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Abstract

This paper proposes three new attacks on RSA-Takagi cryptosystem. The first

attack is based on the equation eX — NY = (ap” + bq" )Z for suitable positive

integers a, b. We show that % can be recovered among the convergents of the

continued fractions expansion of % and leads to successful factorization of the
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prime power modulus N = p’q in polynomial time. The second and third

attack works upon j public keys (IV;, ¢;) when there exist j relations of the
shape ejx — N;y; = (apir + bqir )z; or of the shape ejx; — N;y = (apir + bqir )z

where the parameters x, x;, ¥, ¥;, 2; are suitably small in terms of the prime

factors of the moduli. Applying the LLL algorithm, we show that our strategy

enable us to simultaneously factor the j public key N; in polynomial time.
1. Introduction

In recent years, modulus of the form N = p"q have found many
applications in cryptography. In [3], Boneh et al. proposed an efficient
algorithm for factoring modulus of the form N = p"q and showed that
the algorithm runs in polynomial time when r is large (r ~ y/logp).
Hence it is expected that the factoring of the modulus N = p”¢ will be
intractable when the bound for r is small. Fujioka et al. [5], used the
modulus N = pq for r = 2 in an electronic cash scheme. Okamoto and
Uchiyama [15], used N = p"q with r = 2 in designing an elegant public
key system.

The cryptosystem developed by Takagi ushered in research in

determining the security of the modulus N = p"q. In [18], Takagi
proposed a cryptosystem using modulus N = p"q based on the RSA

cryptosystem. He chooses an appropriate modulus N = p”q which
resists two of the fastest factoring algorithms, namely, the number field
sieve and the elliptic curve method. Applying the fast decryption
algorithm modulo p”, he showed that the decryption process of the
proposed cryptosystems is faster than the RSA cryptosystem using

Chinese remainder theorem, known as the Quisquater-Couvreur method.
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In [17], Sarkar proved that using the lattice reduction techniques, if

the decryption exponent d < N 0‘395, then one can factor the prime power
modulus N = p"¢ in polynomial time. Asbullah and Ariffin [2] proved

that by taking the term N - (2N 2/3 _ N1/ %) as a good approximation of
&(N) satisfying the RSA key equation ed — kd(IN) = 1, one can yield the

factorization of the prime power modulus N = pzq in polynomial time

(for more information, see [1], [16], [17]).

Our first proposed attack uses the Legendre theorem, which enables

us to find the convergent of the continued fractions that leads to the
factorization of the modulus N = p”q in polynomial time. The second
and third attacks uses lattice bases reduction. We are interested in the so

called reduced bases of a lattice so as to yield factorization of the j moduli

Ni, ..., N;j in polynomial time.

The remainder of this paper is organized as follows. In Section 2, we
give introduction to continued fractions, lattice basis reduction with some
previous results. In Section 3, we present the first attack and estimation
of the size of the class of the exponents for which our attack applies. In
Sections 4 and 5, we give the second and third attacks. We also provide

numerical example for all our attacks. We conclude this paper in Section 6.
2. Preliminaries

We start with definitions and important theorems concerning the
continued fractions, lattice basis reduction techniques and some theorem

from the previous attacks as well as some useful lemmas.
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2.1. Continued fractions

Definition 1 (Continued fractions). A continued fraction is an
expression of the form

ag + = [ag, ay, ..., a,,, ...],

a; +

where ag is an integer and a, are positive integers for n > 1. The q,

are called the partial quotients of the continued fraction [12].

Definition 2 (Convergents). Let x € R with x =[ag, a;, ..., a,, ]
For 0 < n < m, the n-th convergent of the continued fraction expansion of
x1is [ag, ai, ..., a,].

Theorem 1 (Legendre). Let x be a real positive number. If X and Y
are positive integers such that ged(X,Y) =1 and

Y
X

1

x - —>
2x2

<

then % is a convergent of the continued fraction expansion of x.

