM pu ν  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ))ttttttttth 876543212 ,,,,,,,, ηηηηηηηη  

( ) ( ) ( ) [ ( ( ) ) ( ( )) ]2
22

2
11 thBthBtZtWtTu +−++=  

[ ( )[ ] ]uup RTPVhTPVb δ+β−−α−λ+σ+η+ 111 1  

[( ) ( ) ]ZIqIVRTeh u νν 1212 21 −+α−β−η+ ωα− k  

[( ) ( ) ]ZIqIdPRTeh ppu 2313 31 −+α−δ−η+ ωα−  

[( ) ( ) ]VIh σ+α−−η+ 424 1 νk  

[( ) ( ) ]PIh p λ+α−−η+ 525 1 d  

[ ]WWIIWTIcI pup 66 α−ρ−η+ νν  

[ ] [ ]RRZWII p −η+α−ρη+ 0877 ν  

( ) ( ) ( ) ( )11121111 ahtwhbtw −+−+  

( ) ( ) ( ) ( ),222221 ahtwhbtw −+−+  
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where ( ) ( ) ( ) ( ) 0,,, 22211211 ≥twtwtwtw  are penalty multipliers satisfying 

( ) ( ) ( ) ( ) 0,0 11121111 =−=− ahtwhbtw          at the optimal ,1
∗h  

and 

( ) ( ) ( ) ( ) 0,0 222221 =−=− ahtwhbtw            at the optimal .2
∗h  

This ensures that ∗
ih  remain bounded in the domain [ ].1,0∈ih  

The functions ( ) 8,,2,1, …=η jtj  are the model adjoint variables, 

which determine the adjoint system. This adjoint system together with 
the state system determines the model optimality system. Furthermore, 
we examine all possible controls for and including boundaries of 

( ) .2,1,10.,i.e, =≤≤∗ ihh ii  

(i) The case of the set { ( ) } .2,1,,0:10 ==<< ∗ jiwtht iji  

Pontryagin’s maximum principle state that the unconstrained 

optimal control ( )thi
∗  satisfies 

.0and0
21
=

∂

∂=
∂

∂
∗∗ h

M
h
M  

Then, we find 2,1,0 ==
∂

∂
∗

i
h
M

i
 and solve for ∗

1h  and ∗
2h  by setting our 

partial derivative of M equal to zero, i.e., 

( ) ( ) ( ) ( )tVRTetRTPVthB
h
M

uu 2111
1

22 ηβ−ηδ+β+−=
∂

∂ ωα∗
∗

 

     ( ) 0121133 =+−ηδ− ωα− wwtPRTe u                                at .1
∗h  

Also, 

( ) ( ) ( ) 02 22215421
2

=+−η+η+−=
∂

∂ ∗
∗

wwtdItIthB
h
M

pνk          at .1
∗h  
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Solving for the optimal controls ∗
ih  for ,0=ijw  we have 

( ) ( ) ,2 1
321

1
32

B
PRTeVRTeRTPVth uuu ηδ−ηβ−ηδ+β

=
ωα−ωα

∗  (13) 

and 

( ) .2 1

54
2 β

η+η
=∗ pdII

th νk  (14) 

To complete the characteristics of ( ),thi
∗  we consider the boundaries for 

0=∗
ih  and 1=∗

ih  as well as nonboundary cases. 

(ii) The case of the set { ( ) } .1,,0,0:2,1,0 21 ==≥==∗ jiwwitht iji  

Then, the optimal control is given by 

( )
,20

1

1321 32

B
wPRTeVRTeRTPV juuu −ηδ−ηβ−ηδ+β

=
ωα−ωα

 

since 01 ≥jw  the above implies that 

( ) .02 1
321 32
≤

ηδ−ηβ−ηδ+β ωα−ωα

B
PRTeVRTeRTPV uuu  

So, to ensure that ∗
1h  is not negative, we use the notation: 

( ) ( ) ,02 1
321

1
32

=








 ηδ−ηβ−ηδ+β
=

+ωα−ωα
∗

B
PRTeVRTeRTPVth uuu  

i.e., 

( ) ( ) .2 1
321

1
32

+ωα−ωα
∗










 ηδ−ηβ−ηδ+β
= B

PRTeVRTeRTPVth uuu  
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Similarly, 

