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Abstract 

This paper proposes three new attacks on RSA-Takagi cryptosystem. The first 

attack is based on the equation ( )ZbqapNYeX rr +=−  for suitable positive 

integers ., ba  We show that X
Y  can be recovered among the convergents of the 

continued fractions expansion of 
N
e  and leads to successful factorization of the 
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prime power modulus qpN r=  in polynomial time. The second and third 

attack works upon j public keys ( )ii eN ,  when there exist j relations of the 

shape ( ) i
r
i

r
iiii zbqapyNxe +=−  or of the shape ( ) ,i

r
i

r
iiii zbqapyNxe +=−  

where the parameters iii zyyxx ,,,,  are suitably small in terms of the prime 

factors of the moduli. Applying the LLL algorithm, we show that our strategy 
enable us to simultaneously factor the j public key iN  in polynomial time. 

1. Introduction 

In recent years, modulus of the form qpN r=  have found many 

applications in cryptography. In [3], Boneh et al. proposed an efficient 

algorithm for factoring modulus of the form qpN r=  and showed that 

the algorithm runs in polynomial time when r is large ( ).log pr ≈  

Hence it is expected that the factoring of the modulus qpN r=  will be 

intractable when the bound for r is small. Fujioka et al. [5], used the 

modulus qpN r=  for 2=r  in an electronic cash scheme. Okamoto and 

Uchiyama [15], used qpN r=  with 2=r  in designing an elegant public 

key system. 

The cryptosystem developed by Takagi ushered in research in 

determining the security of the modulus .qpN r=  In [18], Takagi 

proposed a cryptosystem using modulus qpN r=  based on the RSA 

cryptosystem. He chooses an appropriate modulus qpN r=  which 

resists two of the fastest factoring algorithms, namely, the number field 
sieve and the elliptic curve method. Applying the fast decryption 

algorithm modulo ,rp  he showed that the decryption process of the 

proposed cryptosystems is faster than the RSA cryptosystem using 
Chinese remainder theorem, known as the Quisquater-Couvreur method. 
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In [17], Sarkar proved that using the lattice reduction techniques, if 

the decryption exponent ,395.0Nd ≤  then one can factor the prime power 

modulus qpN r=  in polynomial time. Asbullah and Ariffin [2] proved 

that by taking the term ( )31322 NNN −−  as a good approximation of 

( )Nφ  satisfying the RSA key equation ( ) ,1=φ− Ned k  one can yield the 

factorization of the prime power modulus qpN 2=  in polynomial time 

(for more information, see [1], [16], [17]). 

Our first proposed attack uses the Legendre theorem, which enables 
us to find the convergent of the continued fractions that leads to the 

factorization of the modulus qpN r=  in polynomial time. The second 

and third attacks uses lattice bases reduction. We are interested in the so 
called reduced bases of a lattice so as to yield factorization of the j moduli 

jNN ,,1 K  in polynomial time. 

The remainder of this paper is organized as follows. In Section 2, we 
give introduction to continued fractions, lattice basis reduction with some 
previous results. In Section 3, we present the first attack and estimation 
of the size of the class of the exponents for which our attack applies. In 
Sections 4 and 5, we give the second and third attacks. We also provide 
numerical example for all our attacks. We conclude this paper in Section 6. 

2. Preliminaries 

We start with definitions and important theorems concerning the 
continued fractions, lattice basis reduction techniques and some theorem 
from the previous attacks as well as some useful lemmas. 
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2.1. Continued fractions 

Definition 1 (Continued fractions). A continued fraction is an 
expression of the form 

 1   
+0a  

 1  
[ ],,,,, 10 KK maaa=  

 
+1a  

 1  

  
+O  

O+ma   

where 0a  is an integer and na  are positive integers for .1≥n  The na  
are called the partial quotients of the continued fraction [12]. 

Definition 2 (Convergents). Let R∈x  with [ ].,,, 10 maaax K=  
For ,0 mn ≤≤  the n-th convergent of the continued fraction expansion of 
x is [ ].,,, 10 naaa K  

Theorem 1 (Legendre). Let x be a real positive number. If X and Y 
are positive integers such that ( ) 1,gcd =YX  and 

,
2

1
2XX

Yx <−  

then X
Y  is a convergent of the continued fraction expansion of x. 