Definition 3 (Lattice basis reductions). Let m < n be two positive
integers and by, ---, b,, € R" be n linearly independent vectors. A lattice
L spanned by {b;, ---, b,,} is the set of all integer linear combinations of
b, -, by, thatis,

L= E(bl, ) bm) = {Zaibjai € Z}.
i=1

The b; are called basis vectors of £ and B = b, ---, b,, is called a lattice

basis for £. Thus, the lattice generated by a basis B is the set of all

integer linear combinations of the basis vectors in B.
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The dimension (or rank) of the a lattice, denoted dim(£), is equal to

the number of vectors making up the basis. The dimension of a lattice is
equal to the dimension of the vector subspace spanned by B. A lattice is

said to be full dimensional (or full rank) when dim(£) = n.

Theorem 2. Let L be a lattice of dimension ® with a basis vy, ..., U,.

The LLL algorithm produces a reduced basis by, ..., b, satisfying

o(w-1) 1
by| < [bs] < ... < |lb;| < 24©D det Lo+,
1 2 3

foralll1 <i< o

As an application of the LLL algorithm is that it provides a solution
to the simultaneous Diophantine approximations problem which is

defined as follows. Let aq, ..., a, be n real numbers and ¢ be a real

number such that 0 < £ < 1. A classical theorem of Dirichlet asserts that

there exist integers py, ..., p, and a positive integer ¢ < & such that
|q0‘i—Pi|<8 for 1<i<n.

A method to find simultaneous Diophantine approximations to rational
numbers was described by [10]. In their work, they considered a lattice

with real entries. Below a similar result for a lattice with integer entries.

Theorem 3 (Simultaneous Diophantine approximations, [8]). There

is a polynomial time algorithm, for given rational numbers a4, ..., o,
and 0< ¢ <1, to compute integers pq,..., p, and a positive integer ¢
such that

n(n-3)

max;lgo; — p;|<e and ¢g<2 4
Lemma 1. Let N =p'q be an RSA modulus prime power with
q < p<2q. Then

_r 1 1 1 1
2 r+l Nr+l o q < Nr+l < p< 2r+1Nr+1.
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Proof. Suppose N = p'q, then multiplying ¢ < p < 2g by p", we

1
get p'q < p’'p < 2p"q which implies N < p"*! < 2N, thatis, N™*1 < p

1 1
< 2r+*1 N7+l Also since N = p'q, then ¢q = ﬁr which in turn implies
p

—r_ 1 1 —r_ 1 1 4 1
2 r+l Nr+l < g < N7+l Hence 2 r+t1Nr+l <« q < Nr+l <« p< Qr+l N r+l

[14]. O

Lemma 2. Let N = p'q be a prime power modulus with q < p < 2q
and a,b be suitably small integers such that ged(a, b) =1. Also let

1 y2
e bor 2N 52
S =(ap” +bq")Z, where1< Z < —=—— .

, then ¢" labZ? = {—
lap” - bq"| 4N
Proof. Set S = (ap” + bq" )Z. Then observe that

32 ((ap” + bq" )Z)2 =(ap"Z +bq"Z)(ap"Z +bq" Z)

_ a2p2rZ2 i aprbqrz2 " abprquQ +b2q2rZ2

_ a2p2rZ2 +2abprqu2 +b2q2rz2

= a?p?Z? + 2abp"q" Z% - 2abp"q" Z% + 2abp"q"Z? + b2q¥ 22
— a2p¥ 72— 2abp"q 2% + b2q2 22 + dabp”q" 22

= a?p? 7% — 2abp"q"Z2% + b%¢% Z? + dabp’q"'qZ?

= a?p¥Z? - 2abp"q" 2% + b2q*" Z? - 4abNq’ ' Z?

