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Abstract 

We consider a family of generalized KdV equations with a small dispersion and 
1C -nonlinearity ( ).ug ′  We present sufficient conditions for ( )ug ′  under which 

a soliton type solution exists and, moreover, pairs of solitary waves collide 
preserving in an asymptotic sense the KdV-type scenario of interaction. 
Furthermore, we create a finite difference scheme to simulate the solution of the 
Cauchy problem and present some numerical results for the interaction 
problem. 
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1. Introduction 

We consider a generalization of the KdV equation of the form: 

( ) ,0,,0 1
3

3
2 >∈=
∂

∂ε+
∂
′∂+

∂
∂ tx

x
u

x
ug

t
u R  (1) 

where ( ) 1def Cugug ∈∂∂=′  is a real-valued function (for more detail see 

below) and 1<<ε  is a small parameter. Such equations describe 
nonlinear wave phenomena in plasma physics. In particular, for some 
specific plasma states, ion-acoustic or dust-acoustic phenomena can        
be described by the KdV-type equation (1) with nonlinearities  

( ) 223 uuug β+α=′  or ( ) const.,,32 =βαβ+α=′ uuug  ([8, 11, 12]). To 

simplify the situation we restrict ourselves by non-negative u. Moreover, 
we assume that 

( ) .0const.,0const.,21 5
2

1
1 >=δ>=≤′≤ δ−δ+

iicucuguc   (2) 

For homogeneous case ( ) ,1, >=′ κκuug  it is easy to find explicit solitary 

wave solutions (see below). Moreover, as it is well known nowadays, the 
solitons interact elastically in the integrable case ( ).3and2=κ  Almost 

the same is true for nonintegrable homogeneous case: the solitary waves 
interact elastically in the principal term in an asymptotic sense, whereas 
the nonintegrability implies the appearance of small radiation-type 
corrections [3-6], [9, 10]). At the same time, the existence of travelling 
wave solutions and the character of the solitary wave collision remains 
unknown for arbitrary nonlinearity. Our aim is to consider these open 
problems. 

The contents of the paper is the following: in Section 2, we find a 
class of nonlinearities which admits soliton type solutions, in Section 3, 
we demonstrate the elastic (in the leading asymptotic term) scenario of 
two soliton collision, and in the last section, we describe a finite 
difference scheme for this equation. 
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2. Solitary Wave Solution 

Before the search of admissible nonlinearities we should determine 
the type of solitary waves which will be under consideration. 

Definition 1. A function 

( )( )AVtxAu ,ε−βω=  (3) 

is called “soliton type solitary wave” if ( ) ( )1, RC∞∈⋅ηω  is an even function 

such that ( ) ( ) 1,,1,0 <⋅ηω=⋅ω  for ,0≠η  and .00
22 <η∂ω∂ =η   

Moreover, we assume that 

( ) ±∞→η→⋅ηω as0,   (4) 

with an exponential rate. Next, we suppose that ( ) ( ),, AVVA =β=β  

( )A,⋅ω=ω  are 1C -functions uniformly in the parameter ,0>A  and 

( ) .or0as0, ±∞→η→η→∂ηω∂ AA   (5) 

Theorem 1. Let ( ) ( ) ( )002 >≥∈ ∞ uuug CC ∩  satisfy (2) and be such 

that 

( ) ( ),1
2 uguug =   (6) 

where the Hölder continuous function 1g  satisfies the conditions: 

( ) ( ) ( ) .000,00 111 >>′>= uforugandugg   (7) 

Then the Equation (1) has a soliton type solitary wave solution. 

Proof. Let us substitute the desired form (3) into the Equation (1) 
and integrate it using the condition (4). We obtain 

( ) ( ) ( ) ( ) ( ).,,,21 11
def12

22
AgAgAGAGV

Ag
d
d

V ω=ω





 ω−ω=








η
ωβ  (8) 

Next, ω  can be a smooth even function if and only if .00 =η∂ω∂ =η  

This and the normalization condition ( ) 1,0 =⋅ω  imply the equality 
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( ).2 1 AgV =   (9) 

In order to simplify the equation, we define the free parameter ,β  

,2 V=β   (10) 

and obtain the final version of the equation for ω  

( ),,1 AGd
d ω−ω±=
η
ω  (11) 

where the sign should be − for 0>η  and + for .0<η  

To complete the proof it is enough to analyze the implicit 
representation of ω  which corresponds to (11).  

Example. The function 

( ) ,0,4, 211
1

1 ><<<<≤δ= ∑
=

kk
k

k cqqqzczg n
q

n
 (12) 

satisfies the conditions (7). If ,1=n  then the solution of (11) does not 

depend on A and has the form: 

( ) { ( )} .2,2cosh 11 1
2

1
qq AcVq =η=ηω −  (13) 

3. Two-soliton Asymptotic Solution 

3.1. Main definitions 

Obviously, there is not any hope to find both the exact multi-soliton 
solution to (1) and an asymptotics in the classical sense. So, we will 
construct a weak asymptotic solution. The weak asymptotics method (see, 
e.g., [1-7], [9, 10] and references therein) takes into account the fact that 
soliton-type solutions which are smooth for 0>ε  become non-smooth in 
the limit as .0→ε  Thus, it is possible to treat such solutions as a mapping 

( ( ))1;,0 xT R∞∞ CC  for 0const. >=ε  and only as ( ( ))1;,0 xT RDC ′  
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uniformly in .0≥ε  Accordingly, the remainder should be small in the 
weak sense. The main advantage of the method is such that we can 
ignore the real shape of the colliding waves but look for (and find) 
exceptionally their main characteristics. For the solitons, they are the 
amplitudes and trajectories of the waves. 

