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Abstract 

In this note, we determine the minimum Hellinger distance estimator (MHDE) 
of a stationary multivariate long memory ARFIMA (Auto regressive fractionally 
integrated moving average) process. We establish, under some assumptions, the 
almost sure convergence of the estimator and its asymptotic normality. 

1. Introduction 

Granger and Joyeux [4] and Hosking [6] have proposed the ARFIMA 
( )qdp ,,  model to define a time series, which presents a character of 

short or long memory following d. For ,02
1 <<− d  the process is short 

memory. For ,2
10 << d  the process is long memory. This long memory is 
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characterized by a slow decay of the autocorrelation function or the sum 

of unfinished autocorrelations. The process is non-stationary for 2
1>d  

and stationary for .2
1<d  In spite of ARFIMA processes, the notion of 

long memory has beenwidely discussed by the authors such as Bitty and 
Hili [2] for linear processes with long memory, N’dri and Hili [10] for 
strongly dependent multi-dimensional Gaussian processes. Laura 
Mayoral [9] proposed by minimum distance a new method for estimating 
the parameters of stationary and non-stationary ARFIMA ( )qdp ,, 0  

process for .75.00 −>d  Kamagaté and Hili [7] and [8] estimated by the 

minimum Hellinger distance method a stationary univariate ARFIMA 
process and by the quasi maximum likelihood approach a non-stationary 
multivariate ARFIMA process. 

In this paper, we generalize the results of Kamagaté and Hili [7] to 
the multivariate case. We consider an m-dimensional ARFIMA stationary 
process ( ) ( )( ),,,1 tyty m"  after inversion of the process, we establish the 

consistence and asymptotic normality by using the minimum Hellinger 
distance. The reasons for choosing this estimation technic lie in the fact 
that these estimators obtained are efficient and robust (cf. Beran [1]). 

The paper is organised as following. After some notes about the 
estimator, in Section 2, we present a multivariate ARFIMA model. 
Section 3 is devoted to the estimation of parameters including the 
consistency of the estimator and its asymptotic normality. In Section 4, 
we establish the main results of this work. 

We denote by θ  the vector of parameters of interest composed of 
( )mdd ,,1 …  and matrix coefficients. 

The minimum Hellinger distance estimator of θ  is defined by 

l l( )02arg min , ,
nn H f fθθ

θ∈Θ
θ =  
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where l( )02 ,
n

H f fθθ  is the Hellinger distance defined by 

l( ) l ( ) ( )θθ θ θ
 

= − 
 ∫

1
1 1 2
2 2

0 0
2

2 , .mn n
H f f f x f x dx

R
 (1) 

The minimum Hellinger distance minimizes the Hellinger distance 

between l
n

f θ  and ( ).. 00 θθ ff  is a theoretical probability density, l ( ).
n

f θ  is 

a random function of l ( )tε  and ( ).~
nf  a non-parametric kernel density 

estimator of ( )tε  defined by: 

l ( )
l ( )

θ
=

 − ε
 = ∈
 
 

∑
1

1 , ,
n

n
m

m nn t

x t
f x K xbnb

R  (2) 

( ) ( )

=

− ε = ∈ 
 ∑�

1

1 , ,
n

m
n m nn t

x tf x K xbnb
R  (3) 

where +→ RRmK :  is a kernel function and ( )nb  is a sequence of 

bandwidths and .: +→ RRmf  

2. Multivariate ARFIMA Models 

The multivariate ARFIMA model was introduced by Sowell [13]. We 
consider an m-dimensional ARFIMA stationary process ( ) ( )( )tyty m,,1 "  

following 2
1<d  which is generated by 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ,,,,, 11
′εε=′ ttLBtytyLDLA mm ""  (4) 

where M ′  denote the transpose of the matrix M. 

L is the backward shift operator, who, to any element of a time series, 
associates the previous observation as 

,, N∈= − jXXL jtt
j  
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( ) ( ){ }tt mεε ,,1 …  are white noise processes that follow the normal law of 

mean zero and covariance 

{ ( ) ( )} ( ) .,,1,,,, mjiststr ijji …=δ=εε k  

Denote by ( )ijk=K  the positive definite covariance matrix. 

