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Abstract

In this note, we determine the minimum Hellinger distance estimator (MHDE)
of a stationary multivariate long memory ARFIMA (Auto regressive fractionally
integrated moving average) process. We establish, under some assumptions, the
almost sure convergence of the estimator and its asymptotic normality.

1. Introduction

Granger and Joyeux [4] and Hosking [6] have proposed the ARFIMA

(p, d, ) model to define a time series, which presents a character of

short or long memory following d. For _71 <d <0, the process is short

memory. For 0 <d < %, the process is long memory. This long memory is
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characterized by a slow decay of the autocorrelation function or the sum

of unfinished autocorrelations. The process is non-stationary for d > %

and stationary for d < % In spite of ARFIMA processes, the notion of

long memory has beenwidely discussed by the authors such as Bitty and
Hili [2] for linear processes with long memory, N’dri and Hili [10] for
strongly dependent multi-dimensional Gaussian processes. Laura
Mayoral [9] proposed by minimum distance a new method for estimating
the parameters of stationary and non-stationary ARFIMA (p, dy, q)
process for dy > — 0.75. Kamagaté and Hili [7] and [8] estimated by the
minimum Hellinger distance method a stationary univariate ARFIMA

process and by the quasi maximum likelihood approach a non-stationary
multivariate ARFIMA process.

In this paper, we generalize the results of Kamagaté and Hili [7] to
the multivariate case. We consider an m-dimensional ARFIMA stationary
process (y;(t), -+, ¥, (t)), after inversion of the process, we establish the
consistence and asymptotic normality by using the minimum Hellinger
distance. The reasons for choosing this estimation technic lie in the fact

that these estimators obtained are efficient and robust (cf. Beran [1]).

The paper is organised as following. After some notes about the
estimator, in Section 2, we present a multivariate ARFIMA model.
Section 3 is devoted to the estimation of parameters including the
consistency of the estimator and its asymptotic normality. In Section 4,

we establish the main results of this work.

We denote by 6 the vector of parameters of interest composed of

(dq, ..., d,,) and matrix coefficients.

The minimum Hellinger distance estimator of 0 is defined by

0, = ar%eré)nn H, (fen, feo),
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where H, (?en, feo) is the Hellinger distance defined by
1
~ ~L 1 9 2
H, (fen’feo):“.Rm”gn (®) - ft @) dx} : 1)
The minimum Hellinger distance minimizes the Hellinger distance
between ?en and fy, - fo, (.) is a theoretical probability density, ?en () is

a random function of g(t) and }?n() a non-parametric kernel density

estimator of g(¢) defined by:

N 1 & [(x-2() m
fen(X):@th{ b, ]’ xeR™, (2)
T _ 1 C x_g(t) m
fn(x)—@;K(Tj, xelR , (3)

where K : R™ — R+ is a kernel function and (b,) is a sequence of

bandwidths and f : R — R+.

2. Multivariate ARFIMA Models

The multivariate ARFIMA model was introduced by Sowell [13]. We
consider an m-dimensional ARFIMA stationary process (y;(t), -+, ¥p,(¢))

following d < % which is generated by

AL)D(L) (31(t), -+, ym(@) = BL)(E1(t), -+, em(?)) s (4)

where M' denote the transpose of the matrix M.

L is the backward shift operator, who, to any element of a time series,

associates the previous observation as

L'X, =X,_;, jeN,
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{&1(¢), ..., €,,(t)} are white noise processes that follow the normal law of

mean zero and covariance
riei(t), gj(s)} = 8¢, sy, 4, j=1,..., m
Denote by K = (kij) the positive definite covariance matrix.

The expression D(L) defined in (4) represents a diagonal (m x m)-matrix

of the fractional difference operators of backward shift defined by
1-L)ya 0
D(L) = 0 0 ,

0 (1- L)m

+o T(k — d)

1

with (l—L)d :1+Z ¥ and dy, -, d,, e(—%,gj.r(.) is

the gamma function such that I'(j + 1) = j!.

Let A() and B(.) be matrix polynomials in L of degrees p and ¢,

respectively, defined as hereinafter by:

A(L)=T-AL-...- AP,
B(L) =1+ BL+...+ B, L?,

where I represents the (m x m) identity matrix. The det A(L) = 0 and
det B(L) = 0 are, respectively, the characteristic polynomial of the
matrix polynomials A() and B(). We assume that the roots of
characteristic polynomial are all outside the unit disk.

