
Journal of Mathematical Sciences: Advances and Applications 
Volume 49, 2018, Pages 1-14 
Available at http://scientificadvances.co.in 
DOI: http://dx.doi.org/10.18642/jmsaa_7100121883 

2010 Mathematics Subject Classification: 35J87, 49J40. 
Keywords and phrases: variational inequality, multiple positive solutions, Szulkin-type 
functional. 
This work was supported by Natural Science Foundation of China (11271372) and the 
Mathematics and Interdisciplinary Science Project of CSU. 
Received November 2, 2017 

 2018 Scientific Advances Publishers 

EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS 
FOR A VARIATIONAL INEQUALITY  

OF KIRCHHOFF TYPE 

BELAL ALMUAALEMI, HAIBO CHEN  
and SOFIANE KHOUTIR 

School of Mathematics and Statistics 
Central South University 
Changsha, Hunan 410083 
P. R. China 
e-mail: belal_math@csu.edu.cn 
            math_chb@csu.edu.cn 
            sofiane_math@csu.edu.cn 

Abstract 

This paper is devoted to prove the existence and the multiplicity of positive 
solutions for a class of a nonlinear variational inequality of Kirchhoff type. 
Under more general superlinear assumptions on the nonlinear term, we prove 
the existence of multiple positive solutions via non-smooth critical point theory 
for Szulkin-type functional. 
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1. Introduction and Main Results 

Consider the following variational inequality of Kirchhoff type: 

( ) ( )







Ω∂=

Ω≥∆∇+− ∫Ω
,on,0

,in,,2

u

uxfudxuba
 (1.1) 

where Ω  is smooth bounded domain in ( ) 0,,3or,2,1 >= baNNR  are 
constants and RR →×Ω:f  is continuos and satisfies: 

( ) ( )RR,f1 ×Ω∈Cf  and there exist 0>c  and ( )∗∈ 2,1p  ( 2
22
−

=∗
N

N  

if +∞=≥ ∗2,3N  if ,3<N  is the Sobolev critical exponent) such that 

( ) ( ) ( ) .,,1, 1 R×Ω∈∀+≤ − uxucuxf p  

( )2f  ( )
+∞→4

,
u

uxF  as +∞→u  uniformly in Ω∈x  and there exists 

00 >r  such that 

( ) ( ) ,,,,0, 0ruuxuxF ≥×Ω∈∀≥ R  

where ( ) ( ) .,,
0

dssxfuxF
u
∫=  

( )3f  there exists a constant 1λ<β a  such that 

( ) ( ) ( ) ,,,,,4 2 R×Ω∈∀β+≤ uxuuuxfuxF  

where 01 >λ  is the first eigenvalue of ( ( ))., 1
0 Ω∆− H  

( ) ( ) 0,~f4 ≥uxF  for all ( ) ,, R×Ω∈ux  and ( ) ( )txFsxF ,~,~ ≤  whenever 

( ) ++ ×∈ RRts,  and ,ts ≤  where ( ) ( ) ( ).,,4
1,~ uxFuuxfuxF −=   

( ) ( ) ( )uxfuxf ,,f5 −=  for all ( ) ., R×Ω∈ux  

Variational inequalities describe phenomena from mathematical 
physics. They have applications in physics, mechanics, engineering, 
optimization, and elliptic inequalities, see, for example, [1-5]. 
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The aim of this work is to study a Kirchhoff type variational 
inequality which is defined on Ω  by using a non-smooth critical point 
theory due to Szulkin. In [7], the author has proved a number of 
existence theorem for critical point of functionals which are not smooth. 
He has generalized some minimization and minimax methods in critical 
point theory to a class of functionals which are not necessarily continuous 
and has introduced a new concept of compactness which is suitable to 
study these kinds of problems. 

In the present paper, by using a minimization principle and the 
mountain pass theorem of Szulkin-type, we prove existence of positive 
solutions to a variational inequality of Kirchhoff-type in a closed convex 
set. 