The expression D(L) defined in (4) represents a diagonal ( ) matrix-mm ×  

of the fractional difference operators of backward shift defined by 

( )

( )

( )

,
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01 1
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




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−

−

=

md

d

L

L

LD
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with ( ) ( )
( )

k
k k

k Ld
dL d

!11 1 −Γ
−Γ+=− ∑ ∞+

=
 and ( )..2

1,2
1,,1 Γ





−∈mdd "  is 

the gamma function such that ( ) !.1 jj =+Γ  

Let ( ).A  and ( ).B  be matrix polynomials in L of degrees p and q, 

respectively, defined as hereinafter by: 

( ) ,1
p

pLALAILA −−−= …  

( ) ,1
q

qLBLBILB +++= …  

where I represents the ( )mm ×  identity matrix. The ( ) 0det ≠LA  and 

( ) 0det ≠LB  are, respectively, the characteristic polynomial of the 

matrix polynomials ( ).A  and ( )..B  We assume that the roots of 

characteristic polynomial are all outside the unit disk. 

Odaki [11] and Hosking [6] showed that the process is invertible for 

1−>d  and stationary for .2
1<d  Taking into account the conditions on 

the polynomials, the process (4) is invertible and causal and admits a 
representation of an autoregressive process of infinite order as following: 
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Let ( )( ) ( ) ( ),1 LCLALB =−  the equality (5) can be written as follows: 
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where ( ) n
jli BdA R⊂Θ∈=θ ,,  be the vector parameters of interest. 

For mlpi ≤≤≤≤ 1,0  and Θ≤≤ .0 qj  is a compact set. m=n  

( )[ ] { ( )}∞=θΨ++ 0.1 jjqpm  are ( )mm × -matrix associated with the entire 

series development of the matrix polynomial ( ) ( )LDLC  in power of L 

such as ( ) ∞<Ψ∑ ∈
jsrj ,Z  for .,1 msr ≤≤  
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Let iy  for ni ≤≤1  be the observations. The innovations 

( ) ( )( )′εε tt m,,1 "  are not observable, they are estimated by 

l ( )

l ( )
( )

( )

( )

11

0
.

n

j
j mm

t y t j

y t jt =

 ε −    = Ψ θ       − ε 

∑# #  

3. Parameter Estimation 

To establish the consistency and limit law of the parameter, we need 
the following assumptions: 

Assumption (A1) 

(1) ( ) +∞<ε s
tE  for .1≥s  

For all ( ) ,, 2mu R∈ν  we have: 

(2) ( ) ( ) 0,2 =∞< ∫∫ duuKuduuK imm RR
 for ;1 mi ≤≤  

(3) ( ) ( ) ∞<= ∫∫ duuKuduuKuu iji mm
2,0

RR
 for ;1 mj ≤≤  

(4) There exists 0>C  such that ( ) ( ) .sup νν CuKuKmu ≤−+
∈R  

Assumption (A2) 

For each Θ∈θ  and each ,mx R∈  the functions ( )xfx θ6  and 

( )xf 2
1

θθ 6  are continuously differentiable and s,
tε  admits a density 

absolutely continuous with respect to the Lebesgue measure ,mR  

positive in a neighbourhood of the origin. 
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Assumption (A3) 

For each ,mx R∈  the functions ( ),2
1

xf
j

θθ∂
∂θ 6  for qj ≤≤1  and 

( ),2
12

xf
j

θθ∂θ∂
∂θ

k
6  for qj ≤≤ k,1  

are finished, continuous and defined in ( ).2 qL R  

Assumption (A4) 

( ),nnbn Lα=  where 01 <α<−  with L  a slowly varying function. 

( )
( ) .0,1lim,lim,0lim >=+∞==

+∞→+∞→+∞→
an

annbb
nnnnn L

L  

For each ( ) ",2,1,0,sup, 0 =∞<
∂

∂
Θ∈θ θ

∈
ix

x

f
i

i

x m
k

R  and .,,1 m"=k  

Assumption (A5) 

For θ′≠θΘ∈θ′θ ,,  implies that { ( ) ( )}xfxfx m
θ′θ ≠∈ /R  is a set of 

positive Lebesgue measure. 

Assumption (A6) 

We suppose that there is a constant M such as ( ) .sup ∞<≤
∈

Mxfmx R   

Theorem 1. Supposing that Assumptions (A1)-(A6) are satisfied. 