Odaki [11] and Hosking [6] showed that the process is invertible for

d > -1 and stationary for d < % Taking into account the conditions on

the polynomials, the process (4) is invertible and causal and admits a

representation of an autoregressive process of infinite order as following:



MINIMUM HELLINGER DISTANCE ESTIMATION ... 17

e1(t) ()
B(L)| i |=4@DL)| : |,

em(0) Im(®)
&1 () y1(t)

= (BL)TAL)DL)| i | (5)
em(t) I (t)

Let (B(L)) ' A(L) = C(L), the equality (5) can be written as follows:

e1(t) a1, (L, 0) 1 (L, 6) ¥ ()
= : : D(L)| : |,
Sm(t) le(L’ e) Cmm(L’ 9) ym(t)
and
e1(t) ¥t = j)
=y we)
7=0
em () Ym(t = J)

where 0 = (Ai, dj, Bj) € ® c R" be the vector parameters of interest.
For 0<i<p,1<lI<m and 0<j<q0® is a compact set. n=m
[m(p +q) +1]. {¥;(8)}7_y are (m x m)-matrix associated with the entire
series development of the matrix polynomial C(L)D(L) in power of L

such as Zjezllyr,s(j)l <o for1<r, s <m.
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Let Y for 1<i<n be the observations. The innovations

(g1(), -+, sm(t))’ are not observable, they are estimated by

g1 ) n y (E=J)
S Z‘Pj (©)
e, ) 70 Im E=1J)

3. Parameter Estimation

To establish the consistency and limit law of the parameter, we need

the following assumptions:

Assumption (A1)

(1) E(lg,|?) < +oo for s > 1.
For all (u, v) € R?™, we have:

2) .[R’" K%(w)du < o, IR’” u;K(u)du = 0 for 1 <i < m;

IA

3) IRM uju;K(u)du = 0, IRm ulzK(u)du <o for1<j<m

(4) There exists C > 0 such that sup . |K(u+v)- K(u)| < Cpl.

Assumption (A2)

For each 6 € ® and each x € R™, the functions x — fy(x) and

1
0 — fZ(x) are continuously differentiable and g,’s admits a density

absolutely continuous with respect to the Lebesgue measure R™,

positive in a neighbourhood of the origin.
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Assumption (A3)

1
For each x € R™, the functions 6 %fez (x), for 1< j<q and
J

2 1

0 5 .
< < <
0~ 76,26, fé(x), for 1< j, k <gq

are finished, continuous and defined in L?(RY).

Assumption (A4)

b, = n*%(n), where -1 < a < 0 with ¢ a slowly varying function.

. : . Z(an)
1 = 1 = 1 =
mgﬂmbn O’nggmnbn +W,nig; ﬁf@ﬂ

1, a > 0.

i
—% () <w, i=01,2and k=1, m
X

For each 0 € 0O, sup

xe]le

Assumption (A5)

For 0, 0' € ®, 6 # 0' implies that {x € R™ / fy(x) # fy(x)} is a set of
positive Lebesgue measure.

Assumption (A6)

We suppose that there is a constant M such as SUP__pm flx) < M < o

Theorem 1. Supposing that Assumptions (Al)-(A6) are satisfied.

Then @n converges almost surely to 0, for all x e R™.

We denote by:

1

8oy .. 0> g0 : . .
oy = Yoy = | [ g6, | ().

1
— f£2 5 —
8oy = fo,» 80y = 20, 00 = 20,00"

when these quantities exist.
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Theorem 2. Supposing that Assumptions (A1)-(A6) are satisfied. If
Condition C1: The components of g'eo and geo are in Lo and if the

norms of these components are continuous functions of 0.
Condition C2: IRW 8o, (x)gp, (x)dx is a non-singular (n x n)-matrix,

then the limit distribution of N (8, ~6;) is N(0, £2), where

22 =3[ i, (x)dx}_lij K2(u)du.

4. Proof of the Theorems

We need the following lemma to prove the Theorem 1.

Lemma 1. Supposing that Assumptions (Al) and (A2) are satisfied.
Then

?en (x) = fo, () >0 a.s. when n — +o.

Proof. By triangular inequality, we have

sup | Fo_ (0)= fo, @) | < (@) +(0) +(0),

xeR™

where

(@ = sup | fo ()~ F(®)];

xeR™

(0) = sup |, (x)~Ef, (0)];

xeR™

(¢) = sup | Ef, ()~ fo, ().

xeR™

We demonstrate Lemma 1 in three steps.



MINIMUM HELLINGER DISTANCE ESTIMATION ... 21

Step 1. The convergence of (a) to zero after inversion of the process

(4).

