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Abstract 

Zolotarev show in [1, 4] the importance of ideal probability distance in order to 
obtain a rate of convergence in limit theorems. This paper considers the 
question of the rate of convergence to stable-α laws, where ,21 <α<  in the 
generalized CLT, that is, for the partial sums of independent identically 
distributed random variables which are not assumed to be square integrable. 
This note can be seen as a slight contribution based on the Zolotarev paper in 
[1] which aims to clarify the finiteness conditions of the Zolotarev distance used 
to prove bounds. 
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1. Introduction 

When studying limit theorems in probability theory it is important to 
try to assess the rates at which these converges. It is known that taking 
into account probability metrics in the space of random variables, allow 
to approximate partial sums for sequences of random variables. It is also 
known that stable laws are the only limits in the study of the limit law 
for such partial sums properly normalized. However, the lack of explicit 
formulas for their density functions except some stable distributions 
(Gaussian, Cauchy, Lévy) significantly limits their use in practice. A 
random variable ϑ  has a stable distribution if there exists some 
coeficients 0>nC  and R∈nD  such that 

,1,1 ≥∀+ϑ=ϑ++ϑ nDC nn
d

n…  

where nϑϑ ,,1 …  are i.i.d. copies of .ϑ  In particular such random 

variables are infinitely divisible. It is shown that α= 1nCn  with 

( ]2,0∈α  (see, for instance [2], Section VI.1). The coefficient α  is the 

index of stability. We shall say that ϑ  is an stable-α  (real-valued) 

random variable. The case 2=α  and 0=nD  corresponds to a Gaussian 

random variable. The Lévy-Khintchine representation in the case 

( )2,0∈α  reads as follows: [ ] ( ),uviu ee /ϑ =E  where v/  is the characteristic 

exponent given by 

( ) ( ) ( ) ,11111 020111 dxcc
x

iuxeibuuv xxx
iux

><α+≤
+∞

∞−
+−−+=/ ∫  

with 0,, 21 ≥∈ ccb R  and .021 >+ cc  We say in this case that ϑ  is an 

stable-α  random variable with characteristics ( ).,, 21 ccb  For strictly 

stable-α  random variable, we have 0=b  and the case 21,0 ccb ==  

corresponds to a symmetric stable-α  random variable. 
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In the context of the Central Limit Theorem (CLT), it is well known 
that, for some given sequence of i.i.d. random variables ( ) ,1≥nnV  the 

partial sum properly normalized convergence to an stable-α  random 

variable, ( ],2,0∈α  if the random variable 1V  is in a domain of 

attraction of the stable-α  random variable. We say that the random 

variable 1V  is in the domain of attraction of an stable-α  with tails 

parameters 1c  and 2c  if 

[ ] ( ) [ ] ( ) ,0,and, 2
1

1
1 >

+
=−≤

+
=>

αα
x

x
xhcxV

x
xhcxV PP  (1) 

where h is a function such that ( ) .0lim =∞→ xhx  The case of domain of 

attraction of a symmetric stable-α  random variable corresponds to 

.21 cc =  The reader can refer to [3] for the domain of attraction 

conditions. 

We shall also say that the random variable X is in a strong domain of 
attraction of the stable-α  if in (1), there exists 0>γα  such that  

( ) ( )
αγ

=
x

xh 1O  at +∞  meaning that +∈∃ R0, xK  and ( ) αγ−≤ xKxh  

for all :0xx ≥  

[ ] ( ) [ ] ( ) .0,1,1 2
1

1
1 >=−−≤=−>

αα γ+ααγ+αα
x

xx
cxV

xx
cxV OO PP  

In the sequel we call αγ  the attraction index. 

In this paper, we obtain a rate of convergence to an stable-α  random 

variable, ( ),2,1∈α  for partial sums of i.i.d. random variables ( ) 1≥nnV  

(the generalized CLT) between characteristic functions. 

To this end, we show in Theorem 3.1 a bound of order α
−α r

n  in the 
Zolotarev ideal probability metric rζ  for ] ],2,α∈r  provided the random 

variable 1V  is in a strong domain of attraction of the stable-α  random 
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variable with an attraction index .α−>γα r  We then applied the result 

to derive the rate of convergence between characteristic functions, see 
Theorem 3.2. 

