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Abstract

We consider a family of generalized KdV equations with a small dispersion and

C! -nonlinearity g'(x). We present sufficient conditions for g'(z) under which

a soliton type solution exists and, moreover, pairs of solitary waves collide
preserving in an asymptotic sense the KdV-type scenario of interaction.
Furthermore, we create a finite difference scheme to simulate the solution of the
Cauchy problem and present some numerical results for the interaction

problem.
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1. Introduction

We consider a generalization of the KdV equation of the form:

' 3
%+M+826—u:0, xERl, t>0; (1)
ot ox xS

where g'(u) def dg | ou e C' is a real-valued function (for more detail see

below) and e <<1 1s a small parameter. Such equations describe
nonlinear wave phenomena in plasma physics. In particular, for some
specific plasma states, ion-acoustic or dust-acoustic phenomena can

be described by the KdV-type equation (1) with nonlinearities
g'(u) = aud/? ¢ Bu? or g'(u) = au? + Bu’, a, P = const. ([8, 11, 12]). To

simplify the situation we restrict ourselves by non-negative u. Moreover,

we assume that

qul™ < g'(u) < cou®%2, ¢; = const. >0, §; = const. > 0. 2)

For homogeneous case g'(u) = u”, x > 1, it is easy to find explicit solitary

wave solutions (see below). Moreover, as it is well known nowadays, the

solitons interact elastically in the integrable case (x = 2 and 3). Almost

the same is true for nonintegrable homogeneous case: the solitary waves
interact elastically in the principal term in an asymptotic sense, whereas
the nonintegrability implies the appearance of small radiation-type
corrections [3-6], [9, 10]). At the same time, the existence of travelling
wave solutions and the character of the solitary wave collision remains
unknown for arbitrary nonlinearity. Our aim is to consider these open

problems.

The contents of the paper is the following: in Section 2, we find a
class of nonlinearities which admits soliton type solutions, in Section 3,
we demonstrate the elastic (in the leading asymptotic term) scenario of
two soliton collision, and in the last section, we describe a finite

difference scheme for this equation.
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2. Solitary Wave Solution

Before the search of admissible nonlinearities we should determine

the type of solitary waves which will be under consideration.
Definition 1. A function
u=AoPx -Vit)/e, A) 3)
is called “soliton type solitary wave” if w(n, -) € C*(R') is an even function
such that ®(0,)=1, 0Mn,)<1 for =0, and 62(0/6n2|n:0 < 0.
Moreover, we assume that
oM, ) >0 as n — o (4)
with an exponential rate. Next, we suppose that B = B(A), V = V(A),

o= o(, A) are C' -functions uniformly in the parameter A > 0, and

own, A)JO)A -0 as n—>0 or mn— to (5)

Theorem 1. Let g(u) € C%(u > 0)ﬂC°°(u > 0) satisfy (2) and be such
that
gu) = u?g (w), ©)
where the Holder continuous function g; satisfies the conditions:
g1(0)=0, g(uw)>0 and giw)>0 foru>O0. (7)
Then the Equation (1) has a soliton type solitary wave solution.

Proof. Let us substitute the desired form (3) into the Equation (1)

and integrate it using the condition (4). We obtain

2 2
BV(Z—Z’] _ m2(1 . 2g1TWG(m, A>j, G(o, 4) g(40)/ 21(4).  ®

Next, o can be a smooth even function if and only if 80)/8n|n:0 = 0.

This and the normalization condition (0, -) = 1 imply the equality
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V =2g,(4). 9

In order to simplify the equation, we define the free parameter p,

B2 =V, (10)

and obtain the final version of the equation for o
‘é—z’ = +oy1 - G(o, A), (11)

where the sign should be —for n > 0 and + for n < 0.

To complete the proof it is enough to analyze the implicit

representation of ® which corresponds to (11). O
Example. The function

n

g1(2) = ch,zq’f, 8, <q1 <qg <--<q, <4, ¢ >0, (12)
k=1

satisfies the conditions (7). If n =1, then the solution of (11) does not

depend on A and has the form:

o(n) = { cosh(gn / 2)}_2/q1, V =2, AN, (13)
3. Two-soliton Asymptotic Solution

3.1. Main definitions

Obviously, there is not any hope to find both the exact multi-soliton
solution to (1) and an asymptotics in the classical sense. So, we will
construct a weak asymptotic solution. The weak asymptotics method (see,
e.g., [1-7], [9, 10] and references therein) takes into account the fact that
soliton-type solutions which are smooth for ¢ > 0 become non-smooth in

the limit as ¢ — 0. Thus, it is possible to treat such solutions as a mapping

c*(0, T; C*(RL)) for &=const. >0 and only as C(0, T; D'(RL))
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uniformly in & > 0. Accordingly, the remainder should be small in the
weak sense. The main advantage of the method is such that we can
ignore the real shape of the colliding waves but look for (and find)
exceptionally their main characteristics. For the solitons, they are the

amplitudes and trajectories of the waves.