Let { ( ) }0:1
0 ≥Ω∈= uHuK  be the closed convex set in Sobolev 

space ( )Ω1
0H  and we consider the problem, denoted by (P): 

Given RR →×Ω:f  a continuous function and ,0, >ba  find Ku ∈  

such that 

( ) ( ) ( ) .,0,.2 Kvdxuvuxfdxuvudxuba ∈∀≥−−∇−∇∇






 ∇+ ∫∫∫ ΩΩΩ
 

Such kind of problems are called obstacle problems and they have been 
largely studied due to its physical application. See, for example, the 
classical books Kinderlehrer and Stampacchia [4], Rodrigues [6], and 
Troianiello [8] and the references therein. 

The main results of this paper are the following: 

Theorem 1.1. Assume that ( ) ( ) ( ),f,f,f 321  and ( )5f  hold. Then 

problem (1.1) possesses at least one distinct pair of positive solution. 

Theorem 1.2. Assume that ( ) ( ) ( ),f,f,f 421  and ( )5f  hold. Then 

problem (1.1) possesses at least one distinct pair of positive solution. 
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Remark 1.3. Note that conditions ( )3f  and ( )4f  are weaker than the 

well-known Ambrosetti-Rabinowitz condition (AR for short), which was 
first introduced in [10], that is, 

( ) ( ) .0,,,:4 ≠≤>∃ ttxtftxFνν  

Indeed, there are functionals ( )uxf ,  satisfying conditions ( ) ( ),f-f 51  and 

not satisfying the AR condition. For example, let 

( ) ( ).1ln, 44 uuuxF +=  

Then 

( ) ( ) .
1

41ln4, 4

3
443

u
uuuuuxf
+

++=  

By a simple computation, one can deduces that 

( ) ( ) ( ) ( ) ,0
1

41ln4,, 4

4
444 >

+
−+−=−

u
uuuuuuxfuxF νν  

for u  large enough. Thus, f does not satisfy the AR-condition. Moreover, 

it is easy to check that f satisfies all the assumptions of Theorems 1.1 and 
1.2. 

2. Variational Framework and Technical Lemmas 

Let ( )Ω= 1
0: HH  be the Sobolev space equipped with the inner product 

and the norm 

.,,., 2
1

uuuvdxuvu =∇∇= ∫Ω  

We denote by p.  the usual pL -norm. Since Ω  is a bounded domain, 

then ( )ΩpLH   continuously for [ ],2,1 ∗∈p  and compactly for  

[ ],2,1 ∗∈p  and there exists 0>γ p  such that 

., Huuu pp ∈∀γ≤   (2.1) 
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Let { }0, ≥∈= uHuK  be the closed convex set in the space H. Recall 

that a function Hu ∈  is called weak solution of (1.1) if 

( ) ( ) ( ) ( ) .,0,.2 Hvdxuvuxfdxuvudxuba ∈∀≥−−∇−∇∇∇+ ∫∫∫ ΩΩΩ
 

(2.2) 

Now we give some preliminaries about Szulkin-type function (see [7]). 

Let X be a real Banach space and ∗X  its dual. Let φ  be a functional 

which is of class 1C  and let { }+∞→/ ∪RXv :  be a proper ( ),.,i.e +∞≠/v  

convex and lower semicontinuous functional. We say that vI /+φ=  is a 

Szulkin-type functional. An element Xu ∈  is called a critical point of 
vI /+φ=  if 

( ) ( ) ( ) ( ) ,allfor,0 Xvuvvvuvu ∈≥/−/+−φ′  

which is equivalent to 

( ) ( ) ,in0 ∗/∂+φ′∈ Xuvu  

where ( )uv/∂  is the subdifferential of the convex functional v/  at Xu ∈  

defined by 

( ) { ( ) ( ) }.,,: XvuvuvvvXuv ∈∀−φ≥/−/∈φ=/∂ ∗  

Definition 2.1. The functional vI /+φ=  satisfies the Palais-Smale 

condition at level ,R∈c  denoted by ( )cPSZ  if every sequence { } Xun ⊂  

such that ( ) cuI nn =∞→lim  and 

( ) ( ) ( ) ,allfor, Xvuvuvvvuvu nnnnn ∈−ε−≥/−/+−φ′   (2.3) 

where ,0→εn  possesses a convergent subsequence. 
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The following theorem which was proved by Szulkin, is the main tool 
to prove the main results of this paper. 

