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Abstract

This paper is devoted to prove the existence and the multiplicity of positive
solutions for a class of a nonlinear variational inequality of Kirchhoff type.
Under more general superlinear assumptions on the nonlinear term, we prove
the existence of multiple positive solutions via non-smooth critical point theory

for Szulkin-type functional.
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1. Introduction and Main Results
Consider the following variational inequality of Kirchhoff type:

—(a+bj Vildx)au > f(x, w),  in Q,
Q (1.1

u =0, on 0Q),

where Q is smooth bounded domain in RN(N =1,2,0r 3),a,b>0 are

constants and f : @ x R — R is continuos and satisfies:
2N

(f;) f e C(Qx R, R) and there exist ¢ > 0 and pe(1,2%) (2" = N3
if N >3, 2" = 40 if N < 3, is the Sobolev critical exponent) such that
f(x, )] < e(T+[P™"), V(x u)e QxR
(fg) % — 400 as |u| - +o uniformly in x € Q and there exists
19 > 0 such that
F(x,u)20, V(x,u)eQxR,|u2r,
where F(x, u) = I:f(x, s)ds.
(f3) there exists a constant B < ai; such that
4F (x, u) < f(x, u)u + B|u|2, V(x, u) e Q xR,
where A; > 0 is the first eigenvalue of (- A, H3(Q)).

(fy) F(x,u)>0 forall (x, u) e Qx R, and F(x, s) < F(x, t) whenever

(s, t) e R* xR" and s < ¢, where F(x, u) = %f(x, wu — F(x, u).

(f5) f(x, u) = = f(x, u) for all (x, u) e QxR.

Variational inequalities describe phenomena from mathematical
physics. They have applications in physics, mechanics, engineering,

optimization, and elliptic inequalities, see, for example, [1-5].
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The aim of this work is to study a Kirchhoff type variational
inequality which is defined on Q by using a non-smooth critical point
theory due to Szulkin. In [7], the author has proved a number of
existence theorem for critical point of functionals which are not smooth.
He has generalized some minimization and minimax methods in critical
point theory to a class of functionals which are not necessarily continuous
and has introduced a new concept of compactness which is suitable to
study these kinds of problems.

In the present paper, by using a minimization principle and the
mountain pass theorem of Szulkin-type, we prove existence of positive
solutions to a variational inequality of Kirchhoff-type in a closed convex
set.

Let K ={ue H}(Q): u >0} be the closed convex set in Sobolev

space H, (1) (Q) and we consider the problem, denoted by (P):

Given f : QxR — R a continuous function and a, b > 0, find u € K

such that
(a + bj |Vu|2dx]j Vu.(Vv - Vu)dx —J flx, u)(v-u)dx >0, VvelkK.
Q Q Q

Such kind of problems are called obstacle problems and they have been
largely studied due to its physical application. See, for example, the
classical books Kinderlehrer and Stampacchia [4], Rodrigues [6], and
Troianiello [8] and the references therein.

The main results of this paper are the following:

Theorem 1.1. Assume that (f;), (fy), (f3), and (f5) hold. Then

problem (1.1) possesses at least one distinct pair of positive solution.

Theorem 1.2. Assume that (f;), (fy), (f4), and (f5) hold. Then

problem (1.1) possesses at least one distinct pair of positive solution.
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Remark 1.3. Note that conditions (f3) and (f;) are weaker than the

well-known Ambrosetti-Rabinowitz condition (AR for short), which was
first introduced in [10], that is,

Jv >4 : vF(x, t) < tf(x, t), t = 0.

Indeed, there are functionals f(x, u) satisfying conditions (f;)-(f5), and

not satisfying the AR condition. For example, let
F(x, u) = u* In(1 + u*).
Then

3
flx, w) = 4u3 ln(1+u4)+4u4u—4.
1+u

By a simple computation, one can deduces that

u4

vF(x, u) - f(x, wu = (v - Du? In(1 + u*) - 4u* > 0,

1+u?

for |u| large enough. Thus, f does not satisfy the AR-condition. Moreover,

it is easy to check that f satisfies all the assumptions of Theorems 1.1 and
1.2.