Similarly the famous Whitham method we define a weak asymptotic
solution as a function which satisfies (in a weak sense) some conservation
laws, in fact two laws for the two-phase asymptotics. For the Equation (1),
let us write the first conservation laws in the differential form:

oQ; OoP;
— +

a t a 3 > .] ’ ’ ( )

where the first one is the Equation (1) the same, namely,
@ =u P=gW), &=u’ P=-25w-3u) 15

Ry =u, Ry=u? g5(u)=g)-ug). (16)
Next, we define the smallness in the weak sense:

Definition 2. A function v(t, x, €) is said to be of the value Op(g")

if the relation
I u(t, x, &)y (x)dx = O(c")

holds uniformly in ¢ for any test function y e D(R}C ). The right-hand side

here is a C®-function for € = const. > 0 and a piecewise continuous

function uniformly in & > 0.

As it has been demonstrated in [3, 9], the correct definition of two-

soliton asymptotics is the following:
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Definition 3. A sequence uf(t, x, €), belonging to C*(0, T; C*(RL))

for & = const. > 0 and belonging to C(0, T; D'(RL)) uniformly in e, is

called a weak asymptotic mod ODr(sz) solution of (1) if the relations (14)

hold uniformly in ¢ with the accuracy Opy(g?).

Let us consider the interaction of two solitary waves for the model (1)

with the initial data
LA, 7
€

2 x
ult:() = ZAL'(D B;
i=1
where Ay > A; > 0, x{) —xg = const. >0 and we assume the same

relations between A;,B; and V; as in (9), (10). Obviously, the

trajectories x = V¢ + x?

have a joint point x = x* at a time instant
t=1t.

Following [3, 9], we write the asymptotic ansatz in the form:
u = ZG (T)w( ‘Pl(t oot me) Ai), Gi(t) = A; +Si(1).  (18)

Here ¢; = ¢;o(¢) + €9;; (1), where ¢;9 = Vit + x?, are the trajectories of

noninteracting solitary waves;
T=vo(t) /e ¥o(t) = B1(p20(t) — @10()),

denotes the “fast time”; the phase and amplitude corrections ¢;;, S; are

smooth functions such that
90;1(t) > 0as T > —o, ¢;(T) > ¢ = const; as T - +o, (19)
S;(t) > 0 as T — oo, (20)

with exponential rates.
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3.2. Asymptotic construction

To construct the asymptotics, we should calculate the weak
expansions of the terms from the left-hand sides of the relations (14). It is
easy to check that

2
u=e) a5 80— 0r) + Op (&), @)

where §(x) is the Dirac delta-function. Here and in what follows we use

the notation
def [ ' L odef [,
a7 o A k>0 a7 @0 4P @2)
At the same time for any F(u) e C

o 2 N
J‘wF{;Gim(Bi g(p ’Ai)]lﬂ(x)dx

2
=1

=&

1

B J _Z F(A;o(m, A))v(e; + sBli )dn + % J _Z (F(Gyw(nys, 4Ay)

+ Gao(n, Ag)) - F(Aj0(ny2, A1) - F(Age(n, Ag))}v(es + 8% )dn,

(23)
where
Mg =M-0, o=PB1(¢1 —02))/e, 6 =p; /B (24)

We take into account that the second integrand in the right-hand side of
(23) vanishes exponentially fast as |@; — @g| grows, thus, its main

contribution is at the point x*. We write
;0o =x +Vi(t-t")=x te T and @; = x" +egy;, (25)
0

where ¥y = B1(Vo = V1), x; = Vit /¥y + ¢;;. It remains to apply the

formula
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FE)(x = 9;) = F(T)3(x = x") = exi (1) (x — &™) + Opy (%), (26)

which holds for each ¢; of the form (25) with slowly increasing y; and for
f(7) from the Schwartz space. Moreover, the second term in the right-
hand side of (26) is Op/(g). Thus, under the assumptions (19) and (20),

we obtain the weak asymptotic expansion of F(u) in the final form:

Fu)=c¢

_(Pz)+5Fl(3:: )i)% po(x — x*)+ODr(£2), 27

where

- P Faoln, 4)dn 29

. 2 2
Rp = F(Az)lj._w{F [ZGiw(mz, Ai)} - ZF(Aiw(mz, Ai))}dm (29)
i=1 i=1

and 199 def n. Next calculating weak expansions for other terms from
(14) we pass to linear combinations of 8'(x —¢;), i = 1, 2, §(x — x*), and

