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Abstract

In this paper, we have derived the exact expression for the Shannon entropy of
Nadarajah and Haghighi (NH) distribution based on generalized order
statistics. Characterization of NH distribution is discussed by using the
recurrence relation based on single and product moments of generalized order
statistics. And we have obtained the exact and explicit expression for single and
product moment of generalized order statistics in terms of Gauss
hypergeometric function and Kampé de Fériet series from NH distribution.
Further, we have discussed the results of ordinary order statistics, progressive

type II censoring and record values.
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1. Introduction

The concept of entropy was originated by Shannon [24] in the
nineteenth century. It is a mathematical measure of information which
measures the average reduction of uncertainty of X. The Shannon
entropy for a continuous random variable X with probability density
function f(x) is defined as

+00

H(X)=- } fx(x)In fx(x)dx. (1.1)

The entropy of order sequences and order statistics was discussed by

Wong and Chen [26]. Madadi and Tata [17, 18, 19] have deduced the

Shannon and Rényi information in the record data. Afhami and Madadi

[1] have obtained the exact form of Shannon entropy based on

generalized order statistics (gos) from Pareto-type distribution. Mahmoud

and Ghafour [20] have obtained the Shannon information for generalized
Feller-Pareto family.

Ordered random variables are widely used in reliability theory and
life testing. However, they can be considered as special cases of gos which
has been introduced and extensively studied by Kamps [7]. It enables a
unified approach to several models of ordered random variables such as
ordinary order statistics, record values, sequential order statistics and
progressively type II censored statistics. Let Xj, Xo,..., X, be a

sequence of independent and identically distributed (iid) random
variables with the edf F(x) and the pdf f(x). Let keN,

~ -1 . n-1
m = (my, mg, ..., my_1)e R, vy =k+n—]+zi=jmi > 0. Then

X1, n, m, k), X(2,n, m, k), ..., X(n, n, m, k) are said to be gos if their
joint pdf is given by

n-1 n-1
k{l‘[w] {H[F(xi)]mi f(xi)] [F (e ) £, 1.2)
j=1 i=1

on the cone F1(0+)<x; <x9<..<x, <F11) of R", where

F(x) =1 - F(x) denotes the survival function.
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Here we may consider two cases:

Case I: v; = visVi#zj=12.,n-1, ie., 7v;’s are pairwise

different.

In this case, the pdf of X(r, n, m, k) is given by (Kamps and Cramer
(9D

Fxrm ) = € 12 wOFEP LD, wsrse

and the joint pdf of X(r,n,m,k) and X(s, n, m, k), where

1 <r < s < n, is given by (Kamps and Cramer [9])

P49, X, y):cs_{z | 22 ” ai(r)[F(x)]W}

t=r+1 =1
Sx) fy) Cw<x<y<owm (L.4)
" F(x) F(y)’
where
r
Cr—l = HYL;
i=1
z(r) H(yj )y];tyi,lﬁiﬁrgn,
];tz
and
(")(s) = 1 <t<s<
a;’(s) = ﬁ,ytiyi,r+1_t_s_n.
t=r+1 v
t#i
Casell: m =my =... =my_y =m(say),i=1,2...,n-1

In this case, the pdf of r-th gos is given by (Kamps [7])

o m i ®) = GE P g (F@)f @), —o < x <0, (15)
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and the joint pdf of X(r, n, m, k) and X(s,n, m, k),1<r<s<n, is

given by

fX(r,n,m,k),X(s, n, m,k)(x’ y)

- TG oy P e (R

% [P (F()) = by (F @) E ()]s F0)f(9),

—w<x <y <o, (1.6)
where
_M m # —1
R (x) = m+1 ’
—In(1 - x), m = -1,
and

gm(x) = hm(x)_ hm(o)’ X € (0’ 1)'

Choosing the parameters appropriately, models such as ordinary order
statistics (m =0, k =1,1.e,v; =n—i+1), kth record value (m = -1,
keN,ie,y; =k), sequential order statistics [y; = (n—i+1)B;; By, Bas---»
B, > 0], order statistics with non-integral sample size [y; = (B —i +1);

B > 0], Pfeifer record values (y; = B;; By, B2, ---» B, > 0) and progressive

type II censored order statistics (n,meN,n=m+ Z;nzl R;, R; e Ny
and v; =n— i:Rv —j+1,1 < j < m) can be seen as particular cases
of gos. Several authors discussed the concept of gos, for example, Hwang
and Lin [6], Ahsanullah [3], Ahmad [2], Khan and Kumar [11], Khan and
Khan [10], Kulshrestha et al. [12].
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Kamps [8] has described the importance of recurrence relations of
order statistics in characterization. Su and Huang [25] has discussed the
characterization based on conditional expectations. Arslan [4]
characterized the uniform distribution by generalized order statistics.
Generalized order statistics from Kumaraswamy distribution and its

characterization was discussed by Kumar [13].