Definition 3 (Lattice basis reductions). Let nm ≤  be two positive 

integers and n
mbb R∈,,1 L  be n linearly independent vectors. A lattice 

L  spanned by { }mbb ,,1 L  is the set of all integer linear combinations of 
,,,1 mbb L  that is, 

( ) .,,
1

1












∈αα== ∑
=

Ziii

m

i
m bbb LLL  

The ib  are called basis vectors of L  and mbbB ,,1 L=  is called a lattice 

basis for .L  Thus, the lattice generated by a basis B is the set of all 
integer linear combinations of the basis vectors in B. 
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The dimension (or rank) of the a lattice, denoted ( ),dim L  is equal to 

the number of vectors making up the basis. The dimension of a lattice is 
equal to the dimension of the vector subspace spanned by B. A lattice is 
said to be full dimensional (or full rank) when ( ) .dim n=L  

Theorem 2. Let L be a lattice of dimension ω  with a basis .,,1 ωvv K  

The LLL algorithm produces a reduced basis ωbb ,,1 K  satisfying 

( )
( ) ,det2 1

1
14

1

21 ii
ibbb −+ω−+ω

−ωω

≤≤≤≤ LK  

for all .1 ω≤≤ i  

As an application of the LLL algorithm is that it provides a solution 
to the simultaneous Diophantine approximations problem which is 
defined as follows. Let nαα ,,1 K  be n real numbers and ε  be a real 

number such that .10 <ε<  A classical theorem of Dirichlet asserts that 

there exist integers npp ,,1 K  and a positive integer nq −ε≤  such that 

.1for nipq ii ≤≤ε<−α  

A method to find simultaneous Diophantine approximations to rational 
numbers was described by [10]. In their work, they considered a lattice 
with real entries. Below a similar result for a lattice with integer entries. 

Theorem 3 (Simultaneous Diophantine approximations, [8]). There 
is a polynomial time algorithm, for given rational numbers nαα ,,1 K  

and ,10 <ε<  to compute integers npp ,,1 K  and a positive integer q 

such that 

( )
.2max 4

3−
≤ε<−α

nn
qandpq iii  

Lemma 1. Let qpN r=  be an RSA modulus prime power with 
.2qpq <<  Then 

.22 1
1

1
1

1
1

1
1

1 +++++ <<<<
− rrrrr

r
NpNqN  
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Proof. Suppose ,qpN r=  then multiplying qpq 2<<  by ,rp  we 

get qpppqp rrr 2<<  which implies ,21 NpN r << +  that is, pN r <+1
1

 

.2 1
1

1
1

++< rr N  Also since ,qpN r=  then rp
Nq =  which in turn implies 

.2 1
1

1
1

1 +++ <<
− rrr

r
NqN  Hence 1

1
1

1
1

1
1

1
1 22 +++++ <<<<

− rrrrr
r

NpNqN  

[14].  

Lemma 2. Let qpN r=  be a prime power modulus with qpq 2<<  

and ba,  be suitably small integers such that ( ) .1,gcd =ba  Also let 

( ) ,ZbqapS rr +=  where ,2
1

1
2
1

rr bqap

N
Z

−
<≤  then .4

2
21









=−

N
SabZqr   

Proof. Set ( ) .ZbqapS rr +=  Then observe that 

  (( ) ) ( ) ( )ZbqZapZbqZapZbqapS rrrrrr ++=+= 22  

22222222 ZqbZqabpzbqapZpa rrrrrr +++=  

2222222 2 ZqbZqabpZpa rrrr ++=  

222222222 222 ZqbZqabpZqabpZqabpZpa rrrrrrrr ++−+=  

22222222 42 ZqabpZqbZqabpZpa rrrrrr ++−=  

212222222 42 qZqabpZqbZqabpZpa rrrrrr −++−=  

212222222 42 ZabNqZqbZqabpZpa rrrrr −−+−=  

( ) .4 212 ZabNqZbqZap rrr −+−=  

Hence we obtain 

( ) .04 2212 >−=− − ZbqZapZabNqS rrr   (1) 
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Then we divide (1) by 4N, we get 