8'(x —x™) (see also [3, 4, 9]). Therefore, we obtain:
al,iViKi((l)) —ag,;8'(A;)/B; =0, i=12, (30)

as VK + 2a,, 182(A;) ] Bi + 3ay pEKY =0, i=1,2 (31)

2 2

1 2 ~ GG 0 .
> a K =0, > ay K + 28, é—223§ )-0, i=12 (32
=1 =1

2
Yo dizal L{K(l ¢ + XLK(l)} fs

-
=1

2 ~
1
ZGQ l( i0 oy + XLK(2))+ 23—;GlG2(X2R§O) + ERS))} =F,

i=1

S
3l

(33)
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where
' 'A =~ ! r
f= %22)9%', ag = 4/ag 103 9, (34)
2
A , ~
F-- 2%22)%2 - 3{2@,&%}{52) + 2aQBlGlG2R§?)}, (35)
i1
G Al
T T
13 l
Rg) = %J._ n'o(ng, Ay)o(n, Ag)dn, dy = \Jag 10z 9, (37)

and Rg)% is of the form (37) for Réo) but with @), ' instead of dy, ®.

3.3. Analysis of the model equations (30)-(33)

Analyzing the Equation (11) it is easy to verify the statement (see
also [9]):

Lemma 1. The algebraic equations (30), (31) imply again the relations
(9), (10) between A;, B;, and V.

To analyze the system (32), we assume:
A >1, i=12 06<<1. (38)
Moreover, let the function g7 be of the form (12). Then (9), (10) imply:
A = epflirolagra)) g =2/q,, ¢ = (20, M, i =1, 2. (39)
Let us define the following notation:

ki = %(c'sg"l)_l, i=12 (40)
12
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Definition 4. A function f(r, 0) is said to be of the value Og(6") if
there exists a function s(t) from the Schwartz space such that the

estimate
|F(r, 0)] < c0"|s(r)| (41)
holds uniformly in T for a constant ¢ > 0.

We also note that, under the conditions (19), the convolution

Réo) — 0 as T — too with an exponential rate.

Assumptions (38) and (12) allow us to prove the statement:

Lemma 2. Let the assumptions (12) and (38) be satisfied. Then the
algebraic equations (32) have a unique solution Sy, Sg with the property
(20). Moreover,

K1 = %Gq,RéO) + OS(GQ + 92q,), K9 = — alﬁl, C_li = ai,l/ai’z. (42)
1

Now let us simplify the Equations (33). Firstly we note that in view of
the first part of Equation (32) and the identity B;(%; — x2) = o one can
eliminate y; from the left-hand side of the first part of Equation (33),

since
2 2
(o)
Zal,i{Kl%)(pil + XiKi(ll)} = Zal,iKi((l))(Pil +ay EKl(ll)
i1 i1

Simplifying in the same manner the second part of Equation (33), we
transform this system to the following form:

2
o d
Po - {Zal,iKi%)(Pil +a ﬁ Kfll)} =1 (43)

i=1

2
. d ~
Yo gr {Z ag, Koy +ag,1 % K + 23,0k Kg)RS)} =F, (49

1=1

where f and F are defined in (34) and (35).
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The second step is the elimination of ¢;; from the model system. To
do it we divide o into the growing B;(V; - Vu)r/ vy = -1 and the
bounded (if the assumptions (19) are satisfied) 6 = ¢ + 7 parts. Since

011 = 921 + S/ By, (45)

we obtain from (43)

. d { c (1)} f %o 0
o = 1P + — K =+ - 2 K3/ (46)
0 dT 1¥21 Bl 1 al,l Bl 10
Here and in what follows we use the notation
2 ..
B= K, e w
i=1 b

Now, transforming (44) in the same manner and applying the first part of

assumption (19) we pass to the problem:

LQo)=50), I -1 (48)

where

Q- z{K@ - :—iK{U} : %Kpmgmgx

1 @) T (1)} 1 1 r
__LIg@ _ ol 1] g :
§ B1 { 0y 10 " Yo |a2,1 a1, 11 f

Sufficiently simple analysis of the Equation (48) implies the statement:

Lemma 3. Under the assumptions (12), (38), Q(c) CQ(RI) and

3(c) € CY(RY). Moreover, the following relations hold:

aQ _ —M{‘i—‘z-eq' +0g(0 + eq')}, 3= ﬂ{‘i—z-eq' +OS(9+9‘1’)}.
do p2 @ pZ o
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The uniform in T inequality § > 0 and the exponential type behaviour
of § and @ imply the existence of the function ¢ such that 6 = ¢ + 7 1s

bounded and tends to its limiting values with an exponential rate. This
and the equalities (45), (46) justify the existence of the required phase
corrections ¢;; with the property (19). O

The main result of this section is the following:

Theorem 2. Let the assumptions (12), (38) be satisfied. Then the

solitary wave collision in the problem (1), (17) preserves the elastic
scenario with accuracy OD'(SZ) in the sense of Definition 2. The weak

asymptotic solution has the form (18).