Recently, Nadarajah and Haghighi [22] have introduced a new
extension of exponential distribution as an alternative to the gamma,

Weibull and the exponentiated exponential distribution with pdf
0-1 0
flx : o, e)=3(1+fj exp{l—(1+£) },x>0, (1.7)
c c c

where >0 and 0 >0 are the scale and shape parameters,
respectively. Lemonte [16] gave a new generalization of NH distribution
through exponentiation of (1.7). The corresponding cdf of the NH

distribution is

0
F(x:c,@):l—exp{l—(lJr%] },x>0, (1.8)
_ 1-6
F(x)= %(l + %) f(x), x >0, (1.9

NH distribution can be used to model data that have their mode fixed at

zero. At 6 = 1, NH distribution reduces to the one parameter exponential

distribution.

MirMostafaee et al. [21] studied the record values from NH
distribution. Some results on order statistics has been done for extended
exponential distribution by Kumar et al. [15]. And Kumar and Dey [14]
derived relations for moments of generalized order statistics from
extended exponential distribution. Selim [23] has discussed the
estimation and prediction for Nadarajah-Haghighi distribution based on

record values.
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The rest of the paper is organized as follows. In Section 2, we have
obtained the Shannon entropy of NH distribution based on gos. In
Section 3, characterization based on recurrence relation of the single
moment of gos from NH distribution is given. In Section 4, we have
characterized NH distribution based on recurrence relation of the product
moment of gos. In Section 5, we have computed the mean and variance of
the order statistics and gos from NH distribution. We have made some

conclusions about the NH distribution in Section 6.

2. Shannon Entropy of NH Distribution Based
on Generalized Order Statistics

In this section, we have obtained the exact and analytical expression

of the Shannon entropy of NH distribution based on gos. Let X(n, m, k)
= (X, n, m, k), ..., X(n, n, m, k)) be a vector of gos, then

n-1 n-1
X(n, i, k) (X) = k[ Y ,][ {[ exp(1 - (1+2,)°)]™ 61 + x,)° " exp(1 - (1 + x,)° )}
=1

j= t=1
x [exp(1 = (1+x,))f 0@ +x,)° L exp(l - (1+x,)°). @.1)

Theorem 2.1. Let X be a continuous random variable following NH
distribution with pdf given in (1.7), then Shannon entropy for X is given
as

n-1 n-1 t n

~ 1 1
H(X(n, m, k))=-nln®-Ink - E lnyJ+E(m 1)§—+k

J=1 t=1 " =i =V

n-1 ¢ n
0-1 — —
+( 5 j{ -:leYJEL(_Yj)+ E eY/EL(—y]-)}, (2.2)

t=1j j=1

where Ei(u) is the exponential integral function defined as

'[ e In x dx = —ﬁEi(— w. 2.3)
1
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Proof. In view of (1.1) and (1.2)
H(X(n, m, k)) = = E[In fx(n,7,1)(x)]

n-—1 n-1
H(X(n, i, k)) = = nln0-Ink- Y Iny; - » (m +1)(1- E1+x,)")
J=1 =1
—k(1-EQ+x,)")-(0-1)
n-1
x {Z E(n(1 + x,)) + E(In(1 + xn))} (2.4)

t=1

Now in view of (1.3), we have

B[ +2,)°] = ¢y aj(t)j:a b2 exp( - (14 2]

¢

=
-1 )

x 0(1+x;)" " exp(l—(1+x;)")dx;. (2.5)

Put (1+x,)° = u

B[+ %)) = a1 ) a0 "l du

t

=1
: 11

=¢ ) ajlt)|—+— |
; Voo

From Balakrishnan et al. [5], we get

E[Q+x,)°] = 1+Zt:L.