N
ZabNqSabZqN

S r
r

4
4

4

212
21

2 −
− −

=−  

( )
N

ZbqZap rr

4

2−
=  

( )
N

Zbqap rr

4

22−
=  

( )

N

bqap

N
bqap rr

rr

4

2
1 2

2
2
1



















−
−

=  

,116
1

164
4
1

<=<< N
N

N
N

 

implies that 

.4
2

21








=−

N
SabZqr  

 

3. The First Attack on Prime Power Moduli qpN r=  

In this section, we present a result based on continued fractions and 

show how to factor the prime power modulus ,qpN r=  if ( )eN ,  is a 

public key satisfying an equation ( )ZbqapNYeX rr +=−  with small 

parameters ,, YX  and Z, where ba, be a suitably small positive integer. 
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Lemma 3. Let qpN r=  be a prime power modulus with qpq 2<<  

and ba,  be integers such that ( ) .1,gcd =ba  Let e be a public key 

satisfying the equation ( )ZbqapNYeX rr +=−  with ( ) ,1,gcd =YX  if 

( )
,

2 Zbqap
NX rr +

<  then X
Y  is among the convergents of the continued 

fraction expansion of .N
e  

Proof. Suppose that e satisfies the equation ( )ZbqapNYeX rr +=−   

with 
( )Zbqap

NX rr +
<

2
 and ( ) .1,gcd =YX  

Then from the equation ( )ZbqapNYeX rr +=−  when dividing by NX, 

we get 

NX
NYeX

X
Y

N
e −

=−  

.NX
Zbqap rr +

≤  

Assume that if 
( )

,
2 Zbqap

NX rr +
<  then 22

1
XNX

Zbqap rr
<

+  hold, 

that is, 

( )
( ) ( )

,
22

2 2

rrrr

rr

bqapXZ
NX

bqapXZ
ZbqapX

+
<

+

+  

which implies 

( )
,

2 Zbqap
NX rr +

<  

and by Theorem 1, we conclude that X
Y  is among the convergent of the 

continued fraction expansion of .N
e   
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Theorem 4. Let qpN r=  be a prime power modulus with 
.2qpq <<   Let ba,  be integers such that ( ) 1,gcd =ba  and let e be a 

public key satisfying the equation ( )ZbqapNYeX rr +=−  with 

( ) ,1,gcd =YX  if 
( )Zbqap

NXY rr +
<<≤

2
1  and ,2

1
1

2
1

rr bqap

N
Z

−
<≤  

then qpN r=  for 2≥r  can be factored in polynomial time. 

Proof. Suppose that e satisfies an equation ( )ZbqapNYeX rr +=−   

with ( ) ,1,gcd =YX  let X and Z satisfy the condition in Lemma 3, then 

X
Y  is among the convergent of the continued fraction expansion of .N

e  

Hence using X and Y, we define NYeXS −=  and Lemma 2 shows 

that .4
2

21








=−

N
SabZqr  It follows that .,4gcd

2

















= NN

Sq   

The following algorithm is designed to recover the prime factors for 

prime power modulus qpN r=  in polynomial time. 

Algorithm 1 

Input: The public key pair ( )Ne,  satisfying qpqqpN r 2, <<=  and Theorem 4. 

Output: The two prime factors p and q. 

