
Journal of Mathematical Sciences: Advances and Applications 
Volume 49, 2018, Pages 1-14 
Available at http://scientificadvances.co.in 
DOI: http://dx.doi.org/10.18642/jmsaa_7100121883 

2010 Mathematics Subject Classification: 35J87, 49J40. 
Keywords and phrases: variational inequality, multiple positive solutions, Szulkin-type 
functional. 
This work was supported by Natural Science Foundation of China (11271372) and the 
Mathematics and Interdisciplinary Science Project of CSU. 
Received November 2, 2017 

 2018 Scientific Advances Publishers 

EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS 
FOR A VARIATIONAL INEQUALITY  

OF KIRCHHOFF TYPE 

BELAL ALMUAALEMI, HAIBO CHEN  
and SOFIANE KHOUTIR 

School of Mathematics and Statistics 
Central South University 
Changsha, Hunan 410083 
P. R. China 
e-mail: belal_math@csu.edu.cn 
            math_chb@csu.edu.cn 
            sofiane_math@csu.edu.cn 

Abstract 

This paper is devoted to prove the existence and the multiplicity of positive 
solutions for a class of a nonlinear variational inequality of Kirchhoff type. 
Under more general superlinear assumptions on the nonlinear term, we prove 
the existence of multiple positive solutions via non-smooth critical point theory 
for Szulkin-type functional. 
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1. Introduction and Main Results 

Consider the following variational inequality of Kirchhoff type: 

( ) ( )







Ω∂=

Ω≥∆∇+− ∫Ω
,on,0

,in,,2

u

uxfudxuba
 (1.1) 

where Ω  is smooth bounded domain in ( ) 0,,3or,2,1 >= baNNR  are 
constants and RR →×Ω:f  is continuos and satisfies: 

( ) ( )RR,f1 ×Ω∈Cf  and there exist 0>c  and ( )∗∈ 2,1p  ( 2
22
−

=∗
N

N  

if +∞=≥ ∗2,3N  if ,3<N  is the Sobolev critical exponent) such that 

( ) ( ) ( ) .,,1, 1 R×Ω∈∀+≤ − uxucuxf p  

( )2f  ( )
+∞→4

,
u

uxF  as +∞→u  uniformly in Ω∈x  and there exists 

00 >r  such that 

( ) ( ) ,,,,0, 0ruuxuxF ≥×Ω∈∀≥ R  

where ( ) ( ) .,,
0

dssxfuxF
u
∫=  

( )3f  there exists a constant 1λ<β a  such that 

( ) ( ) ( ) ,,,,,4 2 R×Ω∈∀β+≤ uxuuuxfuxF  

where 01 >λ  is the first eigenvalue of ( ( ))., 1
0 Ω∆− H  

( ) ( ) 0,~f4 ≥uxF  for all ( ) ,, R×Ω∈ux  and ( ) ( )txFsxF ,~,~ ≤  whenever 

( ) ++ ×∈ RRts,  and ,ts ≤  where ( ) ( ) ( ).,,4
1,~ uxFuuxfuxF −=   

( ) ( ) ( )uxfuxf ,,f5 −=  for all ( ) ., R×Ω∈ux  

Variational inequalities describe phenomena from mathematical 
physics. They have applications in physics, mechanics, engineering, 
optimization, and elliptic inequalities, see, for example, [1-5]. 
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The aim of this work is to study a Kirchhoff type variational 
inequality which is defined on Ω  by using a non-smooth critical point 
theory due to Szulkin. In [7], the author has proved a number of 
existence theorem for critical point of functionals which are not smooth. 
He has generalized some minimization and minimax methods in critical 
point theory to a class of functionals which are not necessarily continuous 
and has introduced a new concept of compactness which is suitable to 
study these kinds of problems. 

In the present paper, by using a minimization principle and the 
mountain pass theorem of Szulkin-type, we prove existence of positive 
solutions to a variational inequality of Kirchhoff-type in a closed convex 
set. 