(ap"Z —bq"Z)* + 4abNq" ' Z*.
Hence we obtain

S% _ 4abNq"'Z? = (ap"Z - bq"Z)? > 0. (1)
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Then we divide (1) by 4N, we get

S2

~ _|S? — 4abNq" ' Z2|
aN 1 -

r-1 2
abZ AN

(ap"Z - bq"Z )
4N

(apr —bqr)2Z2

4N

1.1 YV
1 a2
2

(ap” - bg" )| —2—
|ap™ — bq" |

- AN

1

— N

<4 —N —L<1,

implies that

3. The First Attack on Prime Power Moduli N = p"q

In this section, we present a result based on continued fractions and
show how to factor the prime power modulus N = p'q, if (N, e) is a
public key satisfying an equation eX — NY = (ap” + bq" )Z with small

parameters X, Y, and Z, where a, b be a suitably small positive integer.
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Lemma 3. Let N = p"q be a prime power modulus with g < p < 2q
and a,b be integers such that gcd(a, b) =1. Let e be a public key

satisfying the equation eX — NY = (ap” + bq" )Z with ged(X,Y) =1, if

< L, then Y is among the convergents of the continued
2(ap” +bq" )Z X

. . e
fraction expansion of N

Proof. Suppose that e satisfies the equation eX — NY = (ap” + bq" )Z

with X < N and ged(X,Y) = 1.

2(ap” +bq" )Z

Then from the equation eX — NY = (ap” + bq" )Z when dividing by NX,

we get

e Y| _ leX — NY|

N X|  NX

<lap” +bd"|Z
NX
r r
Assume that if X < L, then |ap” +bq”|Z < 12 hold,
2(ap” +bq" )Z NX 2X
that is,
2X%(ap” +bq" )Z . NX

2XZ(ap" +bq")  2XZ(ap” + bqr)’
which implies

X < L,
2(ap” +bq" )Z

and by Theorem 1, we conclude that % 1s among the convergent of the

continued fraction expansion of %. O
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Theorem 4. Let N = p'q be a prime power modulus with

q < p<2q. Let a,b be integers such that ged(a, b) =1 and let e be a

public key satisfying the equation eX — NY = (ap” +bq" )Z with

N 13
eed(X,Y)=1, if 1< Y <X<— N qnd1<Z<—2_
2(ap” +bq" )Z lap” - bq” |

then N = p"q for r > 2 can be factored in polynomial time.

Proof. Suppose that e satisfies an equation eX — NY = (ap” + bq" )Z
with ged(X, Y) =1, let X and Z satisfy the condition in Lemma 3, then

e

N

Y is among the convergent of the continued fraction expansion of

X

Hence using X and Y, we define S = eX — NY and Lemma 2 shows

2 2
r—1r2 _ S_ — S_
that ¢' " Z%ab = LlNJ. It follows that ¢ = gcduleJ, N]. O

The following algorithm is designed to recover the prime factors for

prime power modulus N = p”¢ in polynomial time.

Algorithm 1

Input: The public key pair (e, N) satisfying N = p"q, ¢ < p < 2¢ and Theorem 4.

Qutput: The two prime factors p and q.

(1) Compute the continued fraction expansion of %.

(2) For each convergent % of %, compute S = eX — NY.

S2
(3) Compute av |

SQ
4) q = gcdﬂmJ, N].

(5)If1<q<N, then p" = .

q
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Example 1. The following shows an illustration of our attack for r = 3,

X =49,Y =38, Z=3,a =2,b=3, given Nand e as
N = 36788825128956632489,
e = 28530237308691190057.

Suppose that the public key (e, N) satisfy all the condition as stated in

the Theorem 4, from the above algorithm we first compute the continued

e

fraction expansion of N The list of first convergents of the continued

. . e
fraction expansion of ~ are

[O 1 3 7 38 4529 9096 1378025 2765146 4143171
7774797 497 5840° 11729 1776919 ° 3565567 * 5342486 °

6908317 149217828 }
8908053 ’ 192411599 > "]

Therefore omitting the first and second entry and start with the

convergent %, we obtain

S =eX — NY = 3754473847894862761,

and

S2
[WJ = 9579045963 7642658.

2
gcduS—J, Nj = (95790459637642658, 36788825128956632489).
=1

Also the convergent 7 gives S and S—z with ged S—2 N|=1
9’ 4N 4N | ’
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Therefore, we need to try for the next convergent i—g , we obtain

S =eX - NY = 6273225516278211,

and

SZ
N | = 267427392966.

We compute the

2
ngﬂf_NJ’ NJ = (267427392966, 36788825128956632489)

= 70373.