( ) .2 2

54
2

+
∗









β

η−η
= pdII

th νk  

(iii) The case of the set { ( ) } .2,,0,0:2,1,1 21 =≥===∗ jiwwitht jii  

The optimal control is obtain as 

( )
,21

1

2321 32

B
wPRTeVRTeRTPV juuu +ηδ−ηβ−ηδ+β

=
ωα−ωα

 

which implies that 

( ) .20 13212 32 BPRTeVRTeRTPVw uuui −ηδ−ηβ−ηδ+β=≤ ωα−ωα  

Therefore, 

( ) .12 1
1

321 32 ∗
ωα−ωα

=












≥








 ηδ−ηβ−ηδ+β hB
PRTeVRTeRTPV uuu  

Similarly, 

.12 2
2

54 ∗=








≥







β

η−η
h

dII pνk  

So, on this set, we must choose 

( ) ( ) ,1,2min
1

321
1

32






















 ηδ−ηβ−ηδ+β
=

ωα−ωα
∗

B
PRTeVRTeRTPVth uuu  

and 

( ) .1,2min
2

54
2

















β

η−η
=∗ pdII

th νk  

Thus, we complete the characterization of the optimal controls by 

compatibly taking the three cases for ( )th∗
1  and ( )th∗

2  as define by the 

following proposition. 
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Proposition 2. The optimal controls for the optimal control problem 

of Equation (11) with bounds 10 ≥≤≤≤ ∗
iii bha  is completely 

characterized by 

( ) min1 =∗ th  

( )( ) ,,2
1,max 1321

1
1 32



















 ηδ−ηβ−ηδ+β

+
ωα−ωα bPRTeVRTeRTPVBa uuu  

(15) 

( ) ( ) .,2
1,maxmin 254

2
22



















 η−η=

+
∗ bdIIBath pνk  (16) 

Remark 5. From Proposition 2, we see that control functions are 
define concurrently in relation to the circulating terms associated with 

healthy and infected TCD4+  cells as well as virions and their adjoint 
variables. 

The last part of this section deals with the existence of an optimal 
control pair for dual delay HIV-pathogen model. 

3.3. Existence of optimal pair-dual controls 

A critical view of Equations (10) and (11) shows that certain 
parameter restrictions are imposed on our system in order that the model 
is realistic. For instant, if maxT  is the maximum limit of uninfected 

TCD4+  cells such that if death rate at maxT  is to be greater than the 

source supply rate, then an assumption of the form 

pbT >α max1   (17) 

holds. 
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The implication is that we must have a steady state population size 

that should be below maxT  such that the differential invasion of TCD4+  
cells by infectious virions can be adequately accommodated. Moreso, 
population growth will slow if population size ever gets near maxT  [31]. 

Furthermore, the establishment of existence of an optimal control 
and uniqueness proof of the optimality system requires upperbounds. 
Therefore, for ( ) ,maxTtTu <  the upperbounds on the solutions of the 
actively infectious state components are determined as follows: 

( ) ( ) ( ) ,ˆˆˆ
00max2 νν

ν ItIRTVedt
Id

u =β= ωα−  

( ) ( ) ( ) ,ˆˆ
ˆ

00max3 ppu
p ItIRTPedt

Id
=δ= ωα−  

where 0;0, 3,2 >α>δβ =i  and 0≥ω  

( ) 00ˆˆˆ
VtVIdt

Vd == νk  

( ) .ˆˆˆ
00 PtPIdt

Pd
p == k  

Or 

( )
( )

( )
( )

.

ˆ

ˆ

ˆ

ˆ

000

000

000

000

ˆ

ˆ

ˆ

ˆ

max

max

3

2

























































δ

β

=





























ωα−

ωα−

P

V

I

I

d

RTe

RTe

P

V

I

I

pu

u

p

νν

k
 

It becomes obvious that we have a finite time linear system with bounded 

coefficients and thus, the supersolutions PVII p ˆ,ˆ,ˆ,ˆ
ν  are uniformly 

bounded. Therefore, we establish the existence of an optimal control for 
our dual-pair problem taken queue from models {([23], Theorem 2, pg.   
10-11), ([30], Theorem 4.1, pg. 68-69)}, respectively. 
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Theorem 2. Given Proposition 1 and assumption (17), there exists an 

optimal control pair ( ) Ahh ∈∗∗
21 ,  that maximizes the objective functional 

( )21, hhQ  such that 

( )
( ) ( ).,,max 2121, 21

∗∗
∈

= hhhh
Ahh

QQ  (18) 

Proof. If we recall the results of [23, 30], then we have to show that 
the following conditions are satisfied: 

(i) The class of all control sets ( ) 2,1, =ithi  are Lebesgue-integrable 

functions on [ ]ftt ,0  with values in the admissible control sets and such 

that the corresponding state variables are satisfied and not empty. 