The layout of this short paper is as follows. We start in Section 2, by 
the notion of ideal probability metrics and introduce the Zolotarev ideal 
probability metric of order .0>r  We give in Section 3 a rate of 
convergence to an stable-α  random variable, ( ),2,1∈α  for i.i.d. random 

variables between characteristic functions in Theorem 3.2. 

2. Preliminaries 

Denote by ∑ the space of real random variables. In this section, we 

introduce the notion of ideal probability distance and as an example we 
introduce the Zolotarev distance. 

On a probability space ( )P,, FΩ  consider two real random variables 

X and Y, denote by XP  and YP  their probability laws, respectively. 

Definition 2.1. A map ( )..,d  defined in the space [ ]∞→× ∑∑ ,0  is 

said to be a probability distance in ∑ if for all random variables ,, YX  

and Z the following statements hold: 

(1) 

( ) ( ) ,0,1 =⇒== YXdYXP  

(2) 

( ) ( ),,, XYdYXd =  

(3) 

( ) ( ) ( ).,,, YZdZXdYXd +≤  

If the values of ( )YXd ,  are determined by the marginal distributions 

XP  and ,YP  then one says that the distance d is simple. 
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An example of a simple distance is: 

● the total variation distance defined by 

( ) ( )[ ] ( )[ ] ,sup,
1

YfXfYXd
f

VT EE −=
≤∞

 

where ( ) .sup xff x R∈∞ =  

Now let us define an ideal probability distance. 

Definition 2.2. A simple distance d in ∑ is called an ideal 

probability distance of order ,0≥r  if the following statements hold: 

(4) 

( ) ( ),,, YXdZYZXd ≤++   (2) 

for Z independent of X and Y. (Regularity) 

(5) 

( ) ( )YXdccYcXd r ,, =   (3) 

for any .∗∈ Rc  (Homogeneity of order r) 

We now give as example the Zolotarev distance. 

Definition 2.3. Let 0>r  with the representation ,β+= mr  where 

] ]1,0∈β  and .N∈m  We define the following simple metric: 

( ) ( )[ ] ( )[ ] ,sup, YfXfYX
rf

r EE −=ζ
Λ∈

  (4) 

where rΛ  is the set of bounded functions RR →:f  which are m-times 

continuously differentiable and such that 

( )( ) ( )( ) ,, rmyxyfxf mm =+β−≤− β   (5) 

where ( )mf  is the derivate function of order m. 
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The metric rζ  is called the Zolotarev probability distance and it is an 

ideal probability metric of order r. We refer the reader to Theorem 1.4.2 
in [4] for the proof. Note that by a simple application of the Taylor 
formula with integral remainder, one can show that ( ) ∞<ζ YXr ,  

provided 

[ ] [ ] ,, ∞<rr YX EE   (6) 

and 

[ ] [ ] .0, mYX ≤≤= kkk EE   (7) 

Note also that the condition in (7) is necessarily but the moment 
condition in (6) can be relaxed using domain of attraction conditions. 

Some interesting cases are 1=r  and .2=r  

(a) The Zolotarev metric of order 1 is defined by 

( ) ( )[ ] ( )[ ] ,sup,
1

1 YfXfYX
f

EE −=ζ
Λ∈

 

where 1Λ  is the set of bounded continuous functions RR →:f  such 

that 

( ) ( ) .yxyfxf −≤−  

By the famous Kantorovich-Rubinstein duality, it rewrites as 

( )
( )

[ ],inf,
,

YXYX
YX PP

−= EW  

where the infimum runs over all coupling of the marginal distributions 

XP  and .YP  

(b) The Zolotarev metric of order 2 is defined by 

( ) ( )[ ] ( )[ ] ,sup,
2

2 YfXfYX
f

EE −=ζ
Λ∈

 

where 2Λ  is the set of bounded functions RR →:f  which are 1-times 

continuously differentiable and such that ( ) ( ) .yxyfxf −≤′−′  
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3. Main Results 

Lemma 3.1. 

( ) .1,,,2,max 1111 ≥∈∀−≤− −−−− ryxyyxxyxyx rrrr R  

The proof can be found in [1], Lemma 5. However we give here a 
simplified proof. 

