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Abstract 

In this paper, we modify the second accelerated proximal gradient (APG) method proposed 
by Nesterov in [12] (and named by Tseng in [13]) for solving the total variation (TV) image 
deblurring problems. We also use the variables in [1] to decouple the problems so that we 
need not to solve the correlative subproblems in each iteration, borrow the idea of [19] to 
replace the Lipschitz constant by an appropriate positive-definite matrix, and use the 
continuation technique in [15] to provide good initial solutions for our algorithm. 

Keywords: image deblurring, total variation, the second APG (the second 
accelerated proximal gradient), auxiliary variables, continuation 
technique. 
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1. Introduction 

Digital image restoration and reconstruction play an important part 
in various areas of applied sciences, such as medical and astronomical 
imaging, film restoration, and image and video coding. In the process of 
image acquisition and transmission, the images is often blurred and 
receive a variety of noises. This means that we need to restore the 
original clean images from the noisy blurred ones. Thus, the image 
deblurring is always a hotspot in the research of image processing. 

The problem of estimating x from the observed blurred and noisy 
image b is called the image deblurring problems. In this paper, we mainly 
consider the TV deblurring problems of grayscale images defined on 
rectangle domains: 

( ) ( ),2
1min 2

,
xTVbxA FBx ul

λ+−
∈

  (1.1) 

where NMb ×∈   be the observed blurred and noisy grayscale image, 
NMx ×∈   be the original image to recover, the linear mapping A is the 

blurring operator, F⋅  denotes the Frobenius norm, λ  is the 

regularization parameter, ulB ,  is the constraint set of x : 

{ },,,,, jiuxlxB ji
NM

ul ∀≤≤∈= ×   (1.2) 

and ( )⋅TV  is defined as 

( ) ,Ω∇≡ ∫
Ω

dxxTV   (1.3) 

where Ω  is the domain of the image x. In practice, we need to discretize 
TV (x). 
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In the literature, two popular kinds of discrete TVs are isotropic TV 
and anisotropic TV [1], which are defined by 

( ) ( ) ( ) ,2
,1,

2
,,1

11
jijijiji

N

j

M

i
iso xxxxxTV −+−= ++

==
∑∑  (1.4) 

and 

( ) ( ),,1,,,1
11

jijijiji

N

j

M

i
aniso xxxxxTV −+−= ++

==
∑∑  (1.5) 

respectively, where we assume the reflexive boundary conditions for x : 

,,,1,0,,1 Njxx jMjM ==−+  

.,,1,0,1, Mixx NiNi ==−+  (1.6) 

Due to the nondifferentiability and nonlinearity, the problem (1.1) is 
difficult to solve. Many researchers have proposed some specific 
algorithms such as kernel regression [2], soft thresholding approach      
[3, 4], wavelet approach [5], and dual approach [6, 7], etc. Besides, many 
scholars present some effective proximal algorithms for solving this kind 
of problem in recent years. The iterative shrinkage/thresholding (IST) 
algorithm proposed by Daubechies et al. [8] and references therein are 
effective methods to solve the linear inverse problems with a sparsity 
constraint. However, the IST method may be slow under some 
assumptions on linear and continuous operator A [9]. Some scholars keep 
improving the convergence rate of the IST algorithm. Two methods of 
particular interest to image deblurring problem are the fast iterative 
shrinkage/thresholding algorithm (FISTA) proposed by Beck and 
Teboulle [3] and the two-step iterative shrinkage/thresholding algorithm 
(TwISTA) proposed by Bioucas-Dias and Figueiredo [10]. And authors 
proved that the scheme of the sum of two convex functions exhibits a 

global convergence rate ( ),1 2kO  where k  is the iteration counter, see [4, 
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11] for more details. But we note that the above algorithms, (e.g., ISTA, 
FISTA, and TwISTA and so on) need to solve some corresponding 
subproblems which might lead to the convergence rate slow. To avoid 
solving the image denoising subproblem, Zuo and Lin [1] proposed the 
generalized accelerated proximal gradient (GAPG) method (two auxiliary 
variables are added so that the TV-image formulas are suitable for 

GAPG), and obtain the convergence rate of ( ).2−kO  

In this paper, we extend the modified second APG method to handle 
both the isotropic and anisotropic TV-functions. Moreover, we use the two 
auxiliary variables in [1] to approximate the partial derivatives and 
borrow the idea of [19] to replace the Lipschitz constant by an 
appropriate positive-definite matrix. We also perform numerical 
experiments on two 256256 ×  images (Lena and Cameraman) to test our 
method. 