(ii) The admissible control set A, is convex and closed. 

(iii) The right-hand side (RHS) of the state system is continuous and 
bounded by a linear function of 2,1=ih  with coefficients depending on 

Proposition 1 and on the control variables. 

(iv) The integrand of the objective functional is concave on A. 

(v) There exist constants 0, 21 >kk  and 1>γ  such that the 

integrand ( )21,,,, hhZWTL u  of the objective functional satisfies 

( ) ( ) .,,,, 22
2

2
11221

γ+−≤ hhhhZWTL u kk  

Now invoking result of ([31], Theorem 9.2.1. pg. 182) we establish the 
existence of solution for Equation (11) with bounded coefficients and 
which satisfies condition (i). We note that the solutions are bounded. 
Then, by definition, the control set is closed and convex and thus, 
condition (ii) is satisfied. Since, our state system is bilinear in 2,1=ih  the 

RHS of Equation (11) satisfies condition (iii) and are a priori bound. 

Furthermore, the integrand in the functional ( ) ( ) ( ) [ ( ∗−++ 11 hBtZtWtTu  
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( )) ( ( )) ]2
22

2 thBt ∗+  is concave on the admissible control set. Finally, we 

complete the existence of an optimal control by stating that 

{ ( ) ( ) ( ) [ ( ( )) ( ( )) ]} ( ),2
2

2
112

2
22

2
11 hhthBthBtZtWtTu +−≤+−++ ∗∗ kk  

where 2k  depends on the upper bound on ZWTu ,,  and ,01 >k  since 

{ } .0, 21 >BB  Hence, this completes the proof.  

4. Derivation of Optimality System and Uniqueness 

We devote this section to the derivation of our optimality system 
followed by the validity of uniqueness of the optimality system. 

4.1. Optimality system 

Optimality system is a vital component of the optimal control 
problem since it observes the biological behaviour of the system upon the 
application of chemotherapy. The growth rate or clearance rates of state 
variables are determined by the optimality system. 

Definition 4.1. The optimality system consists of the state system 
couple with the adjoint system with the initial conditions and 
transversality conditions together with the derived optimal control pair. 

Now, the adjoint system is given by 

,
i

i M
dt

d
Λ∂
∂=

η  

where 8,,1, …=Λ ii  are the state variables. The final components in 

the optimality system are the set of transversality conditions, which 
reduces and terminate the conditions on the adjoint variables. Then, for a 
maximization problem of the type 

( )
( ) ( )( ) ( ) ,,,,max 21021,

0
21

υdhhTftTFhh u

t

t
uAhh

f

∫+=
∈
Q  
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subject to the system ( )21,,, hhTtfdt
dT

uu =  and such that ( )tTu  

belong to some target set ( )( ),tTg u  we have the following transversality 

conditions on the adjoint variables: 

( ) ( )( ) ( )( ),
1

tTgctTFt ii

n

i
ui ∑

=

+=η ν  (19) 

where the function F is the terminal cost. Of note, our problem has no 
terminal cost, so ( )( ) .0=tTF u  Also, we do not have target set here and so 

we have desired end result with free-state variables. Here, the 
summation term is zero too. This is to say that the transversality 
condition for the adjoint variables is 

( ) .8,,1,0 …==η itfi   (20) 

Therefore, applying Definition 4.1, and differentiating Equation (12) for 

iη  followed by the substitution of Equations (15) and (16) into Equation 

(11), we obtain the following optimality system: 

( ) [ ] ,1 11 uupu RTPVhTPVbT δ+β+−α−λ+σ+= ∗
•

 

( ) ( ) ,1 121 2 ZIqIVRTehI u ννν −+α−β−= ωα−∗
•

k  

( ) ( ) ,1 231 3 ZIqIdPRTehI ppup −+α−δ−= ωα−∗
•

 

( ) ( ) ,1 42 VIhV σ+α−−= ∗
•

νk  

( ) ( ) ,1 52 PdIhP p λ+α−−= ∗
•

 