Theorem 2.2. Let X be a Banach space, ( ]∞+−∞→ ,: XI  a  

Szulkin-type functional satisfies ( ) ( ) 00, =IPSZ c  and v/φ,  are even. 

Assume also that 

(i) there exists a subspace 1X  of X of finite codimension and numbers 

0, >ρα  such that ;
1

α≥ρ∂ XBI ∩  

(ii) there is a finite dimensional subspace 2X  of ,codimdim, 12 XXX >  

such that ( ) −∞→uI  as ., 2Xuu ∈∞→  

Then I has at least 12 codimdim XX −  distinct pairs of nontrivial 

critical points. 

We define the functional R→φ H:  by 

( ) ( )( ) .,42
42 dxxuxFubuau ∫Ω−+=φ  (2.4) 

Using ( )1f  and the Sobolev embedding theorem, we can prove easily that 

( ).,1 RHC∈φ  We define the indicator functional of the set K by 

( )






∈/∞+

∈
=/

.if,

,if,0

Ku

Ku
uvK  

We remark that the functional Kv/  is convex, proper and lower 

semicontinuous. So, KvI /+φ=  is a Szulkin-type functional. 

Lemma 2.3. If Hu ∈  is a critical point of ,KvI /+φ=  then u is a 

solution of problem (1.1). 
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Proof. Let Hu ∈  be a critical point of .KvI /+φ=  Then, we have 

( ) ( ) ( ) ( ) .,0 Hvuvvvuvu KK ∈∀≥/−/+−φ′  

We first prove that .Ku ∈  If this were not true, we have ( ) ,+∞=/ uvK  
and taking Kv ∈= 0  in the above inequality, we obtain a contradiction. 
Next, for a fixed ,Kv ∈  since 

( ) ( ) ( ) ( )dxuvuubauvu ∇−∇∇+=−φ′≤ ∫Ω
20  

( ) ( ) ,, dxuvuxf −− ∫Ω  

the inequality is proved.   

Lemma 2.4. Assume that f satisfies ( )1f  and ( ),f3  then KvI /+φ=  

satisfies the ( )cPSZ  for every .R∈c  

Proof. Let { } Hun ⊂  be such that 

( ) ( ) ( ) ( ),, R∈→/+φ= ccuvuuI nKnn   (2.5) 

and 

( ) ( ) ( ) ( ) ,, Hvuvuvvvuvu nnnKKnn ∈∀−ε−≥/−/+−φ′   (2.6) 

where { } [ }∞⊂ε ,0n  is a sequence with .0→εn  By (2.5), we have { }nu  
is in K. Next, we prove that { }nu  is bounded in H. It follows from ( )3f  
and (2.5) that 

( ) ( ) nnnn uuuuc ,4
11 φ′−φ≥++  

( ) ( ) dxuxFuuxfua
nnnn 




 −+= ∫Ω ,,4
1

4
2  

dxuua 22
44 ∫Ω
β−≥  

( ) .4
1 2

1
nua

λ
β−≥  
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Since ,1λ<β a  then ( ) .0
1

>
λ
β−a  Thus { }nu  is bounded in H. Because 

the sequence { }nu  is bounded in H, going if necessary to a subsequence, 

we may assume that 

;in Huun   

( ) ;21for,in ∗<≤Ω→ pLuu p
n  

( ) ( ) ..a.e Ω∈→ xxuxun  (2.7) 

As K is weakly closed, then .Ku ∈  Setting uv =  in (2.6), we obtain that 

( ) ( )dxuuuuba nnn ∇−∇∇+ ∫Ω
2  

( ) ( ) ., nnnn uudxuuuxf −ε−≥−+ ∫Ω  

Therefore, for large ,N∈n  we have 

( ) ( ) ( )dxuuuubauuuba nnnn ∇−∇∇+≤−+ ∫Ω
222  

( ) ( ) ., nnnn uudxuuuxf −ε+−+ ∫Ω  (2.8) 