The rest of this paper is organized as follows. In the next section, we 
introduce the necessary notation. In Section 3, we develop the 
mathematical framework for the second APG schemes of [12] (and named 
by Tseng in [13]) and present our algorithm based on the second APG 
method for the TV-based regularization models. We present numerical 
experiments in Section 4. 

2. Notation and Preliminaries 

2.1. Basic knowledge 

In this paper, we use NM ×  to denote the NM ×  dimensional 

Euclidean space with inner product ( )TxyTryx =,  and the norm of the 

matrix NMx ×∈   is the Frobenius norm ( ) .T
F xxTrx =  
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Next, we recall some definitions concerning subdifferential calculus 
and fundamental properties, which play an important role in proximal 

gradient algorithms. For a proper closed convex function NMg ×:  

( ]∞+−∞→ ,  and any scalar ,0>µ  the proximal map of gµ  is defined as 

( ) ( ) { ( ) },2
1minarg: 2uxugxgprox

u
−

µ
+=µ   (2.1) 

where arg min denotes the unique minimizer, and we refer the readers to 
([14], Chapter 7) for properties of the proximal operator. 

2.2. The difference operator 

Inspired by the idea of the variable splitting method [15-17], we 
define two difference operators νΦ  and hΦ  to simplify the formulas (1.4) 

and (1.5). 

Definition 2.1. (i) We first define the vertical and horizontal forward 
difference operators νΦ  and hΦ  as 

( ) ( ) ,: 1 NMNMxp ×−× →Φ= ν   (2.2) 

and 

( ) ( ),: 1−×× →Φ= NMNM
h xq    (2.3) 

respectively, where the matrices defined by 

,,,2,1,1,,2,1,,1,, NjMixxp jijiji =−=−= +  

.1,,2,1,,,2,1,1,,, −==−= + NjMixxq jijiji  (2.4) 

(ii) The operators ∗Φν  and ∗Φh  which are the adjoint of νΦ  and hΦ  

are given by 

( ) ( ) ,: 1 NMNMpz ××−∗ →Φ= ν   (2.5) 

and 

( ) ( ) ,: 1 NMNM
h qz ×−×∗ →Φ=    (2.6) 
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respectively, where the matrices defined by 

,,,2,1,,,2,1,,,1, NjMippz jijiji ==−= −  

,,,2,1,,,2,1,,1,, NjMiqqz jijiji ==−= −  (2.7) 

where we assume that NiijMj qqpp ,0,,,0 ===  for any ,,,2,1 Mi =  

.,,2,1 Nj =  

(iii) CP  is the orthogonal projection operator on the set C. Thus, for 

instance, if ,,ulBC =  then ulBP ,  is explicitly given by 

( )













>

≤≤

<

=

.

,

,

,,

uxu

uxlx

lxl

xP

ij

ijij

ij

jiB ul  (2.8) 

Noting that if we arrange qpx ,,  column by column into vectors, then 

there are matrices νΦ  and hΦ  such that xp νΦ=  and ,xq hΦ=  

respectively. And the adjoint operators ∗Φν  and ∗Φh  are associated with 

matrices T
νΦ  and ,T

hΦ  respectively, where the superscript T denotes the 

transpose. Thus, we can rewrite the matrix norm of the anisotropic and 
anisotropic TVs as 

( ) ( ) ,
2lhiso xxTV ΦΦ= ν   (2.9) 

and 

( ) ( ) ,
11 lhlaniso xxTV Φ+Φ= ν   (2.10) 

respectively, where norm-2l  refer to the sqart of the sum of the square of 

each variable and the matrix norm-1l  here refer to the sum of the 

absolute values. 
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3. The Modified Second APG Method for Solving Discrete TV-Image 
Deblurring Problems 