Finally with ¢ = 70373, we compute p = 3‘/% = 80557, which leads to
the factorization of V.
3.1. Estimation of the number of e’s satisfying eX — NY = (ap” + bq" )Z

We give an estimation of the number of the exponents e < N for

which our attacks can be applied. Let a, b be integers such that

2
ged(a, b) = 1. Let (ap” +bq") < N3 with 0 < o < %

Lemma 5. Let N = p"q be a prime power modulus with q < p < 2q.
Let a, b be integers such that gcd(a, b) = 1 and suppose that e is a public

exponent satisfying e < N and two equation eX; — NY; = (ap” + bq" )Z;
and eXy — NYy = (ap” + bq" )Zy with ged(X;, Y;) =1, for i =1, 2,

leiin<L,th€nX1:X2,Y1:Y2-

2(ap” +bq" )Z
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Proof. Assume that the exponent e satisfying the two equation
eX; - NY; = (ap” +bq")Z; and eXy - NYy = (ap” +bq")Z; with

ged(X;,Y;)=1, for i=1,2,1<Y; <X, < N Therefore

2(ap” +bq")Z
equating the term (ap” + bq” )Z, we get
eX, - NY, = Xy — NY,, @)
implies
eX, - NY, = X, — NY,,
e(X; - Xp) = N(Y; - Yp),

e(X; - X5)

N = (Y] - Yy).

Since we assume e < N and Y < X, then

2N < N
2ap” +bq")Z  (ap" +bq")
with e < N, ged(e, N) =1 and X; — Xy < N weobtain X; = Xy, Y; = Ys.

(X; - Xy) <X + Xo| < < N therefore

O

Theorem 5. Let N = p"q be a prime power modulus with q < p < 2q.
Let a,b be suitably small integers such that gecd(a, b) =1, and

2
(ap” +bq") < N3"" The number of the exponents e of the form

o

1_
e = (ap” +bq" )X Y(mod N) with gcd(X, ap” +bq" ) =1 and X < %N?’

1.
is at least N3 |, where ¢ > 0 is arbitrarily small for suitably large N.
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Proof. Let a, b be suitably small integers such that ged(a, b) =1,
, , 2ia 1 1o
and (ap” +bq" )< N? = and let X, = §N3 . Let & denote the

number of the exponents e satisfying e = (ap” + bq” )X_1 (mod N) with

(04

1_
ged(X, ap” +bq" ) =1 and X < %N3

Xy

g = > 3)
X=1
ged(X, ap” +bq" )=1

Using the following result (see Nitaj [15], Lemma 3.3) with n = ap” + bq”

and m = X, we get

XO ¢(apr 4 bqr) ~ 2m(ap'+bqr) < E_’ S XO d)(apr + bqr) N 20)(apr+bqr)' (4)
r r r r
ap’ + bq ap’ + bq
Therefore, 90(ap"+04") s the number of square free divisors of ap” + bq”
which is upper bounded by the total number T(ap” + bq") of divisors of
ap” + bq”. Hence using the identity that 7(n) satisfies T(n) = O( log log n)
(see Hardy and Wright [6], Theorems 430-431). It follows that the

r r
x, Hap" +ba")

dominant term in (4) is
ap” +bq"

Substituting this with
N
n=ap" +bq" and X, = LEN?) J gives

e = x, dap” +b¢") 1 5o dlap” +bq")
0 ap” +bg" 2 210
N3

< (’)(N 3 20L(I)(apr +bq" )j
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Also on the other hand, for n > 2, we have the following identity
(see Hardy and Wright [6], Theorem 328)

cn

) > TogTogn

2
where ¢ is a positive constant. Taking n = ap” + bq" = N3 implies
that

24q

£=0 N3 N3

2
log log N3

1.
=O(N3 ),

where ¢ = o + ¢ satisfies N = loglog N and is arbitrarily small for

suitably large N. O
Remark 1.1. From the two distinct n-bit prime (p, ¢), the resultant
modulus N = p"q is (r +1) n-bit integer. Then, we can observe that the

o gty

1_
number of exponents satisfying our attack is N3 . This

proves that there are exponentially many exponents that satisfy our

conditions in the Theorem 5.