=R

Again in view of (1.3), we have
i o yi-1
E[In((1 + x, )9 )] = Ct‘lzaj(t)_[o ln[(l + X )9] [exp(l —(1+x )6 )] j
=1

x 01+ x, )0 exp(1 — (1 + ;) )dx,. (2.6)
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Again by putting (1 + x; )e =u,

¢ o _
E[In(1 +x,)] = 5L Y a;(0)e (i w)e gy
j=1 '
c £ 1
el (el i — .
- ;a](t)ef_ 7 Ei( y,)}. 2.7)

From Balakrishnan et al. [5], we get

t
E[In(1 + x,)] = —%Zeiji( -vj)
=1

As above, we get the expressions for E[(1 + x,)°] and E[ In(1 + x,,)].

Now, putting the value of E[(1+x,)°], E[In(l + x,)], E[(1 + x,,)°],
and E[In(1 + x,,)] in (2.4), we get the result.

Remark 2.1. Putting m =0,k =1, in (2.2), we get the exact

expression for Shannon entropy of NH distribution based on order

statistics as follows:

n-1 n-1 3
1
H(Xlzn’ ey Xnn) =-nln0-Ink - Zln(n—J+1)+Z(mt+1)zm
J=1 t=1 j=1

n n-1t
1 06-1 (n—=j+1) s
+kj2= (n—j+1)+( 5 ){ Ee Ei(j-n-1)
Y e(n—f”)Ei(j-n-n}.

=1
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Remark 2.2. Putting m; =mg =... =m,_; =-1 and k£ > 1 in (2.2),
we get Shannon entropy for i-th record values from NH distribution as

follows:

3. Single Moment and Characterization of NH Distribution
Based on Generalized Order Statistics

In this section, firstly, exact moment of gos from NH distribution has
been deduced. Further, exact moments of order statistics, progressive
type Il censored order statistics and sequential order statistics are
obtained as the particular cases of gos. After that applying the
generalization of the Miintz-Szdsz theorem (Hwang and Lin [6]), we have
established a characterization result of NH distribution based on
recurrence relation of the single moment of gos.

Lemma 3.1. For any positive (a, b) and J € N, the value of integral
o b
o7 (a, b) = J. x7 emal+2) b1 + x)° L dx
0
J JYV T +1 -1
= Z(_l)JJrg[ ] (b—)—(%+1) e_a1F1(1;1+%+1; a)l,
g=0 g

8
E=INR
a

(3.1)

where 1 Fi(c; d; z) is a Kummer Conuent hypergeometric function which

is defined as

. q _ N (C)n 2"
\Fy(c; d; 2)—Z(d)n?,d;t0,—1,—2,..., (3.2)
n=0
and T’ (% + 1) is a gamma function defined as

o L1
F(§+1) =J. £ ety
0
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Proof.

2 b
o7 (a, b) = I x? e @+ pq 4 g0 g,
0

Put a(l + x)° = ¢

ab(l + x)°7Vdx = dt,

@7 (a, b) = %I:{(%f - 1]Je_tdt
_ i(_ 1)J+g (g)

= a%+1 a
S B ela) fad] e
- a

where Y( % +1, a) is a lower incomplete gamma function defined as

o £.11 -1 84
Y(%+1,a)=IOtb+ e*tdtz(%+1) ab+e*alF1(1;1+%+1;a).

(3.4)
By using (3.4), we derive the relation given in (3.1).

Theorem 3.1. Let X be a non-negative continuous random variable
and follows NH distribution given in (1.7), then the single moment of r-th
gos (1 <r < n), is given by

r J J
EIXY (1, 1)) = ¢ 3D i) (- 1)°’+g{ J
i=1 g=0 g
. F(%-ﬁ-l) 1F1(]_, %4—2, YL)

— (3.5)
gh g
v) (6 * 1)
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Proof. In the view of (1.3), we have

i fx)
E[X7(r,n, @, k)] =c,_ 1, (r)I JF(x)]" e )dx

=c,q l(r)j Je[l_(lﬂc)e I 01 + x)e_ldx
i=1

=c,_ 12 l(r)eY‘j x7e 1) 01 + x)° 1 dx.

Using Lemma 3.1, we get the result.