Let { ( ) }0:1
0 ≥Ω∈= uHuK  be the closed convex set in Sobolev 

space ( )Ω1
0H  and we consider the problem, denoted by (P): 

Given RR →×Ω:f  a continuous function and ,0, >ba  find Ku ∈  

such that 

( ) ( ) ( ) .,0,.2 Kvdxuvuxfdxuvudxuba ∈∀≥−−∇−∇∇






 ∇+ ∫∫∫ ΩΩΩ
 

Such kind of problems are called obstacle problems and they have been 
largely studied due to its physical application. See, for example, the 
classical books Kinderlehrer and Stampacchia [4], Rodrigues [6], and 
Troianiello [8] and the references therein. 

The main results of this paper are the following: 

Theorem 1.1. Assume that ( ) ( ) ( ),f,f,f 321  and ( )5f  hold. Then 

problem (1.1) possesses at least one distinct pair of positive solution. 

Theorem 1.2. Assume that ( ) ( ) ( ),f,f,f 421  and ( )5f  hold. Then 

problem (1.1) possesses at least one distinct pair of positive solution. 
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Remark 1.3. Note that conditions ( )3f  and ( )4f  are weaker than the 

well-known Ambrosetti-Rabinowitz condition (AR for short), which was 
first introduced in [10], that is, 

( ) ( ) .0,,,:4 ≠≤>∃ ttxtftxFνν  

Indeed, there are functionals ( )uxf ,  satisfying conditions ( ) ( ),f-f 51  and 

not satisfying the AR condition. For example, let 

( ) ( ).1ln, 44 uuuxF +=  

Then 

( ) ( ) .
1

41ln4, 4

3
443

u
uuuuuxf
+

++=  

By a simple computation, one can deduces that 

( ) ( ) ( ) ( ) ,0
1

41ln4,, 4

4
444 >

+
−+−=−

u
uuuuuuxfuxF νν  

for u  large enough. Thus, f does not satisfy the AR-condition. Moreover, 

it is easy to check that f satisfies all the assumptions of Theorems 1.1 and 
1.2. 

2. Variational Framework and Technical Lemmas 

Let ( )Ω= 1
0: HH  be the Sobolev space equipped with the inner product 

and the norm 

.,,., 2
1

uuuvdxuvu =∇∇= ∫Ω  

We denote by p.  the usual pL -norm. Since Ω  is a bounded domain, 

then ( )ΩpLH   continuously for [ ],2,1 ∗∈p  and compactly for  

[ ],2,1 ∗∈p  and there exists 0>γ p  such that 

., Huuu pp ∈∀γ≤   (2.1) 
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Let { }0, ≥∈= uHuK  be the closed convex set in the space H. Recall 

that a function Hu ∈  is called weak solution of (1.1) if 

( ) ( ) ( ) ( ) .,0,.2 Hvdxuvuxfdxuvudxuba ∈∀≥−−∇−∇∇∇+ ∫∫∫ ΩΩΩ
 

(2.2) 

Now we give some preliminaries about Szulkin-type function (see [7]). 

Let X be a real Banach space and ∗X  its dual. Let φ  be a functional 

which is of class 1C  and let { }+∞→/ ∪RXv :  be a proper ( ),.,i.e +∞≠/v  

convex and lower semicontinuous functional. We say that vI /+φ=  is a 

Szulkin-type functional. An element Xu ∈  is called a critical point of 
vI /+φ=  if 

( ) ( ) ( ) ( ) ,allfor,0 Xvuvvvuvu ∈≥/−/+−φ′  

which is equivalent to 

( ) ( ) ,in0 ∗/∂+φ′∈ Xuvu  

where ( )uv/∂  is the subdifferential of the convex functional v/  at Xu ∈  

defined by 

( ) { ( ) ( ) }.,,: XvuvuvvvXuv ∈∀−φ≥/−/∈φ=/∂ ∗  

Definition 2.1. The functional vI /+φ=  satisfies the Palais-Smale 

condition at level ,R∈c  denoted by ( )cPSZ  if every sequence { } Xun ⊂  

such that ( ) cuI nn =∞→lim  and 

( ) ( ) ( ) ,allfor, Xvuvuvvvuvu nnnnn ∈−ε−≥/−/+−φ′   (2.3) 

where ,0→εn  possesses a convergent subsequence. 
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The following theorem which was proved by Szulkin, is the main tool 
to prove the main results of this paper. 