Proof. If we apply the following triangle inequality: 

,baba −≤−  

for 1−= rxxa  and ,1−= rxxb  then, we have 

,11 −− −≤− rrrr yyxxyx  

so that  

.2 1111 −−−− −≤−+− rrrrrr yyxxyxyyxx  (8) 

Now assume that .yx ≥  We have 

111 −−− −=− rrr xyxxxyx  

 1111 −−−− −+−= rrrr xyyyyyxx  

 ( )1111 −−−− −+−≤ rrrr yxyyyxx  

 rrrr yxyyyxx −+−= −−− 111  

 .11 rrrr yxyyxx −+−≤ −−  

This leads to the following fact: 

( ) .,max 1111 rrrrrr yxyyxxyxyx −+−≤− −−−−  (9) 

Bringing together the inequalities (8) and (9), we thus obtain the desired 
inequality. 

 
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Theorem 3.1. Given a sequence of integrable iid random variables 
( ) ,1≥nnV  set 

( [ ]).:~

1

1
kk

k

VE−= ∑
=

α− VnS
n

n  

Assume that 1V  is in the strong domain of attraction of a symmetric 

stable-α  random variable ϑ  with ( )2,1∈α  and an attraction index 

,α−>γα r  where ( ].2,α∈r  Then there exists a constant 0>C  such 

that 

( ) .,~ α
−α

≤ϑζ
r

CnSnr  

One can deduce the rate of convergence between characteristic 
functions. 

Theorem 3.2. Given a sequence of integrable iid random variables 
( ) ,1≥nnV  set 

( [ ]).:~

1

1
kk

k

VE−= ∑
=

α− VnS
n

n  

Assume that 1V  is in the strong domain of attraction of a symmetric 

stable-α  random variable ϑ  with ( )2,1∈α  and an attraction index 

.2 α−>γα  Then there exists a constant ( ) 0>tC  such that 

( ) ( ) .,~ 2~
α
−α

≤−=ϑχ ϑ ntCeeS itSit
nt n EE  

Proof. Set 

( ) [ ] [ ] ,,,~ ~
REE ∈−=ϑχ ϑ teeS itSit

nt n  

and observe that, using the definition of the ideal probability distance 
,2ζ  we have 
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( ) ( ),,~,~
2

2 ϑζ≤ϑχ nnt StS  

since the function ( ) RR ∈∈= xtexf itx
t ,,  is bounded and the 

derivative tf ′  is a Lipschitz-2t  function. 

We thus obtain the result by applying Theorem 3.1 with .2=r     

 

Now let us start the proof of Theorem 3.1. 

Proof of Theorem 3.1. Without loss of generality, we assume that 
the sequence ( ) 1≥nnV  is centered. Consider a sequence ( ) 1≥ϑ nn  of i.i.d. 

copies of .ϑ  We have the following identity: 

.1,1
1 ≥∀

ϑ++ϑ
=ϑ

α
n

n
n…L  

We choose the sequence ( ) 1≥ϑ nn  to be independent of the sequence 

( ) .1≥nnV  Since rζ  is a simple distance, we have 

( ) .,,
1

1

1

1

1

1













ϑζ=ϑζ ∑∑∑

=

α−

=

α−

=

α−
k

k
k

k
k

k

nn

r

n

r nVnVn  

For ,2=n  since rζ  is an ideal probability metric of order r we have: 

( ) ( )( ) ( ) ( )( )12
1

21
1

21
1

21
1 2,22,2 VVVVV rr +ϑ+ζ≤ϑ+ϑ+ζ α−α−α−α−  

( ) ( )( )21
1

12
1 2,2 ϑ+ϑ+ϑζ+ α−α− Vr  

( ( ) ( ))2211 ,,2 ϑζ+ϑζ≤ α
−

VV rr
r

 

( ) ( ),,2,2 1
1

11
1

ϑζ=ϑζ= αα
−−

VV rr
rr

 

where we use in the first inequality the regularity property and in the 
second inequality the homogeneity of order r of the probability metric ;rζ  

the last equality holds since rζ  is a simple distance. 
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Thus, by induction on n, we have 

( ),,,
11

1

1

1
kk

k
k

k
k

k
ϑζ≤













ϑζ ∑∑∑

=

−

=

α−

=

α− α VnnVn r

nnn

r
r

 

so that 

( )11
1

1

1

1

1 ,, ϑζ≤












ϑζ α

−

=

α−

=

α− ∑∑ VnnVn r

nn

r
r

k
k

k
k

 

( )ϑζ= α
−

,1
1

Vn r
r

 

,
1

α
−

=
r

Cn  

provided ( )ϑζ= ,: 1VC r  is finite. 