We are interested in using a first-order method such as the 
accelerated proximal gradient (APG) algorithm and the steepest descent 
to solve the large-scale optimization problems. There are three APG 
methods introduced by Nesterov [12] for solving the sum of a smooth 
convex function and a nonsmooth convex function, here we focus on the 
second APG algorithm. For convenience, we first consider the following 
model which naturally extends the problem formulation (1.1): 

( ) ( ) ( ),:min xgxfxF
NMx

+=
×∈

  (3.1) 

where ( ]∞+∞−→× ,: NMg   is a proper closed convex function and 

 →×NMf :  is continuously differentiable function that has a 

Lipschitz continuous gradient :0>L  

( ) ( ) .,, NM
FF yxyxLyfxf ×∈∀−≤∇−∇    (3.2) 

We assume in addition that F is level-bounded, which implies that the set 
of the global minimizers of (3.1) is nonempty. 

Many first-order methods such as the fast iterative shrinkage-
thresholding algorithm (FISTA) [11] (which is based on the first APG 
method introduced by [13]) are used for solving the above problem (3.1) 
since the size of this kind of problem is typically large scale. The theory of 
the accelerated deformations of the accelerated APG method and their 
convergence rate are shown by many papers (see [4, 11] and the 
references therein). Here we will extend modified second APG method 
( )sAPG  introduced in [18] such it is suitable for the general model (3.1), 

and we will establish the improved complexity results. Now we collate 
the following algorithm: 
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___________________________________________________________________ 

Algorithm 1: The modified second APG ( )sAPG  method: 

Take ,, 00 NMzx ×∈   and { } ( ],1,0⊆θk  

for ,2,1,0=k and do 

 ( ) ,1 k
k

k
k

k zxy θ+θ−=  

[ ( )] ( ) ,11
2minarg 21









θ
+∇

θ
−−=

×∈

+ zgyfLzzLz F
z NM k

k

k

kk


 (3.3) 

( ) ,1 11 ++ θ+θ−= k
k

k
k

k zxx  

end for 

2
4 2

1
2

1
4

1 −−− θ−θ+θ
=θ kkk

k  (3.4) 

___________________________________________________________________ 

A possible drawback of the basic scheme of the above algorithm is 
that the Lipschitz constant L is generally larger. On the other hand, the 
Lipschitz constant in the regularization term depends on the maximum 

eigenvalue of ,AAT  it not always easy compute especially for large-scale 

problems. Noting that when the function f satisfies the Lipschitz gradient 
condition (3.2), the following inequality holds: 

( ) ( ) ( ) .,,2, 2 yxyxLyfyxyfxf F ∀−+∇−+≤   (3.5) 

In order to obtain smaller Lipschitz constant to accelerate convergence, 
Zuo and Lin [1] introduce a positive-define matrix fL  to change the 

inequality (3.2), where inner product and the fL -norm of the matrix fL  

are yLxyx f
T

Lf =>< ,  and ,, ff LL xxx ><=  respectively. Then 

(3.5) can be generalized as 
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( ) ( ) ( ) .,,2
1, 2 yxyxyfyxyfxf

fL ∀−+∇−+≤   (3.6) 

The matrix fL  exists for a broad class of f. For instance, we can choose 

fL  as LI when f satisfies the Lipschitz gradient condition (3.2), where I is 

the identify matrix. Here, we extend the modified second APG to a more 
general and efficient class, so called the generalized modified second 
accelerated gradient ( )sGMAPG  method. Hence, we rewrite the 

Algorithm 1 for accelerating convergence to solve (3.1): 

___________________________________________________________________ 

Algorithm 2: The generalized modified second accelerated 
gradient: 