Theorem 2.2. Let X be a Banach space, ( ]∞+−∞→ ,: XI  a  

Szulkin-type functional satisfies ( ) ( ) 00, =IPSZ c  and v/φ,  are even. 

Assume also that 

(i) there exists a subspace 1X  of X of finite codimension and numbers 

0, >ρα  such that ;
1

α≥ρ∂ XBI ∩  

(ii) there is a finite dimensional subspace 2X  of ,codimdim, 12 XXX >  

such that ( ) −∞→uI  as ., 2Xuu ∈∞→  

Then I has at least 12 codimdim XX −  distinct pairs of nontrivial 

critical points. 

We define the functional R→φ H:  by 

( ) ( )( ) .,42
42 dxxuxFubuau ∫Ω−+=φ  (2.4) 

Using ( )1f  and the Sobolev embedding theorem, we can prove easily that 

( ).,1 RHC∈φ  We define the indicator functional of the set K by 

( )






∈/∞+

∈
=/

.if,

,if,0

Ku

Ku
uvK  

We remark that the functional Kv/  is convex, proper and lower 

semicontinuous. So, KvI /+φ=  is a Szulkin-type functional. 

Lemma 2.3. If Hu ∈  is a critical point of ,KvI /+φ=  then u is a 

solution of problem (1.1). 
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Proof. Let Hu ∈  be a critical point of .KvI /+φ=  Then, we have 

( ) ( ) ( ) ( ) .,0 Hvuvvvuvu KK ∈∀≥/−/+−φ′  

We first prove that .Ku ∈  If this were not true, we have ( ) ,+∞=/ uvK  
and taking Kv ∈= 0  in the above inequality, we obtain a contradiction. 
Next, for a fixed ,Kv ∈  since 

( ) ( ) ( ) ( )dxuvuubauvu ∇−∇∇+=−φ′≤ ∫Ω
20  

( ) ( ) ,, dxuvuxf −− ∫Ω  

the inequality is proved.   

Lemma 2.4. Assume that f satisfies ( )1f  and ( ),f3  then KvI /+φ=  

satisfies the ( )cPSZ  for every .R∈c  

Proof. Let { } Hun ⊂  be such that 

( ) ( ) ( ) ( ),, R∈→/+φ= ccuvuuI nKnn   (2.5) 

and 

( ) ( ) ( ) ( ) ,, Hvuvuvvvuvu nnnKKnn ∈∀−ε−≥/−/+−φ′   (2.6) 

where { } [ }∞⊂ε ,0n  is a sequence with .0→εn  By (2.5), we have { }nu  
is in K. Next, we prove that { }nu  is bounded in H. It follows from ( )3f  
and (2.5) that 

( ) ( ) nnnn uuuuc ,4
11 φ′−φ≥++  

( ) ( ) dxuxFuuxfua
nnnn 




 −+= ∫Ω ,,4
1

4
2  

dxuua 22
44 ∫Ω
β−≥  

( ) .4
1 2

1
nua

λ
β−≥  
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Since ,1λ<β a  then ( ) .0
1

>
λ
β−a  Thus { }nu  is bounded in H. Because 

the sequence { }nu  is bounded in H, going if necessary to a subsequence, 

we may assume that 

;in Huun   

( ) ;21for,in ∗<≤Ω→ pLuu p
n  

( ) ( ) ..a.e Ω∈→ xxuxun  (2.7) 

As K is weakly closed, then .Ku ∈  Setting uv =  in (2.6), we obtain that 

( ) ( )dxuuuuba nnn ∇−∇∇+ ∫Ω
2  

( ) ( ) ., nnnn uudxuuuxf −ε−≥−+ ∫Ω  

Therefore, for large ,N∈n  we have 

( ) ( ) ( )dxuuuubauuuba nnnn ∇−∇∇+≤−+ ∫Ω
222  

( ) ( ) ., nnnn uudxuuuxf −ε+−+ ∫Ω  (2.8) 