Considering the conditions on the polynomial functions A(L) and
B(L), the process (4) 1s invertible and can be rewritten as a

representation of a autoregressive process of infinite order.

We consider two density functions ?en(.) and }7n(), respectively of Et

and g,. By Assumption (A1), we have

sup | o, (0)-F, ()] s ——

m+1
xeR nbn

n
Im, I
t=1

where

m (¢)
n, = : = : ,
M @) e, ()-¢,, ()

1 (0) =21 (1)

n, represents the rest when truncating the series from n,

o0
n, = Z ¥,
j=n+1

We adapt the notion of invertibility according to Granger and Andersen
[3] as below

lim E ~ )2 y2 N 2

1m & — & = ; < 00,

t—+o0 (_t —t) Z Js n-1
j=n+l

Let’s examine the following expression:

1 w ’
E n .
(nb’,{m > ||J
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Denote by

n
1
X=—" 7 >
o 2|

n
92 1 2
E(y) = E(b—m lelntll J+z 2b2m+2 ZZun lin, |
n =

t=1 s=1
t<s

For all reals v > 0 and v > 0,

uv < %(u2 + uz), (6)

then

n
2 1 2
E(x) sE[WZnntnj 2b2m+2 Znn I +Z||n I
. t=1 t<s

thus

2
EQ) < <5 2b2m+2 [Z"ﬂ "] 2b2m+2 Z"“ I
t<s
2b2m+2 [Z"ﬂ " ] 2b2m+2 Z"“ I
t<s

252m+2 (len I J+E len I
t<s

= 2b2m+2 (d +e).
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We will now focus on the expressions of (d) and (e).

n o)

2

d - E(Zu D e, | J e = E(Zu D ey, | J
t=1 j=n+1 s=1 j=n+1

Let’s consider X5, 1 ‘¥; (e)zt_j a vectorial series in R™ vectorial space.

i ‘I’j(e)zt_ = hm Z ¥ (G)y

j=n+1 ] n+l

By triangular inequality, we have

d<Eth{Z||‘P(e)yt]] :

j=n+1
therefore
N N
d<E Z lim Z lwj@, P +2 D > ¥, %0,
j=n+1 J:n+1l:n71
J<

Using inequality (6), we have

2 Z Z Iy, II¥i(0)y, ] = Z l¥;0)y, I + Z l%0)y, 17,

J=n+ll= n+1 J=n+1 I=n+1
i<l j<l
consequently,
d < 2E Z lim Z [¥;0)y, Z RAQAE
j=n+1 *nJEl
J<

263 Jim| 3 [Z wj 3 [Z‘sz] O

t=1 j=n+1\i=1 I= n+1 i
j<l

where ¥; ;; and ¥; ;; are the coefficients of the vector ¥; (G)Zt_]"
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Using the same argument as in (d), we obtain

; E{zu S o, u2j

s=1 j=n+1

N N
<28 Y Bim| Y ey, P D ey, |

s=1 j=n+1 l=n+1
j<l

<203 i z{z%] s (zqgs,] e

s=1 j=n+1\i=1 ln+1 i=1
j<l

where ¥; ;i and ¥; ; are the coefficients of the vector ¥; (B)ZS_J

Odaki [11] characterizes the invertibility of the process by a function
fn(d) defined as following:

1/n for 0 < |d| <
fo(d) = logT(n) for d = —%,

1/n204d) for g <« - =

Odaki [11] shows that the order of magnitude of the sum of squares of
these coefficients is

Z lt]—o( )lfde( 1/2;1/2). 9)

By (7), (8) and (9), we have
C 1) 1
n2b5m+2 o) =° n353m+2

1
- O{anoc+2a+3$ 2m+2(n)J'
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Then
- : 1
sup | fo (x)—f, (x)|=0 when n — o,
e On n p2mo+20+3 gp2m+2 ()
% = 1
sup nt | fo (¥)=f, (x)[=0 PP when n — .
xeR™ n mo+ a+T$2m+2 (n)
Hence the convergence of (a) to o 1{ , where
n2m(x+2&+?$ 2m+2(n)

2moc+2oc+%>0.

Step 2. We will now prove the almost sure convergence of (b) using

the Prakasa-Rao’s inequality [12].

By Prakasa-Rao’s inequality [12], we have

Smlogm 9
- [Sm logm | e
P(|fn(x) Ef,(x)| > ¢ - j < 2exp S|

Let’s consider a sequence (s, ), _n* defined by
S,, = nb,,
where b, is a sequence of bandwidths satisfaying Assumption (A4). Let
choose (b,,) such that
b, =n*1In(n); s, = n*** In(n) with -1 < o < 0.
-l1<a<0&e0<l+ax<l

= 0<n™ <n.