4. The Second Attack on j Prime Power Moduli N; = p]q;

In this section, for j > 2, r > 2 moduli N; = p!q; with the same size
N. We suppose in this scenario that the prime power moduli satisfying
the j equations e;x — N;y; = (ap! + bq} )z;. We proved that it is possible
to factor the moduli N; if the unknown parameters x, y;, and z; are

suitably small.
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Theorem 6. For j > 2, let N; = plq;,1<i<j bej moduli. Let
N =min N;. Let e,i=1,...,j, be j public exponents. Define

_ jir=1)=2aj(r +1)

20r +1) ; Let a, b be suitably small

I where 0 < a <

1

3
.

integers such that ap! + bq; < N7+ * If there exist an integer x < N  and
1

j integers y; < N° and |z;| < %N2 such that e;x — N;y; = (ap! + bq! )z;

for i=1,...,j, then one can factor the j moduli Ny, ..., Nj in

polynomial time.
Proof. For j>2 and r >2, let N; = plq;,1<i<j bej moduli.

.
: L4
Let N = min N;, and suppose that y; < N°, and lap! +bq]| < N+ .

then the equation e;x — N;y; = (ap; + bq! )z; can be rewritten as

r \s.
|(ap; ;v éqz 21 3)

12

€

N

12

X =Y

1
Let N = min N;, and suppose that y; < N9, |lz;] < %NZ and |bq; +

. L ta
ap;| < N™+1 "~ then

|(ap] +bq; )zi| _ |(ap] +bq; )z
N; = N
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Substitute in to (5), to get

1 gt
<= Nrl
2

€
L/

12

MUHAMMAD REZAL KAMEL ARIFFIN et al.

1

,2‘

I

Hence to shows the existence of the integer x, we let ¢ = %N r+l 2

jir=1) = 2aj(r +1)

with § = 26 +1)

, then we have

i

. i
NS — (%)JNPJRHWE

1 j J(j-3) . . Jj(j-3) .
Therefore since (5) <2 4 .3/ for j>2 weget No%/ <2 ¢ .3/
i(j-3) . .
It follows that if x < N°, then x <2 4 -3/.¢7/. Summarizing for
i=1,..., j, we have
o -3
Flix_yi<8’ x<2 4 .8 .7,

Hence it satisfy the conditions of Theorem 3, and we can obtain x and y;

fori=1,..,J

Next using the equation e;x — N;y; = (ap] + bq] )z;. Since |z;| <

i “i 4N,

S:
Then Lemma 2 implies that qrflzzab = { 4

S}

i=1,..., j, wecompute q; = gcd[Ni, {WD
i

of j moduli N, ..., Nj.

2

1.1
— N2,
2

} with S; = e;x — N;y; for

Which leads to factorization

O
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Example 2.2. As an illustration to our attack on j prime power

moduli N; = plq;, we consider the following three prime power and

three public exponents:
Ny = 1704509794589561868515595244133989360068918258357408221,

e; = 338495752916415790167782679804887799061421699322279988,

Ny = 337192470717176914581914125674829620787154323696229189,

€9

158281691248300585119630550605425743336521957930176496,
N3 = 341481267791620675385726196889790417942495035832689253,
eg = 396471983997582783409400984000264452598400746608514523.

Then N = min(N;, Ny, N3) = 3371924707171769145819141256748
29620787154323696229189. Since j =3 and r=3a =2, b =3, with

A e-1
o

:j(r—l)—2aj(r+1):015 and s:lN’ 2
' 2

2(r +1)
= 0.001053358274. Using Theorem 3, with n = j = 3, we obtained

oa=02 we get o

(n+1)(n-4)
C=[3"1.2 4 .g"1]=32896567070000.