In one hand, by ( ),f1  (2.7) and the Hölder inequality, one has 

( ) ( ) ( ) ( )dxuuucdxuuuxf n
p

nnn −+≤− −

ΩΩ ∫∫ 11,  

  dxuuucdxuuc n
p

nn −+−≤ −

ΩΩ ∫∫ 1  

  1
1

−−+−≤ p
pnpnn uuucuuc  

.as0 ∞→→ n  (2.9) 
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In the other hand, by (2.7) and the fact that { }nu  is bounded in H, we 

have 

.0,lim 2 =−+ nnn
uuuuba   (2.10) 

Since ,0+→εn  combine (2.9) and (2.10), we conclude that the second 
term in (2.8) converges to 0. Hence, { }nu  converges strongly to u in H. 
The proof is completed.   

Lemma 2.5. Assume that ( )1f  and ( )4f  hold. Then I satisfies the 
( )cPSZ  for every .R∈c  

Proof. Let { } Hun ⊂  satisfies (2.5) and (2.6). It is clear that { }nu  is 
in K. Next, we prove that { }nu  is bounded in H. Suppose to the contrary 

that .∞→nu  Setting ,
n
n

n u
uv =  then .1=nv  So, up to a 

subsequence, we may assume that 

;in Hvvn   

( ) ;21for,in ∗<≤Ω→ pLvv p
n  

( ) ( ) ..a.e Ω∈→ xxvxvn  

There are two case need to be considered: 0≠v  or .0=v  We first 
consider the case .0≠v  Set 

( ) { ( ) },:, 2121 rxurxrr nn <≤Ω∈=Λ  

and 

( ){ }.0:: ≠Ω∈= xvxA  

Obviously, ( ) .0meas >A  For ,Ax ∈  we have ( ) +∞→xun  as .∞→n  
Hence, ( )∞Λ⊂ ,0rA n  for large ,N∈n  where 0r  is given in ( ).f2  By 
( ),f2  we have 

( ) .as, 4
4 ∞→+∞→ ndxv

u
uxF

n
n

n  
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Hence, using Fatou’s lemma, we have 

( ) .as, 4
4 ∞→+∞→∫ ndxv

u
uxF

n
n

n
A

 (2.11) 

It follows from (2.5) and (2.11) that 

 

( ) ( )
44 lim1lim0

n

n
nnn u

u
u

oc φ
=+=

+∞→+∞→
 

( ) 






 −+= ∫Ω+∞→
dxuxFubua

u
nnn

nn
,42

1lim 42
4  

( )
( )

( )
( ) 








+−= ∫∫ ∞ΛΛ+∞→

dxuxFdxuxF
u

b
n

r
n

rnn nn
,,1lim4 ,,04

00
 


























++≤ ∫Ω

−

∞→
dxvp

r

u
cb

n

p

nn

1
0

3 1suplim4  

( ) dxv
u

uxF
n

n

n
An

4
4

,lim ∫+∞→
−  

( ) ,,inflim4
4

4 −∞=−≤ ∫+∞→
dxv

u
uxFb

n
n

n
An

 

which is a contradiction, thus { }nu  is bounded. By a similar argument as 

the proof of Lemma 2.4, we can conclude that { }nu  converge strongly in H. 

Next we consider the case .0=v  We define 

( )
[ ]

( ).max
1,0 ntnn tuut φ=φ

∈
 

For any ,0>M  set .44~
n

n
n

n va
M

u
u

a
Mv ==  By ( )1f  and he Sobolev 

embedding theorem, we have 

( ) ,0~~~, →+≤ ∫∫∫ ΩΩΩ
dxvp

cdxvcdxvxF p
nnn  
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as .∞→n  Consequently, for n sufficiently large such that 

( ) ( ) ( ) .~,~
4

~
2

~ 42 MvxFvbvavut nnnnnn ≥−+≥φ≥φ ∫Ω  

This means that 

( ) .lim ∞=φ
∞→ nnn

ut  

In view of the choice of nt  we know that ( ) .0, =φ′ nnnn utut  Hence, by 

( ),f4  we have 

( ) ( ) ( )dxutxFutaututut nnnnnnnnnn ,~
4,4

1 2 ∫Ω+=φ′−φ←∞  

 ( ) ( ) ( ) ,,4
1,~

4
2

nnnnn uuudxuxFua φ′−φ=+≤ ∫Ω  

which contradicts (2.5), thus { }nu  is bounded in H. Since { } Hun ⊂  is 

bounded, using a similar arguments as (2.8), (2.9), and (2.10), we can 
conclude that uun →  in H, as .∞→n  This completes the proof.   