Define fL  be a positive-definite matrix, let ,, 00 NMzx ×∈   and 

{ } ( ],1,0⊆θk  

for ,2,1,0=k and do 

 ( ) ,1 k
k

k
k

k zxy θ+θ−=  

[ ( )] ( ) ,11
2
1minarg 211









θ
+∇

θ
−−= −

∈

+

×
zgyfLzzz

fNM Lf
z k

k

k

kk


 (3.7) 

( ) ,1 11 ++ θ+θ−= k
k

k
k

k zxx  

update kθ  by (3.4) 

end for 

___________________________________________________________________ 
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4. Algorithm for TV-Image Deblurring 

Noting that the difficulty of solving the TV-image deblurring 
problems is due to the nonsmoothness of the TV functions. It is worth 
mentioning that Chambolle [6] advised to use the dual approach to 
overcome this difficulty, and proposed a gradient based algorithm for 
solving the resulting dual problems, which in the unconstrained case was 
shown to be a convex quadratic program. In view of the success of the 
method in effecting to solve these problems with TV regularized function. 
Here we transform the TV-image problems into a quadratic programming 
by using two auxiliary variables [10] and dual approach [6], such it 
suitable for Algorithm 2 in the following: 

Replace TV(x) in (1.1) by (1.4) and (1.5), respectively, we have 

( ),2
1min 2

,
xTVbAx isoFBx ul

λ+−
∈

 (4.1) 

and 

( ),2
1min 2

,
xTVbAx anisoFBx ul

λ+−
∈

 (4.2) 

where A is associated with the linear mapping A when x and b are 
treated as vectors. Here, we first using the matrix pairs to rewrite the 
problems (4.1) and (4.2) making them become two constrained problems, 
then we follow the approach proposed in [15] and construct a dual of 
these problems. 

By introducing two auxiliary variables νφ  and hφ  [10] such that 

xνν Φ=φ  and ,xhh Φ=φ  and using (2.9) and (2.10), we structure the 

constraint problems of the above problems, then we further write their 
unconstrained formulation in the following, respectively: 

( ( )),2
1

2
1

2min ,2
222

,,
xxxbAx ulh

BlhFhhFFx
χ+φφλη+Φ−φ+Φ−φ+−η

φφ ννν
ν

 

(4.3) 
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and 

( ( )),2
1

2
1

2min ,11
222

,,
xxxbAx ulh

BhFhhFFx
χ+φ+φλη+Φ−φ+Φ−φ+−η

φφ ννν
ν

 

(4.4) 

where η  is a relaxation parameter and ulB ,χ  is the characteristic 

function of ,,ulB  i.e., 

( )






∈/∞+

∈
=χ

.,

,,0

,

,

,
ul

ul
B

Bx

Bx
xul  

To utilize Algorithm 2 for the problems (4.3) and (4.4), we readily see that 
the decomposition in (3.1) should be chosen as 

( ) ,2
1

2
1

2
ˆ 222

FhhFF xxbAxxf Φ−φ+Φ−φ+−η= νν  

( ) ( ( )),ˆ
,22 xxg ulBlhl χ+φφλη= ν  

( ) ( ( )),ˆ
,111 xxg ulBlhll χ+φ+φλη= ν  (4.5) 

where ( ) .,,ˆ TT
h

TTxx φφ= ν  

Below, we consider the details of Algorithm 2 for solving the            
TV-image deblurring:  

(1) We choose the fL  similarly as [19]: 

( ),,,max IIIdiagLf σσλ=   (4.6) 

where maxλ  is the large eigenvalue of h
T
h

TT AA ΦΦσ+ΦΦσ+η νν  and 

.2≥σ  Moreover, because the size of the image x is large, then we use 
the more convenient way to estimate maxλ  proposed by Zuo and Lin [1] 

as in the following: 

( ) ,2
222max hA Φσ+Φσ+η≤λ ν   (4.7) 
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where 2A  can be estimated as 

( ),,min 12 ∞≤ AAAA F   (4.8) 

due to the fact that FXX ≤2  and the equality ∞≤ XXX 12  

([17]). 