,6WWIIWTIcIW pup α−ρ−=
•

νν  

,7ZWIIZ p α−ρ=
•

ν  
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,10 RhRR ∗
•

−=  

{ [ ( ( )) ( ) ] [( ( )) ]VRethRPVth ωα−∗∗•
β−η+δ+β−−α−η−=η 2121111 111  

[( ( )) ]},1 313 PReth ωα−∗ δ−η+  

{ [ ( ) ] ( ( )) ( )WIWTcIthZq pup ρ−η+−η+−+α−η−=η ∗•
6141222 11 kk  

( )},7 WI pρη+  

{ [ ( ) ] ( ( )) ( )WIWTcIdthZqd u νν ρ−η+−η+−+α−η−=η ∗•
6252333 11  

( )},7 WIνρη+  

{[ ( ( ( )) ] [( ( )) ]uu RTethRTth ωα−∗∗•
β−η+β−−ση−=η 212114 111  

( )},44 σ+αη+  

{[ ( ( ( )) ] [( ( )) ]uu RTethRTth ωα−∗∗•
δ−η+δ−−λη−=η 313115 111  

( )},55 λ+αη+  

{ ( ) },1 6666 αη−ρ−η−=η
•

pup IITIcI νν  

{ ( ) ( ) },1 7723127 αη−−η+−η−=η
•

pIqIq ν  

[( ( )) ( ) ] [( ( )) ]{ uu VTethTPVth ωα−∗∗•
β−η+δ+β−η−=η 212118 111  

[( ( )) ] },1 1813 3 qPTeth u η−δ−η+ ωα−∗   (21) 
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where ( ) 8,,1,0 …==η itfi  and 

( ) min1 =∗ th  

( )( ) ,,2
1,max 1321

1
1 32



















 ηδ−ηβ−ηδ+β

+
ωα−ωα bPRTeVRTeRTPVBa uuu  

( ) ( ) .,2
1,maxmin 254

2
22



















 η−η=

+
∗ bdIIBath pνk  

4.2. Uniqueness of optimality system 

To complete this section, we necessary have to define and prove the 
uniqueness of the optimality system. From the existence of optimal 
system, since ( ) ,maxuu TT <  we see that the state system have finite 

upperbounds. These upperbounds are needed for the uniqueness proof. 
The lemma below followed by a uniqueness theorem yields the desired 
result. 

Lemma 4.1. The function ( ) ( )( )( )bassh ,,maxmin=∗  is Lipschitz 

continuous in s, where ba <  are some fixed positive constants. 

Theorem 3. Given ft  as sufficiently small time interval, then bonded 

solutions of the optimality system re-unique. 

Proof. Let that ( )87654321 ,,,,,,,,,,,,,, ηηηηηηηηZWPVIIT pu ν  

and 

( )87654321 ,,,,,,,,,,,,,, ηηηηηηηηZWPVIIT pu ν  be two different 

solutions of our optimality system (21). Suppose 

,,ˆ,,,ˆ,, lgZgWjgPigVcgIfgIegT ttttt
p

tt
u

ηηηηηηη ======= kν  

,ngR tη=  
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and 

,,,,,, 654321 tgsgrgqgpgmg tttttt ηηηηηη =η=η=η=η=η=η  

,, 87 xgug tt ηη =η=η  

,,ˆ,,,ˆ,, lgZgWjgPigVcgIfgIegT ttttt
p

tt
u

ηηηηηηη ======= kν  

,ngR tη=  

7654321 ,,,,,, η=η=η=η=η=η=η ηηηηηη tgsgrgqgpgmg tttttt  

,, 8 xgug tt ηη =η=  

where 0>η  is to be chosen. 

From Equation (15) and (16), if we substitute the above variables into 
the two different solutions, then the optimal pair solution become: 

( ) ( ) ( ) ( )( ) ;,2
1,maxmin 1

1
11 32



















 δ−β−δ+β=

+
ωα−ωα∗ bneqjenepienemjiBath  

( ) ( ) ( )( ) ,,2
1,maxmin 2

2
22



















 −=

+
∗ bcsdBath rfk  

and 

( ) ( ) ( ) ( )( ) ;,2
1,maxmin 1

1
11 32



















 δ−β−δ+β=

+
ωα−ωα∗ bqenjepeniemenjiBath  

( ) ( ) ( )( ) .,2
1,maxmin 2

2
22



















 −=

+
∗ bscdBath frk  
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Now, we substitute ,egT t
u