2. Variational Framework and Technical Lemmas

Let H = H (1) (Q) be the Sobolev space equipped with the inner product

and the norm

(u, v) = I VuVudx, |u] = (u, u)%
Q

We denote by || , the usual L? -norm. Since Q is a bounded domain,

then H < LP(Q) continuously for pe[l,2*], and compactly for

p €[1, 2°], and there exists y,, > 0 such that

[, <7vplul, vueH. (2.1)
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Let K = {u € H, u > 0} be the closed convex set in the space H. Recall

that a function u € H is called weak solution of (1.1) if

(a+ bJQ|Vu|2dx)JQVu.(Vv - Vu)dx - JQf(x, u)(v-u)dx >0, Vv e H.

(2.2)

Now we give some preliminaries about Szulkin-type function (see [7]).

Let X be a real Banach space and X~ its dual. Let ¢ be a functional

which is of class C* and let y : X — R U {+»} be a proper (i.e., v # +x),
convex and lower semicontinuous functional. We say that I = ¢+ is a

Szulkin-type functional. An element u € X 1is called a critical point of
I=¢+ypif

O'(w)(v—-u)+yv@)-pu) >0, forall velX,
which is equivalent to
0e¢'(u)+dp(u) in X,

where 0y(u) is the subdifferential of the convex functional y at u € X

defined by
ow(u)={p e X" :p)-vu)=(p,v-u), YveX}

Definition 2.1. The functional I = ¢ + ¢ satisfies the Palais-Smale
condition at level ¢ € R, denoted by (PSZ), if every sequence {u,} c X

such that lim,,_,, I(u,) = ¢ and
(O'(wp), v—up) +v) = v(u,) = —e,|v-u,| forall ve X, (2.3)

where g, — 0, possesses a convergent subsequence.
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The following theorem which was proved by Szulkin, is the main tool

to prove the main results of this paper.

Theorem 2.2. Let X be a Banach space, I:X — (-, +©] a
Szulkin-type functional satisfies (PSZ),, 1(0) =0 and ¢, v are even.

Assume also that

(1) there exists a subspace X7 of X of finite codimension and numbers

o, p > 0 such that IlaBpﬂXl >
(i1) there is a finite dimensional subspace X9 of X, dim X9 > codim X7,
such that I(u) - —» as |u| > o, u € Xs.

Then I has at least dim Xy — codimX; distinct pairs of nontrivial

critical points.

We define the functional ¢ : H — R by
= D+ Ot -
o) = G lulf + el - [ Pl ute)a @4

Using (f;) and the Sobolev embedding theorem, we can prove easily that

¢ e CL(H, R). We define the indicator functional of the set K by

0, if u ek,
v (u) =

+00, if ue¢e K.

We remark that the functional yg is convex, proper and lower

semicontinuous. So, I = ¢ + ¥g is a Szulkin-type functional.

Lemma 2.3. If u € H is a critical point of I = ¢ + v, then u is a

solution of problem (1.1).
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Proof. Let u € H be a critical point of I = ¢ + . Then, we have
O'w)(v-u)+vg)-vgw) >0, VveH.

We first prove that u € K. If this were not true, we have yx(u) = +o,
and taking v = 0 € K in the above inequality, we obtain a contradiction.

Next, for a fixed v € K, since

0<¢(w)(w-u)=(a+ b||u||2 )IQVu(VU - Vu)dx

-| M w) (0 - u)dx,

the inequality is proved. O
Lemma 2.4. Assume that f satisfies (f;) and (f3), then I = ¢ +vg
satisfies the (PSZ), for every c € R.