(2) Consider the corresponding subproblem of anisotropic: 

{ [ ( )] ( )},1ˆ1ˆˆ
2
1minargˆ

1
21

ˆ
1 zgyfLzzz lLf

z f k

k

k

kk
θ

+∇
θ

−−= −+  (4.9) 

where 

( ) (( ) ( ) ( ) ) (( ) ,ˆ,,,ˆ,,,ˆ T
x

TTTT
x

TTTT
x yyzzzzzzzz

hh
kkkkkk === φφφφ νν

 

( ) ( ) ) )., TTT
h

yy kk
φφν

 This subproblem could be divided into the following 

three independent smaller problems: 

{ ( )},1~
2minarg ,

2max1 zzzz ulBFz
x ληχ

θ
+−

λ
=+

k

kk  (4.10) 

{ },~
2minarg 21

1 Flz kk
ννν

νν
φ−φσ+φλη=

φ

+
φ  (4.11) 

{ },~
2minarg 21

1 Fhhlh
hh

z kk φ−φσ+φλη=
φ

+
φ  (4.12) 

where 

[ ( ) ( ) ( )],1~
max

kkkkk

k

kk
νννν φφ −ΦΦ+−ΦΦ+−η

λθ
−= yyyybAyAzz xh

T
hx

T
x

T
x  

(4.13) 

( ),1~ kk

k

kk
xyyz νν νν

Φ−
σθ

−=φ φφ  (4.14) 

( ).1~ kk

k

kk
xhh yyz

h
Φ−

σθ
−=φ φφ ν

 (4.15) 
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It is easy to verify that 

( ).~
,

1 kk zPz ulBx =+  (4.16) 

Moreover, by ([15], Lemma 3.3), we have 

( ) (( ) ) ( ) (( ) ) ,,,~,~
,/,

1
,/,

1 jiTzTz jihjijiji h
∀φ=φ= σλη

+
φσλη

+
φ

kkkk
νν

 (4.17) 

where the shrinkage ( )⋅σλη /T  is defined as 

( ) { }.0,/max/ σλη−=σλη tt
ttT  (4.18) 

(3) In view of the success of continuation technique in GAPG for 
updating the “Lipschitz constant” .η  

Here, we incorporate continuation technique in [15] to accelerate 
Algorithm 2. We first assume the initial value ,0 Fb=η  then let it 

decrease gradually until the target value 0ρη=η  is reached. We take 

310−=ρ  and use the following relation to update :kη  

(( ( ) ) ).,12
221.09.0max 8

1
1 ηη

−
−+=η + kk k

k  (4.14) 

Below, we summed up the algorithm for solving the anisoTV  image 

deblurring: 
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___________________________________________________________________ 

Algorithm 3: 

Input: hvAb ΦΦηλ ,,,,, 0  

( ) ( ) ,,1,1,,,, 000
0

0
0

00 ,, ρη=η=σ=θΦ=φΦ=φ== xxbPzbPx hhBB ulul νν  

.,,,,, 0101
0

10101
0

1
hxhx hh

zzzzxxxx φ=φ==φ=φ== φφφφ νν νν
 

for ,2,1=k and do 

Update :,, kkk
h

yyyx φφν
 

( ) ,1 k
k

k
k

k
xxx zxy θ+θ−=  

( ) ,1 k
k

k
k

k
ννν φφφ θ+θ−= zxy  

( ) .1 k
k

k
k

k
hhh

zxy φφφ θ+θ−=  

Update :,, 111 +
φ

+
φ

+ kkk
h

zzzx ν
 

{ [ ( ) ( ) ( )]},1
max

1
,

kkkkk

k

kk
hul yyyybAyAzPz xh

T
hx

T
x

T
xBx φφ

+ −ΦΦ+−ΦΦ+−η
λθ

−=
ννν  

( ( )),1
/

1 kk

k

kk
k xyyzTz νννν

Φ−
σθ

−= φφσλη
+

φ  

( ( )).1
/

1 kk

k

kk
k xh yyzTz

hhh
Φ−

σθ
−= φφσλη

+
φ  

Update :,, 111 +
φ

+
φ

+ kkk
h

xxxx ν
 

( ) ,1 11 ++ θ+θ−= k
k

k
k

k
xxx zxx  

( ) ,1 11 +
φφ

+
φ θ+θ−= k

k
k

k
k

ννν
zxx  

( ) .1 11 +
φφ

+
φ θ+θ−= k

k
k

k
k

hhh
zxx  

end for 

___________________________________________________________________ 
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(4) In a similar way, the problem (4.3) can be divide into the problem 
(4.10) and the following subproblem: 