(1) Compute the continued fraction expansion of .N
e  

(2) For each convergent X
Y  of ,N

e  compute .NYeXS −=  

(3) Compute .4
2












N

S  

(4) .,4gcd
2























= NN

Sq  

(5) If ,1 Nq <<  then .q
Npr =  
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Example 1. The following shows an illustration of our attack for ,3=r  
,3,2,3,38,49 ===== baZYX  given N and e as 

,89566324893678882512=N  

  .86911900572853023730=e  

Suppose that the public key ( )Ne,  satisfy all the condition as stated in 

the Theorem 4, from the above algorithm we first compute the continued 

fraction expansion of .N
e  The list of first convergents of the continued 

fraction expansion of N
e  are 


 ,5342486

4143171,3565567
2765146,1776919

1378025,11729
9096,5840

4529,49
38,9

7,4
3,1,0  

.,192411599
149217828,8908053

6908317

K  

Therefore omitting the first and second entry and start with the 

convergent ,4
3  we obtain 

,8948627613754473847=−= NYeXS  

and 

.764265895790459634
2

=







N

S  

Hence 

( ).89566324893678882512,76426589579045963,4gcd
2

=















NN

S  

1=  

Also the convergent ,9
7  gives S and 








N

S
4

2
 with .1,4gcd

2
=
















NN

S  
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Therefore, we need to try for the next convergent ,49
38  we obtain 

,2782116273225516=−= NYeXS  

and 

.6626742739294
2

=







N

S  

We compute the 

( )89566324893678882512,662674273929,4gcd
2

=















NN

S  

 .70373=  

Finally with ,70373=q  we compute ,805573 == q
Np  which leads to 

the factorization of N. 

3.1. Estimation of the number of ,se  satisfying ( )ZbqapNYeX rr +=−   

We give an estimation of the number of the exponents Ne <  for 
which our attacks can be applied. Let ba,  be integers such that 

( ) .1,gcd =ba  Let ( )
α+

<+ 3
2

Nbqap rr  with .2
10 <α<  

Lemma 5. Let qpN r=  be a prime power modulus with   .2qpq <<  

Let ba,  be integers such that ( ) 1,gcd =ba  and suppose  that e is a public 

exponent satisfying Ne <  and two equation ( ) 111 ZbqapNYeX rr +=−   

and ( ) 222 ZbqapNYeX rr +=−  with ( ) ,1,gcd =ii YX  for ,2,1=i  

( )
,

2
1

Zbqap
NXY rrii
+

<≤≤  then ., 2121 YYXX ==  
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Proof. Assume that the exponent e satisfying the two equation 

( ) 111 ZbqapNYeX rr +=−  and ( ) 222 ZbqapNYeX rr +=−  with  

( ) ,1,gcd =ii YX  for 
( )

.
2

1,2,1
Zbqap

NXYi rrii
+

<≤≤=  Therefore 

equating the term ( ) ,Zbqap rr +  we get 

,2211 NYeXNYeX −=−   (2) 

implies 

,2211 NYeXNYeX −=−  

( ) ( ),2121 YYNXXe −=−  

  ( ) ( ).21
21 YYN

XXe
−=

−  

Since we assume Ne <  and ,XY <  then 

( )
( ) ( )

N
bqap

N
Zbqap

NXXXX rrrr <
+

<
+

<+<−
2

2
2121  therefore 

with ( ) 1,gcd, =< NeNe  and NXX <− 21  we obtain ., 2121 YYXX ==   

 

Theorem 5. Let qpN r=  be a prime power modulus with .2qpq <<  

Let ba,  be suitably small integers such that ( ) ,1,gcd =ba  and 

( ) .3
2 α+

<+ Nbqap rr  The number of the exponents e of the form  

( ) ( )NXbqape rr odm1−+≡  with ( ) 1,cdg =+ rr bqapX  and 
α−

< 3
1

2
1 NX  

is at least ,3
1 −

N  where 0>  is arbitrarily small for suitably large N. 
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Proof. Let ba,  be suitably small integers such that ( ) ,1,gcd =ba  

and ( )
α+

<+ 3
2

Nbqap rr  and let .2
1 3

1

0 







=

α−
NX  Let ξ  denote the 

number of the exponents e satisfying ( ) 1−+≡ Xbqape rr  (mod N) with 

( ) 1,gcd =+ rr bqapX  and 
α−

< 3
1

2
1 NX  

( )

.1

1,gcd
1

0

=+
=
∑=ξ

rr bqapX

X

X
 (3) 

Using the following result (see Nitaj [15], Lemma 3.3) with rr bqapn +=   
and ,0Xm =  we get 