η=  and all corresponding terms into first 

ODEs of Equation (21) and differentiate to get 

( ( )) [ ] ( ),1 11 negjgigthegjgigbee tttttt
p

ηηη∗ηηη δ+β−−α−λ+σ+=η+′  

( ( )) ( ) ( ) ( ),1 121 2 lfgqfgneigethff ttt ηηηωα−∗ −+α−β−=η+′ k  

( ( )) ( ) ( ) ( ),1 231 3 lcgqcgnejgethcc ttt ηηηωα−∗ −+α−δ−=η+′ k  

( ( )) ( ) ,ˆ1 42 igfgthii tt ηη∗ σ+α−−=η+′ k  

( ( )) ( ) ,ˆ1 52 jgcdgthjj tt ηη∗ λ+α−−=η+′  

( ) ( ) ,ˆˆˆˆˆˆˆ 6 kkkkk ttt gcfgecfcg ηηη α−ρ−=η+  

( ) ,ˆˆ 7 lgcfgll tt ηη α−ρ=η+′ k  

,10 nghRnn tη∗−=η+′  

{ [ ( ( )) ( ) ] [( ( ))thpgngjigthmgmm tttt ∗ηηη∗η −+δ+β−−α−−=η+′ 111 111  

( )]nige tηωα−β 2  

[( ( )) ]},ˆ1ˆ 31 qngethqg tt ηωα−∗η δ−+  

{ [ ( ) ] [( ( )) ]kk ˆ11 222 thrglgqpgpp ttt ∗ηηη −+−+α−−=η+′  (22) 

[ ( ) ( )] [ ( )]},ˆˆˆˆˆˆ kkk cgugcgeccgtg ttttt ηηηηη ρ+ρ−+  

{ [( ) ] ( ( )) ] [ ( )k̂ˆ1ˆ1ˆˆ 123 fecgtgdthsglgqdqgqq ttttt ηη∗ηηη +−+−+α−=η+′  

( )] [ ( )]},ˆˆˆ kk fgugcg ttt ηηη ρ+ρ−  

{ [( ( ( )) ( )] [( ( )) ( )]negethpgnegthmgrr tttt ηωα−∗ηη∗η β−+β−−σ−=η+′ 211 111  

( )},4 σ+α+ η rg t  
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{ [( ( ( )) ( )] [( ( )) ( )]negethqgnegthmgss tttt ηωα−∗ηη∗η δ−+δ−−λ−=η+′ 311 1ˆ11  

( )},5 λ+α+ η sg t  

{ [( ( ) ( )] },ˆˆ1 6α−ρ−−=η+′ ηηηη tgfcgfeccgtgtt tttt  

{ [( )] ( ) },ˆˆ1 721 α−−+−−=η+′ ηηηηη ugcqgqgfqgpguu ttttt  

{ [( ( )) ( ) ] [( ( )) ( )]eigethpgegjigthmgxx ttttt ηωα−∗ηηη∗η β−+δ+β−−=η+′ 211 111  

[( ( )) ( )] }.1ˆ 11 3 xqgejgethqg ttt ηηωα−∗η −δ−+  

Next, we subtract the equations uT  from νITu ,  from RI ,, …ν  from 

1, ηR  from ,,1 …η  and 8η  from 8η  and then multiply the result 

obtained by appropriate difference of functions and integrates from 0t  to 

.ft  Finally, we sum the sixteen integral equations and using estimation 

approach, to derive the uniqueness of optimality system. By Lemma 4.1, 
we have 

( ) ( ) ( ) ( ) ,ˆˆ
2

1
1

11 luulttemmeBhth −+−+−≤− ∗∗ kk  

and 

( ) ( ) ( ) .2
1

2
22 xnjsirqfpnxsjriqpfBhth ++++−++++≤− ∗∗ νν  

For the first case of ( ),tTu  we perform the estimate (using ∗∗ − 11 hh  

estimate), i.e., 

( ) ( ) ( ) dteetee
ft

t
f

2
1

2

0
2
1 −η+− ∫  

[ ] ( ) ( ) dteejijigdteeehehdtee
fff t

t

t
t

t

t

t

−+−++−−+−α≤ ∫∫∫ η∗∗

00

111  
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[ ]dtuullttmmee
ft

t

222222
1 ˆˆ

0

−+−+−+−+−+−ψ≤ ∫ kk  

[ ] ,ˆˆ 222222
2

0

dtuullttmmeeg
f

f

t

t

t −+−+−+−+−+−ψ+ ∫η kk  

where 1ψ  and 2ψ  are constants determined upon the coefficients and 
bounds on state and adjoints variables. Combining the sixteen estimates, 
we obtain as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0
2222