Consider the lattice £ spanned by the matrix

1 — [Cey / Ny ] — [Cey | Ny — [Ceg / N3]
0 C 0 0
M =
0 0 C 0
0 0 0 c |

Therefore applying the LLL algorithm to £, we obtain the reduced basis

with following matrix:
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[ -114011317 6055627 73217384 90488217
— 4867213808 —9691416752 - 30568298384 19143379408
27668984032 - 55826375792 16618205936 25266163568

| — 51875747251 — 45872210819 —19741736248 — 46322992049 |

Next we compute

[ -114011317 -22641317 -53518111 132371223 ]
— 4867213808 —966571860 —2284721339 - 5651009578
27668984032 5494737321 12988112037 32124681583

|- 51875747251 —10301917994 - 24351021220 - 60229600783 |

Then from the first row we obtained x = 114011317, y; = 22641317,

yo = 53518111, y3 =132371223. Hence using x and y; for i =1, 2, 3,

define S; = e;x — N,y; we get

S; = 450642928214517432276531697553170044557139,

Sg = 127282857626254792126010153333292333063253,

Sy = 136982941525724752298529650018124382290372.

4N;

2
And Lemma 2 implies that qirflzl?ab = { Si } for i =1, 2, 3, which gives

4N,

AN,

s
AN

_Sg_

12

= 29785550278790743767615058584,

12011630783931496510587781656,

13737449194790479890699360984.
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2

Therefore for i = 1, 2, 3, we compute ¢; = gcdﬂf—]@
i

, NiJ, that is,
q1 = 35228746712729, q9 = 22371513493663, q3 = 23924751126179.

. . . fN~
Finally for i =1, 2, 3, we find p; = 3q_-L’ hence p; = 36439082724349,
13

Do = 24701737414787, p3 = 24257152513543, which leads to the

factorization of three moduli N;, Ny, and Nj.
5. The Third Attack on j Prime Power Moduli N; = p]g;

We present an attack on the prime power moduli N; = plq;. For
j =22 and r > 2, we consider the scenario when the j moduli satisfy j
equations of the form e;x; — N;y = (ap! +bql )z; for i =1, ..., j, with
suitably small unknown parameters x;y and z;. Applying the LLL

algorithm we show that our approach enable us to factor the prime power

moduli N; in polynomial time.

Theorem 7. For j>2 and r>2, let N; =plq;,1<i<j bej

moduli with the same size N. Let e;,1 =1, ..., j, be j public exponents

with min e; = NP, 0 <B<1. Let &= Jr(2[3—2a—1)+](2[3—2a—3)’
2(r +1)

where 0 < o < % Let a, b be suitably integers such that ap! +bq! <

r
L . . ..
N If there exist an integer y < N® and J integers x; < N® such

that e;x; — N;y = (ap! +bq! )z; for i =1, ..., j, then one can factor the j

moduli Ny, ..., N; in polynomial time.
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Proof. For j>2 and r >2, let N; = plq;,1<i<j bej moduli.

Then the equation e;x; — N;y = (ap! + bq} )z; can be rewritten as

i
€

— |(ap;‘ + qu‘ )zil . (6)

Y-
1 ei

1
Let N = max N;, and suppose that y < N°, |z < %NQ, mine; = NP
L ta
and ap! +bql < N7+l " then

|(api +ba7 )zi| _ |(api +bqi )zi|
ei NB

Plugging in to (6), to get

Sl ymrts

Nr+l

+o— |3
ez

Hence to shows the existence of the integer y and integers x;, we let

1 l _ . _ _ . _ _
e LTIt p with § — jr(2B — 20 — 1) + j(2B — 20 — 3)

2 ’ 2(r +1)

NP (lija+r4+'l+%+aj—ﬁj _ (l)j‘
2 2

, we get
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)j J(j-3) i(-3)
<2

Therefore since (l .3/ for j =2, we get No/ <2 4 .3/

2

i(i-3) . .
It follows that if y < N°, then y<2 4 -3/.¢7/. Summarizing for

i=1,..., j, we have

i(i-3) . .
< g, y<2 4 .3 .¢g77.