Proof. Let {u,} ¢ H be such that
I(un) = own) + v () > ¢, (c € R), (2.5)
and
O'(un) 0 = up) +¥g ) =V (Wy) 2 = gylv - uy|, Vv e H, (2.6)

where {g,} — [0, »} is a sequence with ¢, — 0. By (2.5), we have {u,}
is in K. Next, we prove that {u,} is bounded in H. It follows from (f3)
and (2.5) that

¢+ 14l = 0latn) = (@), )

1
= %"un"2 + J.Q(Z fx, u, ), — F(x, un)jdx
ap2 B 2
> Gl =5 | P

1. B 2
L
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Since B < a)q, then (a - Xﬂ ) > 0. Thus {u,} is bounded in H. Because
1

the sequence {u,} is bounded in H, going if necessary to a subsequence,

we may assume that

u, ~u in H;
u, »>u in L”(Q), for1< p < 2%
up,(x) > u(x) ae xeQ. (2.7)

As K is weakly closed, then u € K. Setting v = u in (2.6), we obtain that
(a + blju,|* )I Vu, (Vu - Vu, )dx
Q
o [ ) = ) 2 = oyl = .

Therefore, for large n € N, we have
(a + bl e = P < (e + Wn )] VeVt = Vi)

+ J-Qf(x, Up) (W —uy,)dx + epflu — uy- (2.8)
In one hand, by (f;), (2.7) and the Holder inequality, one has

JQf(x, u,)(u—-u,)dx < IQC(I + |un|p_1)(u - u,)dx

IA

cj [ —u,|dx + cj ln P - wy,| dac
Q Q

IA

-1
clle = wpll, + e - un”p"un ||§

-0 as n — o (2.9
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In the other hand, by (2.7) and the fact that {u,} is bounded in H, we

have

lim(a + bl |*) (u, u - uy,) = 0. (2.10)
n

Since ¢, — 0", combine (2.9) and (2.10), we conclude that the second
term in (2.8) converges to 0. Hence, {u,} converges strongly to u in H.

The proof is completed. O
Lemma 2.5. Assume that (f;) and (f;) hold. Then I satisfies the
(PSZ), for every c € R.

Proof. Let {u,} ¢ H satisfies (2.5) and (2.6). It is clear that {u,} is
in K. Next, we prove that {u, } is bounded in H. Suppose to the contrary
that |u,| — «. Setting v, = ”Z—:", then |v,|=1. So, up to a
subsequence, we may assume that

v, ~v in H;
v, »>v in LP(Q), for1l< p <27
v,(x) > v(x) a.e xeQ.

There are two case need to be considered: v # 0 or v = 0. We first

consider the case v # 0. Set
Ay, ) ={xeQ:n <|u,(x) <nr},
and
A={x eQ:v(x)= 0}

Obviously, meas(A) > 0. For x € A, we have [u,(x) > +0 as n — o.
Hence, A < A,(ry, ») for large n e N, where ry is given in (fy). By

(f3), we have

F(x’—Z’l)|vn|4dx —> +0 as n — o
4



10 BELAL ALMUAALEMI et al.

Hence, using Fatou’s lemma, we have

I M|vn|40lx —> 40 as n — w (2.11)
A |un|4

It follows from (2.5) and (2.11) that

0= lim ¢Fo® _ pp $0)

T oo "un”4 n—+o "un"4

. 1 (a 2 . b 4
- lim (§||un|| + 2l —jQF(x, un)dxj

n—+o0 "un”4

0 gim I [I F(x, u,)dx +j F(x, un)dxj
4 oo ||un|| Ap(0, 1) Ap(rp,®)

b c bt
< =~ + lim sup 1+ — J. [v,,|dx
4 oo | fu,l? p Vo

- lim J. F(x’—f:n)|vn|4dx
A fug|

<O liminf Pl wn) ) 4y =

n—o+o J A |un|4

which is a contradiction, thus {u,} is bounded. By a similar argument as

the proof of Lemma 2.4, we can conclude that {u,,} converge strongly in H.
Next we consider the case v = 0. We define

¢(tnun) = tgl[g,}i] ¢(tun)

For any M > 0, set U, = 43/‘, "Z"" = 1/4(];4%. By (f;) and he Sobolev
n

embedding theorem, we have

‘ j Pl 0, )ds

<c| |y dx+£J. U, |7 dx — 0,
[ ol + 2 [ ]
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as n — . Consequently, for n sufficiently large such that
~ Ay~ 2 by~ 14 ~
bltnun) 2 05, 2 515 + Il - [ F(x5) 2 M.