( ) ( ) ( ) ( ) .22 00
rrrr bqap

rr

rr
bqap

rr

rr

bqap
bqapX

bqap
bqapX +ω+ω +

+

+φ
>ξ<−

+

+φ  (4) 

Therefore, ( )rr bqap +ω2  is the number of square free divisors of rr bqap +  

which is upper bounded by the total number ( )rr bqap +τ  of divisors of 

.rr bqap +  Hence using the identity that ( )nτ  satisfies ( ) ( )nn loglogO=τ   

(see Hardy and Wright [6], Theorems 430-431). It follows that the 

dominant term in (4) is ( ) .0 rr

rr

bqap
bqapX

+

+φ  Substituting this with 

rr bqapn +=  and 







=

α−3
1

2
1

0 NX  gives 

( ) ( )
α+

α− +φ
≤

+

+φ
=ξ

3
2

3
1

2
1

0
N

bqapN
bqap
bqapX

rr

rr

rr
 

( ) .
23

1









+φ<

α−− rr bqapNO  
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Also on the other hand, for ,2≥n  we have the following identity          
(see Hardy and Wright [6], Theorem 328) 

( ) ,loglog n
cnn >φ  

where c is a positive constant. Taking 
α+

=+= 3
2

Nbqapn rr  implies 

that 
















=ξ

α+

α+
α−−

3
2

3
2

3
1

loglog

2

N

cNNO  

( ),3
1 −

= NO  

where 1 +α=  satisfies NN loglog=  and is arbitrarily small for 

suitably large N.  

Remark 1.1. From the two distinct n-bit prime ( ),, qp  the resultant 

modulus qpN r=  is ( )1+r  n-bit integer. Then, we can observe that the 

number of exponents satisfying our attack is 
( ) ( )

.2
13

1
3
1  +−− +

≈
rnr

N  This 
proves that there are exponentially many exponents that satisfy our 
conditions in the Theorem 5. 

4. The Second Attack on j Prime Power Moduli i
r
ii qpN =  

In this section, for 2,2 ≥≥ rj  moduli i
r
ii qpN =  with the same size 

N. We suppose in this scenario that the prime power moduli satisfying 

the j equations ( ) .i
r
i

r
iiii zbqapyNxe +=−  We proved that it is possible 

to factor the moduli iN  if the unknown parameters ,, iyx  and iz  are 

suitably small. 
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Theorem 6. For ,2≥j  let jiqpN i
r
ii ≤≤= 1,  be j moduli. Let 

.min iNN =  Let ,,,1, jiei K=  be j public exponents. Define  

( ) ( )
( ) ,12

121
+

+α−−
=δ r

rjrj  where .3
10 ≤α<  Let ba,  be suitably small 

integers such that .1 α+
+<+ r
r

Nbqap r
i

r
i  If there exist an integer δ< Nx  and 

j integers δ< Nyi  and 2
1

2
1 Nzi <  such that ( ) i

r
i

r
iiii zbqapyNxe +=−   

for ,,,1 ji K=  then one can factor the j moduli jNN ,,1 K  in 

polynomial time. 

Proof. For 2≥j  and ,2≥r  let jiqpN i
r
ii ≤≤= 1,  be j moduli. 

Let ,min iNN =  and suppose that ,δ< Nyi  and ,1 α+
+<+ r
r

Nbqap r
i

r
i  

then the equation ( ) i
r
i

r
iiii zbqapyNxe +=−  can be rewritten as 

( ) .
i

i
r
i

r
i

i
i

i
N

zbqapyxN
e +

=−  (5) 

Let ,min iNN =  and suppose that 2
1

2
1, NzNy ii << δ  and +r

ibq  

,1 α+
+< r
r

Napr
i  then 

( ) ( )
N

zbqap
N

zbqap i
r
i

r
i

i
i

r
i

r
i +

≤
+  

N
NN r

r
2
1

1
2
1⋅

<

α+
+

 

N
N r 2

1
1

1

2
1 +α+

+

<  

.2
1 2

1
1

1 −α+
+< rN  
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Substitute in to (5), to get 