Remark 3.1. It may be noted that for y; # v; and m; =mg = ... =

r—i r-1
a;(r) = 1) ( J (3.6)
i—-1

(m+1) Y(r-1)
Put the value of a;(r) from (3.6) in (3.5), we get

rdJ it tg r—1\(J
E[XJ(r, n, m, k)] = c,_lzz () —

iTaom+1) " (r-11{;-1)|g
F(%-I—l) 1F1( e +2 'Ylj

£ 8
vy (9 " lj

x | el
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Remark 3.2. (1) Putting m = 0, k = 1, in (3.5), the explicit formula

for single moment of order statistics from NH distribution can be

obtained as

nyr J r—1 J
sti= (g (o
r)i=1 g=0 -1 g

g
I'=+1 F +2;n-1+1
n—i+l (9 ) ! 1( 9 )

g
(n—-i+ 1)3*1 (% + 1)

xX|e

(2) Putting n, m € N, m; —Rl,n—m+z 1 R;, R; € Ny and

Yj =n- ZIJ/:R]} —-j+1,1<j<m in (3.5), the single moment of

progressive type II censored order statistics of NH distribution can be
obtained.

(3) Putting y; = (n—i+1)B;; By, Ba, .-, By, > 0 in (3.5), the single
moment of sequential order statistics of NH distribution can be obtained.

Theorem 3.2. Let X be a continuous random variable, then for integer

J such that J > 1, the following recurrence relation is satisfied iff X has

cdf given in (1.8):

J
Oy,

E[§(X(r, n, @, k)] = E[X? (r, n, @, k)] - E[ X7 (r -1, n, @, k)],(3.7)

where ¢(x) = x7 (1 + x)'7° if and only if

F(x)=1-exp[l-(1+x)°], x, 6>0.
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Proof. We have

EIX (1, )] = ¢ 12 W) T L

- o [ T T

0 r—1
~erea | ¥ A0 ol DI

Since a;(r —1) = (v, — v;)a;(r),

E[X7(r, n, @, k)] - E[X?(r -1, n, i, k)]

0 r-1 . B
=, ) VTN + 0y () FT e
0 r—1 _
- CPQJ‘O fo(x);ai(r) (v, — ;) [F(x)] Ldx

= croa i) | P o) 39)

Integrating by parts, we get

E[X7(r, n, m, k)] - E[X?(r -1, n, m, k)]

= g a6 P f)d
g i=1

So we have the result given in (3.7).
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Conversely, if the characterization condition (3.7) holds, then from
(3.8), we have

E[X7(r, n, @, k)] - E[ X7 (r -1, n, 7, k)]
= oy ) F@I fx)ds,
=1

Thus

e i) o) [P )

1=1

= C;_;l ;ai(r)j:x%[ﬁ ()] f(x)dx. (3.9)

Integrating R.H.S. of (3.9) by parts and rearranging the terms, we get

Mra-r Oo_x ) ) — 27 Fx) e =
NG ) -7 fds =0, a0

Applying a generalization of the Miintz-Szdsz theorem (Hwang and
Lin [6]), we get

OF)  riry = 1
o(F) T

which implies that
F(x)=1-exp[l-(1 +x)9], x, 0> 0.

Hence the theorem.

4. Product Moment and Characterization of NH Distribution
Based on Generalized Order Statistics

In this section, the product moment of gos from NH distribution has

been deduced. Further, for the particular values of m and k, the explicit

expression for the product moment of order statistics, progressive type II
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censored order statistics and sequential order statistics are obtained as
the particular cases of gos and applying the generalization of the Miintz-
Szdsz theorem (Hwang and Lin [6]), we have established a
characterization result of NH distribution based on product moment of

gos.

Lemma 4.1. For any positive (a;, ay, b) and J, K € N, the value of

integral

CDJ’K(al’ as, b)
0 @ o0 b b
= I J nyKe_a2(1+x) b(1 + x)b_le_a1(1+y) b(1 + y)b_ldydx
0 Jx

N 1)’“”@ S J’”{JJ r(?l) eam%;l)
2 i2 ab

=0 iy )| i5=0 1—” (ag —a;)b "

i]_ +i2

a . I + 2
- _F|1, 241, a9 - — e b
l_2+1 b i+1 h+ip o
b b a, b

><2F1|:1, —ll ZIQ + 2, i + 2,

b E}_(il+i2+2j

F101201( 11,102 le +2 1 b +3: b +2 = a, az)}H’ (4.1)

where
(a), 2"
\Fy(a; b; 2) = Z(b) £0,-1,-2, ..., (4.2)
S Fy(a; b; 2) = z(azc)(b) Zn—’: c#0,-1,-2, ..., (4.3)
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(4.2) and (4.3) are known as Kummer Conuent hypergeometric function

and Guass hypergeometric function, respectively.