This means that

lim ¢(¢,u,,) = .
n—w

In view of the choice of ¢, we know that (¢'(¢,u,), t,u,) = 0. Hence, by

(f4), we have

1,, ~
© (I)(tnun) - Z(d) (tnun)> tn”n) = %"tnun”2 + J.QF(X’ tnun)dx

< Slunl? + [P ug)dx = olun) = (0100,). ),

which contradicts (2.5), thus {u,} is bounded in H. Since {u,} c H is

bounded, using a similar arguments as (2.8), (2.9), and (2.10), we can

conclude that u,, —» w in H, as n — . This completes the proof. O

3. Proof of Main Results

Let {e;} is an orthonormal basis of H and define x; = Re;,
l o
Yl = @XJ, Zk = @XJ, l,kEZ. (31)
= ik

Therefore, we have the following lemma from [9].
Lemma 3.1 ([9], Lemma 3.8). If 1 < p < 2", then we have

Br(p):= sup Ju —0, k— oo
ueZp,Jul=t P

Lemma 3.2. Suppose that (f]) is satisfied. Then there exist constants

p. o >0 and m € Z suchthat I|,p ~, 2 o.
pl14m
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Proof. By Lemma 3.1, we can choose an integer m >1 such that
0<B,,1)<<1,0<B,(p)<<1and

ledly < B Wlells  edl, < B (R, Ve € X5

For any u € Z,, with |u| = p <1, by (f;), we have

I(u)

) = G+ Gl ~ [ e, was

[\

a 2 C
= - ¢ udx——I ulP dx
Sl —cf =< [

[\

a c
Eﬂuw'—C&nONW"—-Bﬁ(pWUV
D
a 2
2 5 [ul” = B ()] = cpledl®
= p(%p - B, (1) - cppp_lj > 0.

a cp p-1 - .
Here we use the fact that 0 < B,,(1) < 2P~ P if m suitable large.
Thus, this completes the proof. O
Lemma 3.3. Suppose that (f;) and (fy) are satisfied. Then, for any

finite dimensional subspace H — H, thereis R = R(H) > 0 such that
®u) <0, Vue HN\ Bp.

Proof. For any finite dimensional subspace Hc H, there is a

positive integral number n > m (where m is given by Lemma 3.2) such
that H < Y,,. Since all norms are equivalent in a finite dimensional

space, there is a constant ¢, > 0 such that

ll, > calu, VY. (3.2)
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By (f;) and (f3), we know that for any M > % there is a constant
4C4

Cps > 0 such that

F(x, u) > Mu* - Cyrlu®, V(x, u) e QxR (3.3)
It follows from (3.2) and (3.3) that

1 b
) = ) < L+ Sl = Ml + Corll
1 2 4 b 4 211 12
< Ljuf? - (me} - 2) 1" + o GBI,

for all u € Y, Consequently, there is a large R = R(H) > 0 such that

®(x) < 0 on H \ Bp. Thus, the proof is complete. O

Proof of Theorem 1.1. Let X =H,X; =24, and X9 =Y,.
Obviously, I(0) = 0 and (f5) implies that I is even. By Lemmas 2.4, 3.1,
and 3.2, all conditions of Theorem 2.2 are satisfied. Thus, problem (2.5)

possesses dim Xy —codim X; =n—-m+1 >1 distinct pairs of positive

solutions. O

Proof of Theorem 1.2. Let X =H,X; =24, and X9 =Y,.
Obviously, I1(0) = 0 and (f5) implies that I is even. By Lemmas 2.5, 3.1,
and 3.2, all conditions of Theorem 2.2 are satisfied. Thus, problem (2.5)

possesses dim Xy —codim X; =n—-m+1 >1 distinct pairs of positive

solutions. O
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