2
1

2
1

2
1

2
1 tmmtnntfftee fff −+−++−+− …  

( ) ( ) ( ) ( )0
2

0
2

2
1

2
1 txxtpp −++−+ …  

( ) ( ) ( ) ( ) ( )[ ( ) ] ,222222

0

dtxxppmmnnffee
ft

t

−++−+−+−++−+−η+ ∫ ……  

( ) ( ) ( ) ( ) ( ) ( )[ 222223
21

0

ppmmnnffeee
f

f

t

t

t −+−+−++−+−ψ+ψ≤ ∫η …  

( ) ] ,2 dtxx −++…  

holds for all .00 =t  Therefore, from the result above, we inferred that 

( ) ( ) ( ) ( ) ( ) ( )[ 222223
2

0

~;~ ppmmnnffeee
f

f

t

t

t −+−+−++−+−ψ+ψ−η ∫η …  

( ) ] ,02 ≤−++ dtxx…  

where 21
~~ ψ+ψ  are functions define by the coefficients and bounds on 

.,,, xfe …  For simplicity, we choose η  such that 21
~~ ψ+ψ>η  and 

( ),ln3
1

2
1

ψ
ψ−η

η
<ft  then .,,, xxffee === …  Hence, for sufficiently 

small time, the solution is unique. 
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For related results on uniqueness of optimality system, readers are 
advised to consult [25, 32, 33]. The mathematical implication of 
uniqueness for small time interval is a two-point boundary value problem 
due to its opposite time orientation and state equations, which have 

initial and final time conditions. The optimal controls ∗
1h  and ∗

2h  are 

characterized by the unique solution of the optimality system. 
Furthermore, from epidemiological point of view of Theorem 3, if 

21 BB +>η  and ( )
2

1ln3
1

B
Btf

−η
η

<  such that ,02 �B  then infection 

is below detectable limit of clinical assay. Ironically, if ( )
2

1ln3
1

B
Btf

−η
η

>  

such that ,21 BB +<η  then prevalence of infection is bound to occur and 

could be globally asymptomatically stable. 

5. Numerical Computation of Optimality System 

In this section, we numerically validate our derived optimality 
system. Here, the optimality system (21) and its control functions (10), 
(15) and (16) are solved using initial conditions of Tables 1 and 2 
facilitated using Runge-Kutta of order 4 in a Mathcad surrounding. Of 
note, the simulations of Equations (10), (15), and (16) provide us with 
option of ascertaining the cost of treatment. 

With optimal weight factors ( )21, BB  and bounds ( ) 2,1,, =iba ii  on 

controls, several treatment schedules can be generated with varying time 
interval, which can be regulated to achieve convergence. If we let 

,9.0,2.0,2.0,0 2211 ==== baba  which balance the optimal weight 

factors ,25,2000 21 == BB  then from [7], we illustrate the application 

of dual-pair treatment on infectious dual delay HIV-pathogen for as 
depicted by Figure 2(a)-(h) below: 
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Figure 2(a)-(h). Graphical simulations of pair-dual treatment functions 

form dual delayed HIV-pathogen infections with ∗
1h  and .2

∗h  
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From Figure 2(a)-(c), we studied the biological changes of both 

healthy and virions infected TCD4+  cells, subjected to ( )th∗
1  treatment 

function. In Figure 2(a), we investigate the level of healthy TCD4+  cells 
concentration following the introduction of dual-pair treatment functions 
and time delay lag on dual delay HIV-pathogen infections. The graph 

shows a smooth convex-like rapid increase for healthy TCD4+  cells with 

( ) 3mm/cell541.16.0 ≤≤ tTu  time interval 30≤ft  months. In Figure 

2(b) & (c), we depict the rapid elimination of viral load infected TCD4+  

cells and pathogen infected TCD4+  cells following the commencement of 
highly toxic multiple chemotherapies in the presence of boosted 
precursors and effectors of CTLs (= CTLp and CTLe). Both infected          
T-cells ( ( ) ( ))tItI p,ν  exhibits positive response to treatment functions 

with ( ) 810911.6 −×≤tIν  while ( ) 910562.1 −×≤tI p  decline at early 

rdst 31 −  months of adherent to treatment conditions. 

The biological behaviours of infectious virions (viral load and 

pathogen) are investigated with ( )th∗
2  as treatment function. Figure 2(d) 

depicts a concave-like initial decline of infectious viral load and gradually 

approaches zero elimination with value ( ) 510721.1 −×≤tV  copies/ml at 

1816 ≤≤ ft  months. Figure 2(e) exhibit similar structural and biological 

behaviour for infectious pathogen under similar onset toxic treatment 

conditions with elimination value at ( ) 710279.4 −×≤tP  copies/ml for 

1311 ≤≤ ft  months. 