.2
1 2

1
1

1 −α+
+<− rNyxN

e
i

i
i  

Hence to shows the existence of the integer x, we let ,2
1 2

1
1

1 −α+
+=ε rN  

with ( ) ( )
( ) ,12

121
+

+α−−=δ r
rjrj  then we have 

.2
1

2
1 21

jjj
j

j
r

j
NN 





=





=ε

−α+δ+δ +  

Therefore since 
( )

j
j jj

322
1 4

3
⋅<







−

 for ,2≥j  we get 
( )

.32 4
3

jj
jj

N ⋅<ε
−

δ  

It follows that if ,δ< Nx  then 
( )

.32 4
3

jj
jj

x −ε⋅⋅<
−

 Summarizing for 

,,,1 ji K=  we have 

( )
.32, 4

3
jj

i
i

i
jj

xyxN
e −ε⋅⋅<ε<−

−

 

Hence it satisfy the conditions of Theorem 3, and we can obtain x and iy  

for .,,1 ji K=    

Next using the equation ( ) .i
r
i

r
iiii zbqapyNxe +=−  Since .2

1 2
1

Nzi <  

Then Lemma 2 implies that 











=−

i
i

i
r
i N

S
abzq 4

2
21  with iiii yNxeS −=  for 

,,,1 ji K=  we compute .4,gcd
2























=

i
i

ii N
SNq  Which leads to factorization 

of j moduli .,, ji NN K   
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Example 2.2. As an illustration to our attack on j prime power 

moduli ,i
r
ii qpN =  we consider the following three prime power and 

three public exponents: 

=1N  1704509794589561868515595244133989360068918258357408221, 

  =1e  338495752916415790167782679804887799061421699322279988, 

=2N  337192470717176914581914125674829620787154323696229189, 

  =2e  158281691248300585119630550605425743336521957930176496, 

=3N  341481267791620675385726196889790417942495035832689253, 

  =3e  396471983997582783409400984000264452598400746608514523. 

Then ( ) == 321 ,,min NNNN  3371924707171769145819141256748 

29620787154323696229189. Since 3=j  and ,3,23 === bar  with 

,2.0=α  we get  ( ) ( )
( ) 15.012

121 =
+

+α−−=δ r
rjrj  and 2

1
1

1

2
1 −α+

+=ε rN  

.740010533582.0=  Using Theorem 3, with ,3== jn  we obtained 

[
( ) ( )

] .0000328965670723 11 4
41

=ε⋅⋅= −−+
−+

nn
nn

C  

Consider the lattice L  spanned by the matrix 

[ ] [ ] [ ]

.

000

000

000

1 332211























 −−−

=

C

C

C

NCeNCeNCe

M  

Therefore applying the LLL algorithm to ,L  we obtain the reduced basis 

with following matrix: 
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.

94632299204819741736249458722108115187574725

82526616356616618205932558263757922766898403

819143379404305682983896914167524867213808

90488217732173846055627114011317

























−−−−

−

−−−

−

=K  

Next we compute 

.

36022960078024351021224103019179915187574725

3321246815871298811203549473732122766898403

565100957822847213399665718604867213808

1323712235351811122641317114011317

1

























−−−−

−−−−

−−−−

=⋅ −MK  

Then from the first row we obtained ,22641317,114011317 1 == yx  

.132371223,53518111 32 == yy  Hence using x and iy  for ,3,2,1=i  

define iiii yNxeS −=  we get 

=1S  450642928214517432276531697553170044557139, 

=2S  127282857626254792126010153333292333063253, 

=3S  136982941525724752298529650018124382290372. 