The next theorem allows us to treat the weak asymptotics (30) in the

classical sense:

Theorem 3. Let the assumptions (12), (38) be satisfied. Then the
function u of the form (18) is a weak asymptotic mod ODr(g2) solution of

(1) if and only if u satisfies the following conservation and balance laws:

a1 e =0 @[ u2de -0, L
EJ‘_wudx—O,dtJ‘ u“dx = 0,

B 7 I xudx — I <>Og (w)dx =0, (49)

—0o0 —

d 9] 9 9] %) ou 2 ~
ar) dx + 2I_wg2(u)dx + 3.[_00(8 8xj dx = 0. (50)
To prove the Theorem 3, it is enough to rewrite the equalities

(30)-(33) as integrals of the function (18) and its derivatives.

Results of direct numerical simulations confirm the traced asymptotic
analysis. Figure 1 depicts the collision of two solitons for the nonlinearity

g' = ©?% 1 42 in the case & = 0.1 (see also [10] for the nonlinearity

us/z)‘
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Figure 1. Evolution of two solitary waves with A; =1.5 and Ay = 0.5

3/2 2

for the nonlinearity g’ = u°/“ + u”.

4. Finite Difference Scheme

Obviously, it is impossible to create any finite difference scheme for
the problem (1), (17) which remains stable uniformly in ¢ - 0 and

t € (0, T], T = const. So we will treat ¢ as a small but fixed constant.

Concerning the original KdV-type equation (1), we simulate firstly
the Cauchy problem by a mixed problem over a Qp = {x € (0, L),

t € (0, T], L = const.} with zero boundary value. Next, we define a mesh

Qr .n = (%, tj)dgf(ih, jt),i=0,..., N, j=0,...,J}. Tosimulate the
interaction phenomena, we assume that L, T, and the initial front

positions x? of solitons are such that the solitary wave trajectories have

an intersection point which belongs to (0, L)x (0, T /2). Furthermore,

we assume that, uniformly in ¢t < T,
|ue(ex, t)|x€[0,5]| < cmax{e?, A%}, |ulx, t)lxe[L—S,L]l < emax{e?, K%}, (51)

for some ¢ > 0 and sufficiently small & > 0.
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To create a finite difference scheme for the Equation (1), we should
choose appropriate approximations for the differential terms and for the
nonlinear term. Let us do it separately. We write firstly a preliminary

nonlinear “scheme” of the local accuracy O(t + h?):

2 2
vi + Q(y) + € yyyzs + € VAV = 0, (52)
f ; def .
where ydg yij de u(x;, tj), v =1-hv, v > 0 is a constant,
. . . . . -
jodef iy — ¥ def jodef ¥ =yl def  jodet ) ¥ der
ix T~ T T Y0 Vx T T T Y Y T T -

def
and y; = (v, + y5)/2
For the nonlinearity of the form (6), (12), we define
n
Q) = D erlar + DR, Q) = (1), + y% s (53)
k=1

This choice of @ guarantees the equality
N-1 ) )
Ry vl =o,
=1
for all set functions y with zero boundary value. This implies the identity
112 112 i 2
Ozl I + i I + vh? ez P = 0, (54)
where || is the discrete version of the L?(0, L) norm. Obviously, the

equality (54) is the discrete version of the conservation law

d 0

P _wu2dx =0.

The additional terms in (54) demonstrate the property of a parabolic-type
regularization of the scheme (52). On the other hand, (54) implies a weak

convergence of yij as 7, h > 0 to the solution of the corresponded mixed

problem for (1).
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Theorem 4. Let the systems (52), (53) supplemented by initial and

boundary conditions have a solution y =y, and let y. j(x,t) be its
continuation over Qp. Then there exists a subsequence y- 7 (x,t) such

that
v-7 > u  wweakly in L”((0, T); I2(0, L))ﬂLZ((O, T); H)(0, L))
(55)
as T, h —» 0.