The crucial role of subdivided CTLs (CTLp and CTLe) are 
represented by Figure 2(f) & (g), respectively. Figure 2(f) exhibits the 
biological changes of the immune memory production T-helper, which is 
dependent on the rate of concentration of virions present at a given time 
interval. The precursors of CTLp shows linear decline after 30≤ft  
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months. This defines its active role in the early suppression and eventual 

elimination of both infected TCD4+  cells and virions with value ( ) ≤tW  

.mm/cell012.0 3  On a similar note, Figure 2(g) represents the active role 

of effectors of CTLe in clearing both infected TCD4+  cells and infectious 

virions with value declining to ( ) .mm/cell033.0 3≤tZ  The aggressiveness 

of infectious virions is investigated as presented by Figure 2(h). Here, 
following the cogent application of dual-pair treatment conditions, 
intrinsic virulence index indicates insignificant increase with 

( ) 116 dml.copies103 −−−×≤tR  after 30≤ft  months. Other graphical 

representations omitted for brevity are the corresponding adjoint 
variables graphs to Figure 2(a)-(h). 

Furthermore, we ascertain the quantifiability of each optimal control 
pair of chemotherapies by simulating as in Figure 3(a)-(b), the 
chemotherapy required for treatment. Accounting for drug severities, 
treatment functions were placed under optimal weight factors ( ) 2,1=iiB  

with defined lower and upper bounds ( ) ,, 2,1=iii ba  respectively. 
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Figure 3(a)-(b). Graphical simulations of optimal control pair with 
.25,2000 21 == BB  
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Of note, Figure 3(a)-(b) shows intriguing smooth linear dual-pair-like 
characteristics typical of optimal dynamics. The amount of RTI drug is 

defined by ( ) ,5001.05.0 1 ≤≤ ∗ th  which is significantly small. On the 

other hand, more of PIs is required to combat virions dual HIV-pathogen 

with value at ( ) 3.63.0 2 ≤≤ ∗ th  for all 30≤ft  months, respectively. 

Finally, we investigate our objective functional, which clearly define 
the optimal control pair in relation to healthy and infected organs as well 
as chemotherapies applied. This succinct explanation is represented by 
Figure 4 below: 

 

Figure 4. Simulation of objective functional for pair-dual treatment with 
.25,2000 21 == BB  

The smooth linear inclination depicts the overall commercial value of 

dual-pair optimal control required to maximize healthy TCD4+  cells and 
sustain positively, the dual immune responses (CTLp and CTLe), 
respectively. We see that for treatment duration of 30≤ft  months, the 

overall chemotherapy cost is at [ ] .10073.3, 82
21 ×≤hhQ  
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6. Discussion 

In line with clinical ethics of scientific investigation for infectious 
diseases prevention approach as was carefully highlighted in the 
literature of this paper, the present study mathematically seek to address 
the complexity surrounding the emergence of dual HIV-pathogen 
infectivity. Using ODEs, the study had formulated as an extended 
version of models [2, 21], an articulated 8-dimensional nonlinear delay-
differential dual HIV-pathogen dynamic model. Not only did the present 
model incorporated time delay lag (intracellular delay) as its novelty but 
in addition to dual chemotherapy treatment, the dual combination of 
precursors and effectors of CTLs as pair state components and as pair 
treatment functions informed the uniqueness of this model. Moreso, the 

explicit behavioural changes of viral load infected TCD4+  cells and 
pathogen infected T-cells were clinically uncovered and as well, allows 
the investigation of the extent to which virions aggressiveness could be 
managed. 

To achieve this desired goal, the model was presented as an optimal 
control problem with classical Pontryagin’s maximum principle adopted 
for its analysis. This led to the establishment of the positivity of state 
variables, and conducted stability analysis of the state variables. We also 
investigated the existence and uniqueness of optimal control strategies 
and finally, derived the model optimality system. The model equally 
showed that using linearization method, the matrix of the state 
components all have negative real part and hence, the equilibrium state 
were locally asymptotically stable. A result that is consistent with the 
experimental findings of models [3, 4]. 