Flpmqrf[(ap) : (bq ); (ck); (al) : (Bm )§ (Yn ); X, y]

k
_ i H;zl(aj )r+sHj=1(bj )'“szl(cj )s 4£’
r,s=0 Hj:l(aj )r-%—sH;nZI(Bj )rH;lzl(Yj )s r.os

is known as Kampé de Fériet function, which converges, if

(4.4)

A p+tg<l+m+Lp+k<l+n+l,|x| <o, |y <o,

or
() p+g=l+m+1, p+k=1+n+1|x| <o, |y <

Proof.

£ b
o7 K(qy, ay, b) = J x? o2+ b x)° 1 I(x)dx,
0

I(x) = ijKe_al(Hy)bb(l + )Pl dy. (4.5)

Using (3.3), we get

- (el (1+x yu Z( b (f) { (2 +1)_Y(%+1’ al(ler)bﬂ'

i1=0 b
a

Putting the value of I(x) in (4.5), we get

K . (K) © 1 ]
I(x) = Z}(— D { [ (0 ey x)bll“(%Jrlj
n=




SHANNON ENTROPY AND CHARACTERIZATION OF ... 59
x ((1+x)° )%+i3+1b(1 + x)bl}dx.

Again using (3.3), we get

I( )_Z( 1)K+l]_ (11) a2[2( 1)J+L2[ j ;1 (%4.1)

OL1 (az —ar)v
{F(—+1) Y(b+1 ag — )}
= (1), af 1

. i+ig ig! (i
o 1 +ig+2 “3° [ A
i3 0(2+£1;j azb (b+1
i3

(F( b+l +ig +2)- Y(% +i3 + 2, a2DH.

Using Lemma 3.1, we get the result given in (4.1).

Theorem 4.1. Let X be a non-negative continuous random variable
and follows NH distribution given in (1.4), the product moment of r-th

and s-th gos is given as

E[X7 (r, n, m, £)XX (s, n, @, k)]

K J
a3 3 S amo 1>K+i1[. ][z« e
4 io=0

i=1t=r+17;=0

! Yl

X[J] F(9+1) F(e+1) eVt F(l' i2+2'y y)
- v 1ML 547 — Ve
1 [} 0
P e Y oY

Vi

) eyil"(—i1 giZ +2) -
v 14 Yt
- Fl1, 12,9 1, 9
2 1( AR 9 " vlj

il [i1+i2 2)
L 1 —_—+
(e " j 0

¥
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1 0:2;1 b +i

—+F110( :1,1T2 +2;1;, ——= 2 +3: 2; ﬂ/p“/ij
(11+12+2\J

0

(4.6)

provided that vy., > y;, YVt =1 +1, ..., s and y1., = min(y{, Y9, ---» ¥, )-

Proof. In view of (1.4), we have

E[XJ(r, n, m, k)XK(s, n, m, k)|

—ei Y Y alml o) [y P L F0

s e F(x) L F(x)
« L) s
iy
cen Y Y a6 [ Kot o s ey
i=1t=r+1

b
x ¢~ (1+y) b1 + y)° L dydx.
Using Lemma 4.1, we derive the relation given in (4.6).

Remark 4.1. It may be noted that for y; # v; and m; = mg = ... =

m,1=m# -1,

S— -r-1
at(r)(s) = (__ }) t [S ], 4.7

(m+ )" s—r -1,y 1

a:(r) = (_ 1)r—i T
i(r) =TT [i ) J. (4.8)

Put the value of a,gr)(s) and qg;(r) from (4.7) and (4.8) in (4.6), we get
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E[XY (r, n, m, £)XE (s, n, m, k)]

=2
iAo =D s —r =D m+1)"7 (-1

s—r-1 +i1K J +i2J F(ii+1j
(gt

e 2
e LI’(6 +1) R iy
" TR R L G R O
—Jrl) (2 +1j

(vi - vt)[e

1 e““l“(—i1 J(;iQ + 2) . .
- 2F1(1, cL R, R Y_t)