( ) { ( ) },~
2

~
2,minarg, 22

,
11

2 FhhFlh
hh

zz kkkk φ−φσ+φ−φσ+φφλη=
φφ

+
φ

+
φ ννν

νν
 

(4.19) 

where kk
hφφ ~,~

ν  are defined in (4.14) and (4.15). 

For the above subproblem, using ([15], Lemma 3.3) again, we have 

( ) ( ),~,~, /
11 kkkk

hSzz
h

φφ= σλη
+

φ
+

φ νν
 (4.20) 

where the shrinkage ( )⋅σλη /S  is defined as 

( ) { }.0,/max/ σλη−φ
φ
φ=φσληS  (4.21) 

We can see that our sAPG -based algorithm for isotropic TV-based image 

deblurring is almost the same as Algorithm 3, so we omit it. 

5. Numerical Result 

In this section, we apply our algorithm and GAPG proposed by [1] for 
image deblurring from blurred and noisy images and compare their 
performances. Here, we only test the algorithms for solving isotropic    
TV-based image deblurring problem. We mainly compare the 
computational time and SNR (PSNR) of the two method and the original 
APG method. 

In our numerical test, we focus on the following image deblurring 
problem: 

,ω+κ∗= xb   (5.1) 

where κ  is a blurring kernel, ω  is an additive normally distributed 
noise, and * is the convolution operator. 
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All the numerical experiments are performed in Matlab 2016a on a     
64-bit PC with an Intel (R) Core i5-7th Gen CPU (3.60GHz) and 128GB of 
RAM. 

Here, we consider two 256256 ×  images, i.e., Lena and Cameraman 
that go through a 99 ×  Gaussian blurring kernel mean zero with 
standard deviation 4, and then added with normally distributed noise 

with mean zero and standard deviation .10 3−  Besides, the regularization 

parameter was chosen to be 410−=λ  due to the chosen can give the best 
SNR. We use original APG, GAPG, and sGMAPG  with 150 iterations on 

problem (5.1), and obtain the two reconstructions given in Figure 1 and 
Figure 2. The reconstruction of sGMAPG  is slightly better than GAPG. 

This also reflected in the objective function values, the SNR values and 
the CPU times given in the following Table 5.1: 

Table 5.1. Algorithms for Lena and Cameraman 

PSNR(dB) CPU time (s) Algorithm 

Lena Cameraman Lena Cameraman 

Original APG 23.93 21.48   

GAPG 29.83 27.73 1.34 1.48 

sGMAPG  29.96 27.87 1.77 1.86 
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Figure 1. Algorithm for Lena. 
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Figure 2. Algorithm for Cameraman. 

From the above table, we see that the PSNR values of sGMAPG  and 

GAPG are greater than the original APG, and the value of sGMAPG  is 

slightly larger than GAPG. 
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6. Conclusion 

In this paper, based on the second APG method proposed by Nesterov 
[12], we construct sGMAPG  for TV-based image deblurring problem. Our 

algorithm framework allows a wide range of choice of the proximal 
parameters { },kθ  which including those used in FISTA with fixed restart 

[11]. First, we extend the second APG method with a suitable positive 
matrix instead of the original Lipschitz constant, so we can simplify the 
computation. Then, we use the auxiliary variables introduced in [10] to 
decouple the problems so that we need not to solve correlative 
subproblem in each iteration. Finally, in order to gradually reduce the 
relaxation parameter, we combine the continuation technique (introduced 
in [15]) in our algorithms, then we can obtain a good initial solution to 
make the rate of convergence faster. Numerical experiments show that 
our method performs well. 
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