Validation of the derived model was numerically demonstrated using 
Runge-Kutta of order 4, in a Mathcad surrounding. Therefore, we had 
predominantly sought to the best possible accuracy, the solution for dual-
pair treatment of dual delayed HIV-pathogen infections. The results from 
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numerical simulations clearly indicated tremendous maximization of 

healthy TCD4+  cells under current articulated treatment conditions. Of 

note, Figure 2(a) showed increase in ( )tTu  from ,mm/cell541.16.0 3→  a 

value far more positive when compared to that of pilot our model [2], 

where ( ) 3mm558.025.0 ≤≤ tTu  for all 30≤ft  months. It is also note 

that the seeming smooth parabolic inclination of healthy TCD4+  cells of 
the present model indicated far reaching outstanding model when 
compared to the undulating and unstable outcome of healthy T-cells 
achieved by model [21]. 

From Figure 2(b) & (c), the time taken for the elimination of both 
viral load infected cells and pathogen infected cells were far smaller 
compared to those of model [2]. Also, both virions infected cells were 
eliminated at much earlier time intervals, i.e., 31 ≤≤ ft  months for 

( )tIν  and 21 ≤≤ ft  months for ( )tI p  as against time intervals of 

241 ≤≤ ft  months for ( )tIν  and 111 ≤≤ ft  months for ( )tI p  of model 

[2]. In a similar trend, the eradication of infectious viral load and 
pathogen, were faster (see Figures 2(d) & (e) with ( )tV  at 18≤ft  

months and ( )tP  at 13≤ft  months when compared to time taken by 

models [2, 23, 26]. On contradiction, from model [21], viral load was only 
suppressed after third month but was never eliminated as was the case 
in this present study. 

We as well presented in this study, an articulated and explicit role of 
both precursors and effectors of CTLs as seen in Figure 2(f) & (g), 
respectively. Both figures indicated sharp linear decline, which are 
consistent when compared to those of models [21, 35]. Obviously, these 
decreases are directly correlated to the coherent dual-pair treatment 
efficacy. Moreso, these figures depicts is the dynamic representation of 
the quantified aggressiveness of both virions under novel treatment 
conditions, a situation that is clearly defined only by this present 
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investigation. Thus, we see from Figure 2(h), insignificantly quasi-
homeostatic virions aggressiveness as a vindicatory effort of introduced 
dual-pair treatment functions. Of interest, the distinct nature of this 
study is seen with the numerical representations of included intrinsic 
virulence index, which were only discussed at the formulation stage of 
models [21, 22]. Furthermore, in fulfilling of study set goal, optimal 
maximization treatment cost are discussed by Figures 3 and 4. Figure 
3(a)-(b) demonstrated the amount of chemotherapies required to achieve 
the desired results. Precisely, under clinical lower and upper bounds on 
optimal weight factors, reduced amount of drugs were involved with PIs 
needed more. Finally, Figure 4 illustrated the commercial cost of 

chemotherapies to maximize both healthy TCD4+  cells and precursors 
and effectors of cytotoxic T-lymphocytes. 

7. Conclusion 

We had studied a dual delay HIV-pathogen infection model with pair 
immune systems (precursors and effectors) responses and delay 
intracellular in the presence of intrinsic virulence index as presented by 
model (4). With the alignment of dual role of CTLp and CTLe as 
treatment functions, the derived 8-dimensional mathematical model 
accounted for the dynamic optimal control of dual-pair treatment 
functions for dual delay HIV-pathogen infections. This extended model 
allowed the mirroring of the biological interface of dual HIV-pathogen 
infections and the evaluation of the effectiveness of dual-pair treatment 
functions in terms of dynamics of state variables. The implementation of 

classical analysis led to optimum maximization of healthy TCD4+  cells 
and maximal sustainability of both precursors and effectors of CTLs. 
Also, the dependent and independent role of CTLp and CTLe defined the 
qualitative and quantitative crucial role of CTLs in maximizing healthy 

TCD4+  cells and the rapid elimination of pII ,ν  cells and infectious 

virions. 
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Furthermore, under set novel treatment conditions, virions infected 
cells and infectious virions were concurrently eliminated at early time 
intervals of { ( ) ( )} 3,1 ≤≤ tItI pν  months and ( ) ( ){ } 13,1 ≤≤ tPtV  

months following cogent application of chemotherapies at set-point. 
Results also validated maximal systemic cost of chemotherapy and the 
overall commercial benefit on drugs acquisition. Notably, result of this 
study not only collaborated with the experimental finding of models        
[2, 21, 23, 25] but further achieved sharper and coincides outcome. The 
study is therefore, an admirable intellectual proceeding that justified its 
investigation and is equivocally recommended for other related infectious 
diseases. 
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