(i + 1) (—ilglé +2) 0 Y Yi
0 7

1 0:2:1 i +iy i+l 1

——F -], +2;1; +3:=+2; = v Vs
(M+2j 1.1,0( 0 0 0 Tt> Vi

0

Remark 4.2. (1) Putting m = 0, k = 1, in (4.6), the explicit formula

for product moment of order statistics from NH distribution can be
obtained as

r s K . '
E[X;]nXg{n] = (n — s)' (r _711")' (3 — 1)' Z Z Z (_ 1)K+l1+s+r—z—t

=1 t=r+1i;=0

r-1\(s-r-1\(K)\| J (dJ F(i+1j
x (—1)*”‘{ ] v
[z—l}[t—r—l}[q} i;) i2 (n—t+1)(%+1)
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e(n—i+1)r(% + 1) e(n—t+1)

1F1(1, l—2 + 2, t— lj

% _
) i 0
T (5
(n-i+D){ Lt o
1 € ( 0 * i1+i2 il n—-t+1
- ; o 2F1 1, ) +2,E+2,_—
1 , (1 2+2j n-i+1
o (m=i+1) (0

1 F0:21

: ; 1:1;0
L+ 4
a1t g

( 0 )

x(—:l, bl +2;1; htlp +3:l—1+2; - (n—t+1),(n—i+1)j

0 0 0

(2) Putting n,me N, m; =R, n=m+ z;n:le, Rj € Ny and

yj =n- i:Rv —-j+1,1<j<m in (4.6), the product moment of

progressive type II censored order statistics of NH distribution can be

obtained.
(8) Putting y; = (n —i +1)B;; By, Ba, ..., B, > 0 in (4.6), the product
moment of sequential order statistics of NH distribution can be obtained.
Theorem 4.2. Let X be a random variable, then for integers J and K
such that J, K > 1, the following recurrence relation is satisfied iff X has
cdf (1.8):

K

= E[6(X(r, n, m, k)X (s, n, m, k)] = E[X7 (r, n, @, k)X K (s, n, @, k)]

—E[XJ(r, n, m, k)XK(s—l, n,m, k)],

(4.9
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where §(x, y) = x? BT+ y)l_e if and only if
F(y)=1-expll-(1+y)'], 56>0.
Proof. Using (1.4) and (4.9), we get

E[XY(r, n, @, &)X (s, n, @, k)] - E[X7 (r, n, @, £)XE (s -1, n, 71, k)]

SN > aﬁ(){ } lz a; (1) [F )]

t=r+1

fx) 1),
Fx) F()

-c “ yE al")(s - Ey)[" r)[F(x S ﬁ() x
][ t;m n 2] LZ;()[F()] }F()F()y.
(4.10)

Since at(r)(s 1) =(ys - Yi)at(r)(s)a

E[X7(r, n, @, &)X (s, n, i, k)] - E[X7 (r, n, @, £)XE (s~ 1, n, 3, k)]

"y, | W)
“e[ [ {t >, oo 53]
Os)| EDV LS 0 o) (R [ L)« 10D
#1070 T | ] 2 OFEN |05 x 5oy
i=1
o[PS ; f&) > ey | FO T £
o] Y at P L[ {tzr;lat e 2] F(yy)dy}dx

=1

(4.11)

Now integrating the second integral of (4.11) by parts, we get

E[X7(r, n, i, £)XE (s, n, 1, k)] - E[X7 (r, n, @, £)XE (s -1, n, #, k)]

- £CS—IJ-:¢('X’ y)gai(r)[F(X) I 1/;((95)) { Z (r) ( ){igyﬂ 11;((3’)) dy}

e t=r+1
(4.12)
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Hence, we get the relation given in (4.9).

Conversely, if the characterizing condition (4.9) holds then from
(4.12), we have

—sslj xy)z ") [Fx) %((’; Ix{ t(r) [igﬂﬂ (( )) }dx

ol [ 5 o[ B2 S

t=r+1

) fO) 4

( X
F) Tl ™

r

ety et 8 s [F2 | Suonsor |

t=r+1 =1

) 1) 4o
@ T ™

'11I
'11I

r

e[ Y wO)F@P L [ {

1=1

Z s)yt|:§ } xf((y))dy}dx

t=r+1

(4.13)