Then for n > 1, the general term sequence s,, is positive.
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Let’s examine the limit of
S, = n'**In(n) and %n(n)’

0<l+a<l= lim S, =+,

n—+wn
0<l+a<1l= lim M:O.
n—>+oo n

x —
Taking n=m and §,(x, g)= bLmK( . Et], there is a positive
n n

constant ¢y such as

We can rewrite the Prakasa-Rao’s inequality as following:

r 7 s, In(n s. In(n)g?

n
n _ 1 X g m
R = LS K[ ern

noy =1
By Assumption (A6), we have
Q = 8cogM < o,
and it follows:

P (ll?n(x) - Efn (X)| > n%a ln(n)j < 2exp (—

eZnotl lnz(n)J

Q

20+3

1 5 - 2041 9 2%
P(n‘* sup |f,(x) — Ef,(x)] > n 4 sln(n)] < %exp| -2 - MW an (n) _
xeR™

(10)
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We will now dominate the next expression

P (n% sup |}7n(x) - Efn(x)| >n OZJS ln(n)}.

xeR™
By Assumption (A4), we obtain
-l1<a<0&e1<20+3<3

2043
o1l<n 2 <o

2 pnqy.2
oo En i)
Q
200 + 3
2

where p = > 0.

There exists a sequence (V,,) such that V, = BIn(n) with B > 1 for a

certain rank

eZn* In2(n)

0 > BIn(n),

e>1

n>1
under the constraints .

Q>0

u>0
Then

oo 21700

therefore
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By inequality (10), we have

1 N - 2a+1 9
P[n4 sup [T, ()~ B, () > 0 eln<n>js—ﬁ,
n

xeR™

1 ~ ~ 20+1 2
Z]P’(n‘1 sup |f,(x) = Ef,(x)| >n * aln(n)} <25
" n>1"M

n>1 xeR

Z]P’(n% sup |f, (x) — Ef,(x)] > n%a ln(n)] < oo,

n>1 xeR™

Using the Borel-Cantelli’s lemma

1 ~ ~
n4 sup |f,(x) - Ef,(x)| =0 a.s. when n — .
xeR™

Hence the almost sure convergence of (}Tn (x) - Ef, (x)) to zero.

Step 3. The convergence of the bias (¢).

By (3), we have

B(F, () - n;ﬁ" E(; K(x ;n§l )J
_ éE(K(X ;jlj

- L

_brT

K (xb; ijeo (z)dx

= .[]R’” K(v)fo, (x = vby, )dv.
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The Taylor’s expansion in a neighbourhood of x and under 3 of (Al), we

obtain

29 m m 62
e =) = )+ > f% 0 B+ S DY e+ o)

= j=lk=1 "/

B ()~ fog @) = [, Koy e = vby)v = oy ()], K()av

- J o B0 g (6 = vy) = fo, ()]

b2 &
sup |Efn x) = fo, (*)] < I [ 2n Zl 5af90 (x)vi + o(bz)]d

xeR™ k=1
< Ab2 j KW)[v2 + o(1)]dv,
Rm

where

m 2
1 feo
A=g Do),
=1
Under (A1) and (A4), suprRm|E7n(x) ~ o, (x)] > 0 a.s. when n — oo.

The convergence of (a), (b), and (¢) implies Lemma 1. O
We need the following lemma to prove the Theorem 1.

Lemma 2. Beran [1] and Hili [5] consider F the set of all densities

with respect Lebesgue measure on R.

We define the functional T : F — © as following Let be g € F we

pose
Alg) = {9 € ©: Hy(g, fo) = min Hy(g, fe)},

where Hq is the Hellinger distance.
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If A(g) is reduced to an unique element, then T(g) is defined as the
value of this element. Elsewhere, they choose an arbitrary but unique
element of A(g) and call it T(g).

Proof. See Beran [1] and Hili [5] for proof. O
Proof (Almost surely convergence).

Theorem 1 1s a consequence of Lemmas 1 and 2. We have

sup | 7o, (0)- oy ()] < sup | 7o, (8)-Fu@)|+ sup | 7 ()~ EF, )]
xeR™ xeR™ xeR™

+ sup | Ef, (1)~ fy, ()]

xeR™
By Lemma 1
| ?en (x)—feo (x)| > 0 a.s. when n — +o.
Then
1 1
) 5 3 ~
P {nliglw f o, (x) = feo (x) for all x} =1.
Since
fo (x)dx= I x)dx =1,
[ Fo@ar=[ £,
consequently

- 1 1o,
Hy (£, f90)={ij|f§n(x)—fe20(x)| dx} —0 a.s. when n - .