N;
—Ly-x;
e

Hence it satisfy the conditions of Theorem 3, and we can obtain y and x;
fori=1,..,J

1
Next from the equation e;x; — N;y = (ap] + bq; )z;. Since |z;| < %Nz

2
Then Lemma 2 implies that q{_lzlzab = {E(/,} with S; = e;x; — N;y for
l

S}

i=1,...,j, we compute gq; = gcd(Ni, {W
i

D Which leads to
factorization of j moduli NV, ..., Nj. ]

Example 3.3. As an illustration to our attack on j prime power
moduli N; = plq;, we consider the following three prime power and

three public exponents:

N7 = 949867113974072217110074827500562106403719579494071557,
e; = 968704891042970066369652928957481456246576606936674853,

Ny = 262275319092318010637574979619075550506568907989717923,

ey = 263538429122381233357593267961398695157179502108793860,

N3 = 2110892216821245805031949108388624625459041860155240983,

eg = 1976734681023664778544240923415918672718472015356489680.
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Then N = max(N;, Ny, N3) = 2110892216821245805031949108388624

625459041860155240983. Also min(e;, e, e3) = NP with B = 0.983342.

Since j=3 and r=3 a=2b=3, with ao=0.2 we get
1 _ _ ; _ _ 1 1,
5 r@P-20-1)+j@-20-3) 1000960000 and & = £ N1 2 P
2(r+1) 2

= 0.007721179645. Using Theorem 3, with n = j = 3, we obtained

(n+1)(n—-4)

C=[3"".2 4  .g"1]=11395159140.

Consider the lattice £ spanned by the matrix

1 - [CNy /e ] — [CNy /e ] — [CNg/es]]
0 C 0 0
M =
0 0 C 0
0 0 0 C

Therefore applying the LLL algorithm to £, we obtain the reduced basis

with following matrix:

123725 20785 92080 13080
— 30294472 104786860 37687768 —145129860
oo —-15483984 —180263460 72564276 — 77804220
| 139136373 —-16873995 166858032 —114784320 |
Next we compute
123725 121319 123132 132122
—-30294472  -29705355  —-30149274 - 32350505
K -M™1-= .
—15483984  —-15182877  -15409771  —16534855
| 139136373 136430678 138469508 148579316 |
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Then from the first row we obtained y = 123725, x; =121319,
x9 = 123132, x3 = 132122. Hence using x and y; for i =1, 2, 3, define
S; = e;x; — N;y we get

S; = 419955915655685646175578222404046453101282,

Sy = 159653209917252821645668588312632155546345,
S3 = 643244295848175425091990005465222938879285.
S2
And Lemma 2 implies that qir_lzizab = {4& } for i =1, 2, 3, which gives
i
=R
ﬁ = 46417801105971176693248343574,
1
TR
ﬁ = 24296174269366246412626731366,
2
R
ﬁ = 49003357542846686156958208326.
3

2
Therefore for i =1, 2, 3, we compute q; = gcdﬂ%}, NiJ, that is,
13

q1 = 29318746722359, q9 = 21211533493277, q3 = 30124235826437.

. ) . fN~
Finally for i =1, 2, 3, we find p; = 3q_~L’ hence p; = 31879082726747,

12
Do = 23123937435199, ps = 41227152517619, which leads to the

factorization of three moduli N;, Ny, and Nj.
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6. Conclusion

We proposed the first attack based on the equation eX — NY = (ap”

+bq")Z for suitable positive integers a, b. Using continued fraction, we

show that % can be recovered among the convergents of the continued

£
N

weak exponents is relatively large, namely that their number is at least

fractions expansion of Furthermore, we show that the set of such

1_
N3 8, where ¢ > 0 is arbitrarily small for suitably large N. Hence one

can factor the prime power modulus N = p’q in polynomial time. For

Jj =2, r>2 we then present second and third attacks on the prime

power moduli N; = plq; for i =1, ..., j. The attacks work when j public

keys (N;, e;) are such that there exist j relations of the shape e;x — N;y;

= (ap! +bql )z; or of the shape e;x; — N;y = (ap! + bq! )z;, where the
parameters x, x;, ¥, ¥;, 2; are suitably small in terms of the prime
factors of the moduli. Based on LLL algorithm, we show that our

approach enable us to simultaneously factor the j prime power moduli

N; in polynomial time.
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