Now integrating the second integral of (4.13) by parts,

e z—I PECES ST

t=r+1

Gt [TLIN o ([ By T [ gy K1 o) £W) ..
" _[0 ; i(r)[F(x)]" ) Ky Lzr:ﬁ ; (){ ()} dy}d

which reduces to

Cs 1 J'O Z a;(r) [F(x)]"i ;‘((ac))

" I;K{tz;l ’")(s)[ﬂy ﬂ”[q)(xe ) ;((yy )) JyK_l}dy}dx = 0.(4.15)
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Applying a generalization of the Miintz-Szdsz theorem (Hwang and Lin
[6]), we get

o 2) f6) o K
6 F(y) ’

which implies that

F(y)=1-expll-(1+)"], 5 0>0.
5. Numerical Computations

In this section, we have computed the values of mean and variance
for order statistics and gos for 0 = 2 using MATLAB and these are
presented in Tables 1 & 2 and 3 & 4, respectively.

From Tables 1 and 2, it can be seen that the value of mean and
variance decrease as the sample size increases and increase as the value

of r increases.

Table 1. Mean for the r-th order statistics from NH distribution for 6 = 2

n r=1 r=2 r=3 r=4 r=5 r=6 r="1 r=8

1 0.3789
0.2107 0.5472
0.147 0.338 0.6518
0.1132 0.2486 0.4274 0.7266
0.0921 0.1975 0.3252 0.4956 0.7843
0.0777 0.1642 0.2642 0.3861 0.5504 0.8311
0.0672 0.1407 0.2231 0.3189 0.4365 0.5959 0.8703

[ I e Y -

0.0592 0.1231 0.1934 0.2727 0.3652 0.4793 0.6348 0.9039
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Table 2. Variance for the r-th order statistics from NH distribution for

0=2
n r=1 r=2 r=3 r=4 r=5 r=6 r=17 r=38
1 0.0985
2 0.0342 | 0.1062
3 0.0177 | 0.0431 0.105
4 0.0109 | 0.0244 | 0.0457 | 0.1023
5 0.0074 | 0.0159 | 0.0273 | 0.0464 | 0.0997
6 0.0053 | 0.0113 | 0.0185 | 0.0286 | 0.0463 | 0.0972
7 0.004 0.0084 | 0.0135 0.02 0.0292 | 0.0459 0.095
8 0.0032 | 0.0066 | 0.0104 | 0.0149 | 0.0208 | 0.0294 | 0.0453 0.093

Now Tables 3 and 4 provide the mean and variance of gos which
increase and decrease as the value of r and sample size increase,

respectively.

Table 3. Mean for the r-th generalized order statistics from NH
distribution for 6 = 2, m = 2, and k = 2

n r=1 r=2 r=3 r=4 r=5 r=6 r=17 r=38
1 0.2107

2 0.0921 | 0.2898

3 0.0592 | 0.1469 | 0.3374

4 0.0436 | 0.1006 | 0.1855 | 0.3711

5 0.0346 | 0.0769 | 0.1323 | 0.2151 | 0.3971

6 0.0286 | 0.0623 | 0.1036 | 0.1578 0.239 0.4182

7 0.0244 | 0.0524 | 0.0854 | 0.1258 | 0.1791 0.259 0.4358

8 0.0213 | 0.0452 | 0.0727 | 0.1051 | 0.1449 | 0.1973 | 0.2762 | 0.4511




SHANNON ENTROPY AND CHARACTERIZATION OF ... 67

Table 4. Variance for the r-th generalized order statistics from NH
distribution for 6 = 2, m = 2, and k = 2

n r=1 r=2 r=3 r=4 r=»5 r=6 r="17 r==8
1 0.0342

2 0.0074 0.0365

3 0.0032 0.0095 0.0365

4 0.0018 0.0046 0.0104 0.036

5 0.0011 0.0027 0.0053 | 0.0108 | 0.0355

6 | 0.000777 0.0018 0.0033 | 0.0057 | 0.0109 0.035

7 0.00057 0.0013 0.0022 | 0.0036 0.006 0.011 0.0345

8 | 0.000435 | 0.000973 | 0.0016 | 0.0026 | 0.0038 | 0.0061 0.011 0.0341

6. Conclusion

In this paper, we have derived the exact and analytical expression for
Shannon entropy of NH distribution based on gos and its special cases
such as order statistics and record values. Characterization based on
recurrence relation for single and product moment of gos from NH
distribution are also deduced. We have used this expression of single

moment for calculating the means and variances from NH distribution.
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