Then lnθ  converges almost surely to 0θ  for all .mx ∈R  

We denote by: 

( ) ( ) ( ).,,, 0000
0

0
0

0
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0
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gfg t
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R
 

when these quantities exist. 
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Theorem 2. Supposing that Assumptions (A1)-(A6) are satisfied. If 

Condition C1: The components of 0θg�  and 0θg��  are in 2L  and if the 

norms of these components are continuous functions of .0θ  

Condition C2: ( ) ( )dxxgxgm 00 θθ∫ ��
R

 is a non-singular ( )nn × -matrix, 

then the limit distribution of l( )0nn θ − θ  is ( ),,0 2∑N  where 

( ) ( ) ( ) .4
1 2

1
2

00 duuKdxxgxg mm
t ∫∫

−

θθ 




=∑
RR

��  

4. Proof of the Theorems 

We need the following lemma to prove the Theorem 1. 

Lemma 1. Supposing that Assumptions (A1) and (A2) are satisfied. 
Then 

l ( ) ( )θθ − → → +∞0 0 . . .
n

f x f x a s when n  

Proof. By triangular inequality, we have 

l ( ) ( ) ( ) ( ) ( )θθ
∈

− ≤ + +0sup ,
nmx

f x f x a b c
R

 

where 

( ) l ( ) ( )θ
∈

= − �sup ;
nm

n
x

a f x f x
R

 

( ) ( ) ( )
∈

= −� �sup ;
m

n n
x

b f x Ef x
R

 

( ) ( ) ( )θ
∈

= −�
0sup .

m
n

x
c Ef x f x

R
 

We demonstrate Lemma 1 in three steps. 
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Step 1. The convergence of (a) to zero after inversion of the process 
(4). 

Considering the conditions on the polynomial functions A(L) and 
B(L), the process (4) is invertible and can be rewritten as a 
representation of a autoregressive process of infinite order. 

We consider two density functions l ( ).
n

f θ  and ( ),.~
nf  respectively of ltε  

and .tε  By Assumption (A1), we have 

l ( ) ( ) 1
1

sup ,
nm

n

n m t
x n t

Cf x f x
nbθ +

∈ =

− ≤ η∑�
R

 

where 
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1 1 1
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m m m

t t t

t t t

 η ε − ε    η = =       η  ε − ε 

# #  

tη  represents the rest when truncating the series from n, 

( ) .
1

jtj
nj

t y
−

∞

+=

θΨ=η ∑  

We adapt the notion of invertibility according to Granger and Andersen 
[3] as below 

l( )2 2 2
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1
lim .j nt tt
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E

+∞

−→+∞
= +

ε − ε = ∑ Ψ < ∞∑  

Let’s examine the following expression: 
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Denote by 
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We will now focus on the expressions of (d) and (e). 
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Using inequality (6), we have 
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where tji,Ψ  and tli,Ψ  are the coefficients of the vector ( ) .jtj y
−

θΨ  
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Using the same argument as in (d), we obtain 
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where sji,Ψ  and sli,Ψ  are the coefficients of the vector ( ) .jsj y
−

θΨ  

Odaki [11] characterizes the invertibility of the process by a function 
( )dfn  defined as following: 
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Odaki [11] shows that the order of magnitude of the sum of squares of 
these coefficients is 
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By (7), (8) and (9), we have 
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Then 
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Hence the convergence of (a) to 
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Step 2. We will now prove the almost sure convergence of (b) using 
the Prakasa-Rao’s inequality [12]. 

By Prakasa-Rao’s inequality [12], we have 
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Let’s consider a sequence ( ) ∗∈Nnns  defined by 

,nn nbS =  

where nb  is a sequence of bandwidths satisfaying Assumption (A4). Let 

choose ( )nb  such that 

( ) ( ) .01withln;ln 1 <α<−== α+α nnsnnb nn  
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Then for ,1>n  the general term sequence ns  is positive. 
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Let’s examine the limit of 
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We can rewrite the Prakasa-Rao’s inequality as following: 

( ) ( ) ( ) ( ) ,8
lnexp2ln~~

0

2










 ε
−≤








ε>− Mc

ns
n

nsxfExf nn
nnP  

( ) .,1~

1

m
n

t
n

t
m
n

n xb
x

K
nb

xf R∈






 ε−
= ∑

=

 

By Assumption (A6), we have 
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We will now dominate the next expression 
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By Assumption (A4), we obtain 
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By inequality (10), we have 

( ) ( ) ( ) ,2ln~~sup 4
12

4
1

β
∈

≤







ε>−

+α

n
nnxfExfn nn

x mR
P  

( ) ( ) ( ) ,2ln~~sup
11

4
12

4
1

β
≥∈≥
∑∑ ≤








ε>−

+α

n
nnxfExfn

n
nn

xn mR
P  

( ) ( ) ( ) .ln~~sup 4
12

4
1

1
+∞<








ε>−

+α

∈≥
∑ nnxfExfn nn

xn mR
P  

Using the Borel-Cantelli’s lemma 
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Hence the almost sure convergence of ( ) ( )( )xfExf nn
~~

−  to zero. 