And Lemma 2 implies that 











=−

i
i

i
r
i N

Sabzq 4
2

21  for ,3,2,1=i  which gives 

=












1

2
1

4N
S  29785550278790743767615058584, 

=












2

2
2

4N
S  12011630783931496510587781656, 

=












3

2
3

4N
S  13737449194790479890699360984. 
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Therefore for ,3,2,1=i  we compute ,,4gcd
2























= i

i
i

i NN
Sq  that is, 

.61792392475112,36632237151349,27293522874671 321 === qqq  

Finally for ,3,2,1=i  we find ,3
i
i

i q
Np =  hence ,434936439082721 =p  

,35432425715251,47872470173741 32 == pp  which leads to the 

factorization of three moduli ,, 21 NN  and .3N  

5. The Third Attack on j Prime Power Moduli i
r
ii qpN =  

We present an attack on the prime power moduli .i
r
ii qpN =  For 

2≥j  and ,2≥r  we consider the scenario when the j moduli satisfy j 

equations of the form ( ) i
r
i

r
iiii zbqapyNxe +=−  for ,,,1 ji K=  with 

suitably small unknown parameters yxi  and .iz  Applying the LLL 

algorithm we show that our approach enable us to factor the prime power 
moduli iN  in polynomial time. 

Theorem 7. For 2≥j  and ,2≥r  let jiqpN i
r
ii ≤≤= 1,  be j 

moduli with the same size N. Let ,,,1, jiei K=  be j public exponents 

with min .10, <β<= βNei  Let ( ) ( )
( ) ,12

322122
+

−α−β+−α−β
=δ r

jjr  

where .3
10 ≤α<  Let ba,  be suitably integers such that <+ r

i
r
i bqap  

.1 α+
+r
r

N  If there exist an integer δ< Ny  and j integers δ< Nxi  such 

that ( ) i
r
i

r
iiii zbqapyNxe +=−  for ,,,1 ji K=  then one can factor the j 

moduli jNN ,,1 K  in polynomial time. 
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Proof. For 2≥j  and ,2≥r  let jiqpN i
r
ii ≤≤= 1,  be j moduli. 

Then the equation ( ) i
r
i

r
iiii zbqapyNxe +=−  can be rewritten as 

( ) .
i

i
r
i

r
i

i
i
i

e
zbqapxye

N +
=−  (6) 

Let ,max iNN =  and suppose that βδ =<< NeNzNy ii min,2
1, 2

1
 

and ,1 α+
+<+ r
r

Nbqap r
i

r
i  then 

( ) ( )
β

+
≤

+

N
zbqap

e
zbqap i

r
i

r
i

i
i

r
i

r
i  

β

α+
+⋅

<
N

NN r
r
12

1

2
1

 

.2
1 2

1
1

1

β

α++
+

<
N

N r

 

.2
1 2

1
1

1 β−α++
+< rN  

Plugging in to (6), to get 

.2
1 2

1
1

1 β−α++
+<− rNxye

N
i

i
i  

Hence to shows the existence of the integer y and integers ,ix  we let 

,2
1 2

1
1

1 β−α++
+=ε rN  with ( ) ( )

( ) ,12
322122

+
−α−β+−α−β

=δ r
jjr  we get 

.2
1

2
1 21

jjjj
j

j
r

j
NN 





=





=ε

β−α+++δδ +  
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Therefore since 
( )

j
j jj

322
1 4

3
⋅<







−

 for ,2≥j  we get 
( )

.32 4
3

jj
jj

N ⋅<ε
−

δ  

It follows that if ,δ< Ny  then 
( )

.32 4
3

jj
jj

y −ε⋅⋅<
−

 Summarizing for 
,,,1 ji K=  we have 

( )
.32, 4

3
jj

i
i
i

jj
yxye

N −ε⋅⋅<ε<−
−

 

Hence it satisfy the conditions of Theorem 3, and we can obtain y and ix  

for .,,1 ji K=  

Next from the equation ( ) .i
r
i

r
iiii zbqapyNxe +=−  Since .2

1 2
1

Nzi <   

Then Lemma 2 implies that 











=−

i
i

i
r
i N

Sabzq 4

2
21  with yNxeS iiii −=  for 

,,,1 ji K=  we compute .4,gcd
2























=

i
i

ii N
SNq  Which leads to 

factorization of j moduli .,, ji NN K    

Example 3.3. As an illustration to our attack on j prime power 

moduli ,i
r
ii qpN =  we consider the following three prime power and 

three public exponents: 