In one hand, by ( ),f1  (2.7) and the Hölder inequality, one has 

( ) ( ) ( ) ( )dxuuucdxuuuxf n
p

nnn −+≤− −

ΩΩ ∫∫ 11,  

  dxuuucdxuuc n
p

nn −+−≤ −

ΩΩ ∫∫ 1  

  1
1

−−+−≤ p
pnpnn uuucuuc  

.as0 ∞→→ n  (2.9) 
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In the other hand, by (2.7) and the fact that { }nu  is bounded in H, we 

have 

.0,lim 2 =−+ nnn
uuuuba   (2.10) 

Since ,0+→εn  combine (2.9) and (2.10), we conclude that the second 
term in (2.8) converges to 0. Hence, { }nu  converges strongly to u in H. 
The proof is completed.   

Lemma 2.5. Assume that ( )1f  and ( )4f  hold. Then I satisfies the 
( )cPSZ  for every .R∈c  

Proof. Let { } Hun ⊂  satisfies (2.5) and (2.6). It is clear that { }nu  is 
in K. Next, we prove that { }nu  is bounded in H. Suppose to the contrary 

that .∞→nu  Setting ,
n
n

n u
uv =  then .1=nv  So, up to a 

subsequence, we may assume that 

;in Hvvn   

( ) ;21for,in ∗<≤Ω→ pLvv p
n  

( ) ( ) ..a.e Ω∈→ xxvxvn  

There are two case need to be considered: 0≠v  or .0=v  We first 
consider the case .0≠v  Set 

( ) { ( ) },:, 2121 rxurxrr nn <≤Ω∈=Λ  

and 

( ){ }.0:: ≠Ω∈= xvxA  

Obviously, ( ) .0meas >A  For ,Ax ∈  we have ( ) +∞→xun  as .∞→n  
Hence, ( )∞Λ⊂ ,0rA n  for large ,N∈n  where 0r  is given in ( ).f2  By 
( ),f2  we have 

( ) .as, 4
4 ∞→+∞→ ndxv

u
uxF

n
n

n  
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Hence, using Fatou’s lemma, we have 

( ) .as, 4
4 ∞→+∞→∫ ndxv

u
uxF

n
n

n
A

 (2.11) 

It follows from (2.5) and (2.11) that 

 

( ) ( )
44 lim1lim0

n

n
nnn u

u
u

oc φ
=+=

+∞→+∞→
 

( ) 






 −+= ∫Ω+∞→
dxuxFubua

u
nnn

nn
,42

1lim 42
4  

( )
( )

( )
( ) 








+−= ∫∫ ∞ΛΛ+∞→

dxuxFdxuxF
u

b
n

r
n

rnn nn
,,1lim4 ,,04

00
 


























++≤ ∫Ω

−

∞→
dxvp

r

u
cb

n

p

nn

1
0

3 1suplim4  

( ) dxv
u

uxF
n

n

n
An

4
4

,lim ∫+∞→
−  

( ) ,,inflim4
4

4 −∞=−≤ ∫+∞→
dxv

u
uxFb

n
n

n
An

 

which is a contradiction, thus { }nu  is bounded. By a similar argument as 

the proof of Lemma 2.4, we can conclude that { }nu  converge strongly in H. 

Next we consider the case .0=v  We define 

( )
[ ]

( ).max
1,0 ntnn tuut φ=φ

∈
 

For any ,0>M  set .44~
n

n
n

n va
M

u
u

a
Mv ==  By ( )1f  and he Sobolev 

embedding theorem, we have 

( ) ,0~~~, →+≤ ∫∫∫ ΩΩΩ
dxvp

cdxvcdxvxF p
nnn  
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as .∞→n  Consequently, for n sufficiently large such that 

( ) ( ) ( ) .~,~
4

~
2

~ 42 MvxFvbvavut nnnnnn ≥−+≥φ≥φ ∫Ω  

This means that 

( ) .lim ∞=φ
∞→ nnn

ut  

In view of the choice of nt  we know that ( ) .0, =φ′ nnnn utut  Hence, by 

( ),f4  we have 

( ) ( ) ( )dxutxFutaututut nnnnnnnnnn ,~
4,4

1 2 ∫Ω+=φ′−φ←∞  

 ( ) ( ) ( ) ,,4
1,~

4
2

nnnnn uuudxuxFua φ′−φ=+≤ ∫Ω  

which contradicts (2.5), thus { }nu  is bounded in H. Since { } Hun ⊂  is 

bounded, using a similar arguments as (2.8), (2.9), and (2.10), we can 
conclude that uun →  in H, as .∞→n  This completes the proof.   