Step 3. The convergence of the bias (c). 

By (3), we have 

( )( )




















 ε−
= ∑

= n

n

t
m
n

n b
x

KE
nb

xfE 1

1

1~  
















 ε−
=

nm
n b

x
KE

b
11  

( )dxzfb
zxK

b nm
n

m 0
1

θ





 −= ∫R  

( ) ( ) .0 ννν dbxfK nm −= θ∫R  

 

 



MINIMUM HELLINGER DISTANCE ESTIMATION … 29

The Taylor’s expansion in a neighbourhood of x and under 3 of (A1), we 
obtain 
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Under (A1) and (A4), ( ) ( ) .a.s0~sup 0 →− θ∈
xfxfE nx mR  when .∞→n  

The convergence of (a), (b), and (c) implies Lemma 1.  

We need the following lemma to prove the Theorem 1. 

Lemma 2. Beran [1] and Hili [5] consider F  the set of all densities 
with respect Lebesgue measure on .R  

We define the functional Θ→F:T  as following Let be F∈g  we 

pose 

( ) ( ) ( ){ },,min,: 22 θΘ∈θθ =Θ∈θ= fgHfgHgA  

where 2H  is the Hellinger distance. 
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If A(g) is reduced to an unique element, then T(g) is defined as the 
value of this element. Elsewhere, they choose an arbitrary but unique 
element of A(g) and call it T(g). 

Proof. See Beran [1] and Hili [5] for proof.  

Proof (Almost surely convergence). 

Theorem 1 is a consequence of Lemmas 1 and 2. We have 
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By Lemma 1 
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By Lemma 2, ( ) 00 θ=θfT  inequality on ,Θ  then the functional T is 

continuous at 0θf  in the Hellinger topology. Therefore 

l l ( )( ) ( )( )θθθ = → = θ0 0 ,
nn T f x T f x  

almost surely when .n → ∞  
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This achieves the proof of the Theorem 1.  

Proof of Theorem 2 (Asymptotic normality). 

The following Lemma 3 and Lemma 4 were, respectively, proved by 
Beran [1] and by Wu and Mielniczuk [14]. 

Lemma 3. Let’s suppose that Assumptions (A2) and (A5) and the 
conditions C1 and C2 of Theorem 2 are satisfied and that 0θ  lies in 

interior of .Θ  So for any density sequence l{ }n
f θ  convergent to 0θf  in the 

Hellinger metric, we have 
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where nA  is a non-singular ( )[ ]1++ qpmm  matrix whose components of 

nAn  tends to zero when .+∞→n  

Lemma 4. Let’s suppose that Assumptions (A1), (A2), and (A4) are 
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Proof. Let’s focus now on the proof of Theorem 2, referring to the 
above lemmas. By the Lemma 3, we have 

l ( )( ) ( ) l ( ) ( )θθ θ θ
 

= θ + − 
 ∫

1 1
2 2

0 00 mn n
T f x V x f x f x dx

R
 

( ) l ( ) ( )θ θ θ
 

+ − 
 ∫ �

1 1
2 2

0 0
.m nnA g x f x f x dx

R
 



K. STANISLAS MBEKE and OUAGNINA HILI 32

Since l ( )( ) l
θ = θ

n nT f x  and by multiplying the equation above by ,n  we 

have 
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Let’s examine the limit law of nB  to deduce the limit law of l( )θ − θ0 ,nn  
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by distributivity in (11), we have 
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then 

l ( ) ( )( )θθ − → → ∞0
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0θV  is continuous and bounded (for 0θ  fixed). By applying Vitali’s 

theorem on the sequence 
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Let’s consider the first term on the right of Equation (12) 

( )
l ( ) ( )

( )

θθ
θ

θ

−
∫ 0

10
2
0

.
2

n
m

f x f x
n V x dx

f xR
 (13) 

Therefore, by Lemma 4, the limit distribution of (13) is ( ),,0 2∑N  where 
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Hence the result. 
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