=1N  949867113974072217110074827500562106403719579494071557, 

=1e  968704891042970066369652928957481456246576606936674853, 

=2N  262275319092318010637574979619075550506568907989717923, 

=2e  263538429122381233357593267961398695157179502108793860, 

=3N  2110892216821245805031949108388624625459041860155240983, 

=3e  1976734681023664778544240923415918672718472015356489680. 
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Then ( ) == 321 ,,max NNNN  2110892216821245805031949108388624 

625459041860155240983. Also ( ) β= Neee 321 ,,min  with .983342.0=β  

Since 3=j  and ,3=r  ,3,2 == ba  with ,2.0=α  we get 

( ) ( )
( ) 1000260000.012

322122
=

+
−α−β+−α−β

=δ r
jjr  and  

β−α++
+=ε 2

1
1

1

2
1 rN  

.450077211796.0=  Using Theorem 3, with ,3== jn  we obtained 

[
( ) ( )

] .0113951591423 11 4
41

=ε⋅⋅= −−+
−+

nn
nn

C  

Consider the lattice L  spanned by the matrix 

[ ] [ ] [ ]

.

000

000

000

1 332211























 −−−

=

C

C

C

eCNeCNeCN

M  

Therefore applying the LLL algorithm to ,L  we obtain the reduced basis 
with following matrix: 

.

11478432016685803216873995139136373

778042207256427618026346015483984

1451298603768776810478686030294472

130809208020785123725

























−−

−−−

−−
=K  

Next we compute 

.

148579316138469508136430678139136373

16534855154097711518287715483984

32350505301492742970535530294472

132122123132121319123725

1

























−−−−

−−−−
=⋅ −MK  



NEW ATTACKS ON TAKAGI CRYPTOSYSTEM 57

Then from the first row we obtained ,121319,123725 1 == xy  

.132122,123132 32 == xx  Hence using x and iy  for ,3,2,1=i  define  

yNxeS iiii −=  we get 

=1S  419955915655685646175578222404046453101282, 

=2S  159653209917252821645668588312632155546345, 

=3S  643244295848175425091990005465222938879285. 

And Lemma 2 implies that 











=−

i
i

i
r
i N

Sabzq 4
2

21  for ,3,2,1=i  which gives 

=












1

2
1

4N
S  46417801105971176693248343574, 

=












2

2
2

4N
S  24296174269366246412626731366, 

=












3

2
3

4N
S  49003357542846686156958208326. 

Therefore for ,3,2,1=i  we compute ,,4gcd
2























= i

i
i

i NN
Sq  that is, 

.64373012423582,32772121153349,23592931874672 321 === qqq  

Finally for ,3,2,1=i  we find ,3
i
i

i q
Np =  hence ,674731879082721 =p  

,76194122715251,51992312393743 32 == pp  which leads to the 

factorization of three moduli ,, 21 NN  and .3N  
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6. Conclusion 

We proposed the first attack based on the equation ( rapNYeX =−  

)Zbqr+  for suitable positive integers ., ba  Using continued fraction, we 

show that X
Y  can be recovered among the convergents of the continued 

fractions expansion of .N
e  Furthermore, we show that the set of such 

weak exponents is relatively large, namely that their number is at least 

,3
1 ε−

N  where 0≥ε  is arbitrarily small for suitably large N. Hence one 

can factor the prime power modulus qpN r=  in polynomial time. For 

,2,2 ≥≥ rj  we then present second and third attacks on the prime 

power moduli i
r
ii qpN =  for .,,1 ji K=  The attacks work when j public 

keys ( )ii eN ,  are such that there exist j relations of the shape iii yNxe −  

( ) i
r
i

r
i zbqap +=  or of the shape ( ) ,i

r
i

r
iiii zbqapyNxe +=−  where the 

parameters iii zyyxx ,,,,  are suitably small in terms of the prime 

factors of the moduli. Based on LLL algorithm, we show that our 
approach enable us to simultaneously factor the j prime power moduli 

iN  in polynomial time. 
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