3. Proof of Main Results 

Let { }je  is an orthonormal basis of H and define ,jj ex R=  

.,,,
1

Z∈==
∞

==
k

k
k lXZXY j

j
j

l

j
l   (3.1) 

Therefore, we have the following lemma from [9]. 

Lemma 3.1 ([9], Lemma 3.8). If ,21 ∗<≤ p  then we have 

( ) .k
k

k ∞→→=β
=∈

,0sup:
1, puZu

up  

Lemma 3.2. Suppose that ( )1f  is satisfied. Then there exist constants 

0, >αρ  and Z∈m  such that .α≥
ρ∂ mZBI ∩  
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Proof. By Lemma 3.1, we can choose an integer 1≥m  such that 
( ) ( ) 10,110 <<β<<<β< pmm  and 

( ) ( ) .,,1 11 Xuupuuu mpm ∈∀β≤β≤  

For any mZu ∈  with ,1<ρ=u  by ( ),f1  we have 

( ) ( ) ( )dxuxFubuauuI ,42
42 ∫Ω−+=φ=  

dxup
cdxucua p∫∫ ΩΩ

−−≥ 2
2  

( ) ( ) pp
mm upp

cucua β−β−≥ 12
2  

( ) p
pm ucucua −β−≥ 12

2  

( ) .012
1 >




 ρ−β−ρρ= −p

pm cca  

Here we use the fact that ( ) 1
210 −ρ−ρ<β< pp

m c
c

c
a  if m suitable large. 

Thus, this completes the proof.   

Lemma 3.3. Suppose that ( )1f  and ( )2f  are satisfied. Then, for any 

finite dimensional subspace ,~ HH ⊂  there is ( ) 0~ >= HRR  such that 

( ) .\~,0 RBHuu ∈∀≤φ  

Proof. For any finite dimensional subspace ,~ HH ⊂  there is a 
positive integral number mn >  (where m is given by Lemma 3.2) such 

that .~
nYH ⊂  Since all norms are equivalent in a finite dimensional 

space, there is a constant 04 >c  such that 

.,44 nYucu ∀≥   (3.2) 
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By ( )1f  and ( ),f2  we know that for any 4
44c

bM >  there is a constant 

0>MC  such that 

( ) ( ) .,,, 24 R×Ω∈∀−≥ uxuCuMuxF M   (3.3) 

It follows from (3.2) and (3.3) that 

( ) ( ) 2
2

4
4

42
42

1 uCuMubuuuI M+−+≤φ=  

  ,42
1 22

2
44

4
2 uCCubMcu M+





 −−≤  

for all .nYu ∈  Consequently, there is a large ( ) 0~ >= HRR  such that 

( ) 0≤φ u  on .\~
RBH  Thus, the proof is complete.   

Proof of Theorem 1.1. Let ,, 1 mZXHX ==  and .2 nYX =  

Obviously, ( ) 00 =I  and ( )5f  implies that I is even. By Lemmas 2.4, 3.1, 

and 3.2, all conditions of Theorem 2.2 are satisfied. Thus, problem (2.5) 
possesses 11codimdim 12 >+−=− mnXX  distinct pairs of positive 

solutions.   

Proof of Theorem 1.2. Let ,, 1 mZXHX ==  and .2 nYX =  

Obviously, ( ) 00 =I  and ( )5f  implies that I is even. By Lemmas 2.5, 3.1, 

and 3.2, all conditions of Theorem 2.2 are satisfied. Thus, problem (2.5) 
possesses 11codimdim 12 >+−=− mnXX  distinct pairs of positive 

solutions.   
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