3. Proof of Main Results 

Let { }je  is an orthonormal basis of H and define ,jj ex R=  

.,,,
1

Z∈==
∞

==
k

k
k lXZXY j

j
j

l

j
l   (3.1) 

Therefore, we have the following lemma from [9]. 

Lemma 3.1 ([9], Lemma 3.8). If ,21 ∗<≤ p  then we have 

( ) .k
k

k ∞→→=β
=∈

,0sup:
1, puZu

up  

Lemma 3.2. Suppose that ( )1f  is satisfied. Then there exist constants 

0, >αρ  and Z∈m  such that .α≥
ρ∂ mZBI ∩  
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Proof. By Lemma 3.1, we can choose an integer 1≥m  such that 
( ) ( ) 10,110 <<β<<<β< pmm  and 

( ) ( ) .,,1 11 Xuupuuu mpm ∈∀β≤β≤  

For any mZu ∈  with ,1<ρ=u  by ( ),f1  we have 

( ) ( ) ( )dxuxFubuauuI ,42
42 ∫Ω−+=φ=  

dxup
cdxucua p∫∫ ΩΩ

−−≥ 2
2  

( ) ( ) pp
mm upp

cucua β−β−≥ 12
2  

( ) p
pm ucucua −β−≥ 12

2  

( ) .012
1 >




 ρ−β−ρρ= −p

pm cca  

Here we use the fact that ( ) 1
210 −ρ−ρ<β< pp

m c
c

c
a  if m suitable large. 

Thus, this completes the proof.   

Lemma 3.3. Suppose that ( )1f  and ( )2f  are satisfied. Then, for any 

finite dimensional subspace ,~ HH ⊂  there is ( ) 0~ >= HRR  such that 

( ) .\~,0 RBHuu ∈∀≤φ  

Proof. For any finite dimensional subspace ,~ HH ⊂  there is a 
positive integral number mn >  (where m is given by Lemma 3.2) such 

that .~
nYH ⊂  Since all norms are equivalent in a finite dimensional 

space, there is a constant 04 >c  such that 

.,44 nYucu ∀≥   (3.2) 
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By ( )1f  and ( ),f2  we know that for any 4
44c

bM >  there is a constant 

0>MC  such that 

( ) ( ) .,,, 24 R×Ω∈∀−≥ uxuCuMuxF M   (3.3) 

It follows from (3.2) and (3.3) that 

( ) ( ) 2
2

4
4

42
42

1 uCuMubuuuI M+−+≤φ=  

  ,42
1 22

2
44

4
2 uCCubMcu M+





 −−≤  

for all .nYu ∈  Consequently, there is a large ( ) 0~ >= HRR  such that 

( ) 0≤φ u  on .\~
RBH  Thus, the proof is complete.   

Proof of Theorem 1.1. Let ,, 1 mZXHX ==  and .2 nYX =  

Obviously, ( ) 00 =I  and ( )5f  implies that I is even. By Lemmas 2.4, 3.1, 

and 3.2, all conditions of Theorem 2.2 are satisfied. Thus, problem (2.5) 
possesses 11codimdim 12 >+−=− mnXX  distinct pairs of positive 

solutions.   

Proof of Theorem 1.2. Let ,, 1 mZXHX ==  and .2 nYX =  

Obviously, ( ) 00 =I  and ( )5f  implies that I is even. By Lemmas 2.5, 3.1, 

and 3.2, all conditions of Theorem 2.2 are satisfied. Thus, problem (2.5) 
possesses 11codimdim 12 >+−=− mnXX  distinct pairs of positive 

solutions.   
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