Furthermore, we note that for polynomial g', that is for integer ¢,

w

gw) =Y ek +2)ut, (56)

k=1

it should be used a more effective formula [5]:

3 k+1
Q) =2) () &) =D Y, (57)
k=1 =1

Such approximation implies that the solution of (52) satisfies both (54)

and the mean value conservation law:
N .
0rY ¥ =0, j=12... (58)
=0

Moreover, for the KdV case, g' = u2, and sufficiently smooth initial data

it can be proved the following a-priori estimate:
(602 Y 57 I + 7l (602 )" 3 | I () + P20 |00, ) e | 1P () < oy (59)
where k > 1, ||| (j) is the discrete version of the LQ(Qtj) norm, and

Cy = Ci([5°] .., (0 Y 5°||, &) does not depend on T and k. Obviously,

the estimate (59) implies the convergence of a subsequence of y.
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Theorem 5. Let the assumptions of Theorem 4 be satisfied and

’

g' = u?. Then there exists a subsequence y- E(x, t) such that

Y- > u  x-weakly in L°O((O, T); Hg(O, L)),

T,

Wk ou : o !
8Tt N o w-weakly in L ((0, T); Hy(0, L)) (60)

as T, h = 0.

To solve the Equation (52) for any fixed j > 1 we apply an iterative
procedure. Namely, we construct a sequence of functions o(s) dgf{(po(s),

.., on(s)}, s = 0, where ¢(0) = y def »/71 and the consequent terms ¢(s)
we define depending on the nonlinearity. If g; < 1, then to find o(s) we
solve the linear system:

¢+ TR(3, 0) + 69z + T VAOz, = I, (61)
where ¢ = ¢(s), ¢ = o(s - 1),
n
R@ ¢) = Y cp(gr + DR(®, 0),  Bi(3, 0) = (§%0)i + 5% ;. (62)
k=1
If ¢; > 1, then ¢(s) should satisfy the following system:
n
- 9 9 . —
¢+ Tzck(Qk + DR (9, w) + TeY0uzi + € VRO = F — TQ(9), (63)
k=1
where w = ¢ — 9, Q(y) has been defined in (53), and
B3, w) = (g + D6%w), +9%w; + q:5% g, (64)

Finally, for polynomial nonlinearity of the form (56), we consider again

the equations similar to (63) but with others @ and Rj,:
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n

¢+ ZTchRk (o, w) + "rg2yq)x‘fx + Ts2vhtpx§x =5 - 109), (65)
k=1

where Q(y) has been defined in (57), and

Ry (@, w) = kiza’”” 6 w); + i(k +1- 051 () w. (66)
I=1 =1

The solvability of the described above algebraic systems is obvious for

sufficiently small /%3, Next let us note that to estimate [¢| we should

have uniform in j estimates for |yj,|. For this reason we consider the

KdV case and use the estimate (44). A detailed analysis ([5]) concludes

that the ¢-sequence converges very rapidly,

28
“llo(s + 1)~ 0)l, ) < (\/ET] . os21, 67)

def

where ||f||(2r’£) ||f||2 +(e0y )rf||2. This implies the statement:

Theorem 6. Let the assumption the Theorem 5 be satisfied. Then the
sequence ¢(s) converges in the Hg sense to the solution of the Equations

(562), (7). Moreover,
ly = o(2)] < e® /e, (68)

where ¢ > 0 does not depend on h, T, and «.

The convergence ¢(s) — yj as s — o for the scheme (61), (62) has

been proved numerically. Moreover, it turns out that ¢(2) approximates
the solution yj of (52) sufficiently well. This implies that we set

y/ = ¢(2) in the general case also.
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To solve the systems of linear equations of the form (61), (63) and (65),
we use the Gauss method adapted to systems with five non-zero
diagonals. This implies the efficiency of the schemes in the sense that it

executes O(N) arithmetic operations to pass to the next time-level.

To define the function ® = w(n, A) and subsequently the initial data

(17), we consider the problem

d
Gr = oV g@a)/ g ), n>h

- h* gi(A) rt gi(4) f A,
oh, A)=1- A"~ gi(A) + A* T gil‘Z(A) {gl(A) + Zgl(A)}’

and apply the Runge-Kutta method of the fourth order. Next we define
(0, A) =1 and o(-n, A) = o(n, A).

Some results of the numerical simulations are presented in the

Figures 1 and 2. The computations have been realized for & = 0.1,

r=h% and h =1.7-107%.

Figure 2. Evolution of the soliton triplet for g' = u™.
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This numerical scheme 1is the natural generalization of the

algorithms suggested in [5, 6] and [10] for the GKdV equations with

homogeneous nonlinearities g'(u) = u" and g'(u) = u”, respectively. The

reader can find there all detail of the scheme analysis.
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