By Lemma 2, T(feo) = 0 inequality on @, then the functional 7 is

continuous at feo in the Hellinger topology. Therefore

0,=T (?en (x)) - T (fo, (x)) = 6o,

almost surely when n — .
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This achieves the proof of the Theorem 1. O
Proof of Theorem 2 (Asymptotic normality).

The following Lemma 3 and Lemma 4 were, respectively, proved by
Beran [1] and by Wu and Mielniczuk [14].

Lemma 3. Let’s suppose that Assumptions (A2) and (A5) and the
conditions C1 and C2 of Theorem 2 are satisfied and that 0, lies in

interior of ©. So for any density sequence {?e } convergent to feo in the
n

Hellinger metric, we have

1

~=

7 (7o, @) =00+ [, Vo, @ {fgn (x)- f; (x)} dx

4|, @) {?gn @-f2 (x)} dx,

where A,, is a non-singular m[m(p + q) + 1] matrix whose components of

x/;An tends to zero when n — +o.

Lemma 4. Let’s suppose that Assumptions (Al), (A2), and (A4) are

satisfied, then N(O, feo(x)J'RmK2(u)du) is the limit distribution of

Jnb, [ o, (6)=fy, )]

Proof. Let’s focus now on the proof of Theorem 2, referring to the

above lemmas. By the Lemma 3, we have

7 (7o, @) =00+ [, Viy 0] 75 11 09 a

+ AnJ' m 8o, (%) {?gﬂ (x) - fgo (x)} dx.
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Since T (?en (x)) = @n and by multiplying the equation above by Vn, we

have

Jn (6, ~680)=n I Vo, @ {?é (x) fe% (x)} dx

~1 1
-*J;AnJngqK@{fiCQ—ﬂ%@ﬂdx
The components of x/;An — 0, when n — o. Then
Vn (6, -09) =B, +0, (1),

where
B, =vn I Vo @ {?gn -2 (x)} dx.

Let’s examine the limit law of B, to deduce the limit law of Jn (@n - 90),

1
where Vg (x) € Ly and Vp, L f620 , where 1 means orthogonality in L.

AL
By Assumption (A2), f g (x)>0 and the following algebraic equality, we
can rewrite B,,.
~ 2
em foo @) (o, ()~ fo, @)
0 1 (1 1 N2
fe (x) 2 fezo (x) ( f gn (x) + fezo (x)J

72 012 () -

fem fio®  (Fo, 00— foy @)
1 1 1 )2
2f9 (x) 2 fGEO (x) ( f gn (x)+ f920 (x)]

B, J—j Vi, @)

(11
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by distributivity in (11), we have

B, J—J’ Veo()fe()feo() dx+C,.
2/ (®)

Vo (x ~
Cn=—ﬁj ) 1 = (Fo, ()~ fo, () dx

R™ 1

1 L 1
2f 07 00+ 150
Using inequality

1.1 1)? 3 3
2f62() (fgnJrerOJ :2f920+y>2f9% with y >0,

33

12)

and posing & = infxe]Rm f(x), we can take C, in absolute value as

following:
Vo, (x ~
|C|<\/_J Vo, | . (fen(x)—feo(x))zdx
2f9 (x)[f 6 )+ fg (x)J
| eo( x)|
<] (To, @)~ fo, ) dx
262
<L6% [ Va1 (Fo, 09 foy @) .
By Lemma 1

1 ~
nt sup | fo ()= fo,(x)[ >0 as. with n— o,
xeR™
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then
Jn (?en (xx) = fo, (x))2 —0as. with n— .

Veo is continuous and bounded (for 6, fixed). By applying Vitali’s

theorem on the sequence
~ 2
W, () = | Vo, @) [V (F o, ()= fo, ()
|C.| = 0 in probability when n — .
Let’s consider the first term on the right of Equation (12)

T, (x)f fn®

217 (x)

Jn j Vi, @) (13)
Rm
Therefore, by Lemma 4, the limit distribution of (13) is N (0, 2 ), where

t

zz _ ‘[Rm VGO (x) Veoix) ‘[Rm K2 (u)dufeo (x)dx

1
2/ 2fg

- %J.Rm Vo, (x)Veto (x)de.]Rm K*(u)du

-1
_ l . .t 9
= [JR’" go, (x)ge0 (x)dx} IRM K*(u)du.
Hence the result.
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