Now the remainder of the proof is devoted to show that C is finite. 

Consider two real random variables X, Y and define 

( ) ( )[ ] ( )[ ] ,sup, YfXfYX
f

r EE −=
Γ∈

κ  

where Γ  is the set of bounded functions RR →:f  such that 

( ) ( ) .11 −− −≤− rr yyxxyfxf  

By [5], rκ  rewrites as 

( )
( )

( [ ]),inf, 11
,

−− −= rr
PPr YYXXYX

YX
Eκ  

where the infimum runs over all coupling of the marginal distributions 

XP  and .YP  

Let 1V  and ϑ  be the optimal coupling for ( )ϑ,1Vrκ  and ,: RR →f  

bounded and 1-time continuously differentiable such that 

( ) ( ) .1−−≤′−′ ryxyfxf  
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Letting ,1 ϑ−= VZ  we have 

( ) ( ) ( ) ( ).1 ϑ−+ϑ=ϑ− fZffVf  

By the mean value theorem, there exists ] ]1,0∈λ  such that 

( ) ( ) ( ) .ZZffZf λ+ϑ′=ϑ−+ϑ  

Since [ ] [ ] ,01 =ϑ= EE V  we have 

( ) ( )[ ] ( )[ ] ( )[ ],0 ZfZZffZf ′−λ+ϑ′=ϑ−+ϑ EEE  

and 

( )[ ] ( )[ ] [ ( ) ( ) ]ZfZZffZf 0′−λ+ϑ′≤ϑ−+ϑ EEE  

[ ]ZZ r 1−λ+ϑ≤ E  

[ ( ) ].1 1
1

1 ϑ−λ+ϑλ−= − VV rE  

Since 

( ) ( ) ] ],1,0,,max1 ∈λ≤λ+λ− yxyx  

we have 

( )[ ] ( )[ ] [ ( )].,max 11
11

−− ϑϑ−≤ϑ−+ϑ rrVVfZf EEE  

Now taking into account Lemma 3.1, we obtain 

( )[ ] ( )[ ] [ ],2 11
11

−− ϑϑ−≤ϑ−+ϑ rrVVfZf EEE  

and thus 

( ) [ ]11
111 2, −− ϑϑ−≤ϑζ rr

r VVV E  

( ).,2 1 ϑ= Vrκ  

By [4], the following representation hold: 

( ) ( ) ( ) ,, 1
1

1 duuFuFurV V
r

r ϑ
− −=ϑ ∫Rκ  
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and thus 

( ) [ ] [ ] duuuVurV r
r >ϑ−>=ϑ −∞+

∫ PP 1
1

0
1,κ  

[ ] [ ] .1
1

0
duuuVur r −<ϑ−−<+ −∞+

∫ PP  

Now recall that for any stable-α  random variable Θ  with local 

characteristic ( ),,c 21 c  we have the following expansion, cf. [6], when 
:+∞→u  

[ ] ( ) [ ] ( ).1,1
32

12
32

21
αααααα

++=−<Θ++=>Θ
uu

c
u
cu

uu
c

u
cu OO PP  

This means that every stable random variable is in its own strong 
domain of attraction: 

[ ] [ ] [ ] ( ),2
11

α−α− +−>≤>ϑ−> ucuuVuuV OPPP  

and 

[ ] [ ] [ ] ( ),2
11

α−α− +−−<≤−<ϑ−−< ucuuVuuV OPPP  

where c is the local characteristic of the symmetric stable-α  random 

variable ϑ  with ( ).21,∈α  

Therefore, we get 

( ) ,, 1
1

1 α−>γ⇔∞<⇔∞<ϑ α
γ−α−−∞
α∫ rduuV r

rκ  

which corresponds to our assumptions. Since 

( ) ( ),,2, 11 ϑ≤ϑζ VV rr κ  

we then have 

( ) .,~ α
−α

≤ϑζ
r

CnSnr  
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