Similarly the famous Whitham method we define a weak asymptotic 
solution as a function which satisfies (in a weak sense) some conservation 
laws, in fact two laws for the two-phase asymptotics. For the Equation (1), 
let us write the first conservation laws in the differential form: 

,2,1,3

3
2 =

∂

∂
ε=

∂
∂

+
∂
∂

j
x

R
x
P

t
Q jjj   (14) 

where the first one is the Equation (1) the same, namely, 

( ) ( ) ( ) ,32,,, 2
22

2
211 xuugPuQugPuQ ε−−==′==   (15) 

( ) ( ) ( ).,, 2
2

21 uguuguguRuR ′−===   (16) 

Next, we define the smallness in the weak sense: 

Definition 2. A function ( )ε,, xtv  is said to be of the value ( )kε′DO  

if the relation 

( ) ( ) ( )kε=/ε∫
∞

∞−
Odxxvxtv ,,  

holds uniformly in t for any test function ( ).1
xv RD∈/  The right-hand side 

here is a ∞C -function for 0const. >=ε  and a piecewise continuous 
function uniformly in .0≥ε  

As it has been demonstrated in [3, 9], the correct definition of two-
soliton asymptotics is the following: 
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Definition 3. A sequence ( ),,, εxtu  belonging to ( ( ))1;,0 xT R∞∞ CC  

for 0const. >=ε  and belonging to ( ( ))1;,0 xT RDC ′  uniformly in ,ε  is 

called a weak asymptotic mod ( )2ε′DO  solution of (1) if the relations (14) 

hold uniformly in t with the accuracy ( ).2ε′DO  

Let us consider the interaction of two solitary waves for the model (1) 
with the initial data 

,,
02

1
0 














ε
−

βω= ∑
=

= i
i

ii
i

t A
xx

Au  (17) 

where 0const.,0 0
2

0
112 >=−>> xxAA  and we assume the same 

relations between iiA β,  and iV  as in (9), (10). Obviously, the 

trajectories 0
ii xtVx +=  have a joint point ∗= xx  at a time instant 

.∗= tt  

Following [3, 9], we write the asymptotic ansatz in the form: 

( ) ( ) ( ) ( ).,,,,2

1
ττττ iiii

i
ii

i
SAGAtxGu +=








ε
εϕ−

βω= ∑
=

 (18) 

Here ( ) ( ),10 τiii t εϕ+ϕ=ϕ  where ,0
0 iii xtV +=ϕ  are the trajectories of 

noninteracting solitary waves; 

( ) ( ) ( ( ) ( )),, 1020100 tttvtv ϕ−ϕβ=/ε/=τ  

denotes the “fast time”; the phase and amplitude corrections ii S,1ϕ  are 

smooth functions such that 

( ) ( ) ,asconst,as0 111 +∞→=ϕ→ϕ∞→→ϕ ∞ ττ−ττ iiii   (19) 

( ) ,as0 ±∞→→ ττiS   (20) 

with exponential rates. 
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3.2. Asymptotic construction 

To construct the asymptotics, we should calculate the weak 
expansions of the terms from the left-hand sides of the relations (14). It is 
easy to check that 

( ) ( ),3
,1

2

1
ε+ϕ−δ

β
ε= ′

=
∑ DOxGau i

i
i

i
i

 (21) 

where ( )xδ  is the Dirac delta-function. Here and in what follows we use 
the notation 

( )( ) ( )( ) .,,0,, 2def
,2

def
, ηηω′=′>ηηω= ∫∫

∞

∞−

∞

∞−
dAadAa iiii kk

k  (22) 

At the same time for any ( ) 1CuF ∈  

( )dxxvAxGF i
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/
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=

∞

∞−
,

2

1
 

( )( ) ( ) ( )({ 1121
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1
,,1 AwGFdvAAF

i
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ii
η
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ε+η

β
ηε+ϕ/ηω

β
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∞−

∞

∞−=

 

( )) ( )( ) ( )( )} ( ) ,,,,
2

222112122 η
β
ηε+ϕ/ηω−ηω−ηω+ dvAAFAAFAG  

(23) 

where 

( )) .,, 2121112 ββ=θεϕ−ϕβ=σσ−θη=η   (24) 

We take into account that the second integrand in the right-hand side of 
(23) vanishes exponentially fast as 21 ϕ−ϕ  grows, thus, its main 

contribution is at the point .∗x  We write 

( ) ,and
0

0 ii
i

ii xv
VxttVx εχ+=ϕ
/

ε+=−+=ϕ ∗∗∗∗ τ   (25) 

where ( ) ., 101210 iii vVVVv ϕ+/=χ−β=/ τ  It remains to apply the 
formula 
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( ) ( ) ( ) ( ) ( ) ( ) ( ),2ε+−δ′εχ−−δ=ϕ−δ ′
∗∗

DOxxfxxfxf ii τττ   (26) 

which holds for each iϕ  of the form (25) with slowly increasing iχ  and for 
( )τf  from the Schwartz space. Moreover, the second term in the right-

hand side of (26) is ( ).ε′DO  Thus, under the assumptions (19) and (20), 
we obtain the weak asymptotic expansion of ( )uF  in the final form: 

( ) ( ) ( ) ( ) ( ) ( ),2
2

2,
2

1
ε+−δ

β
ε+ϕ−δ

β
ε= ′

∗

=
∑ DOxxAFx

a
AFuF Fi

i

iF
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R  (27) 

where 

( ) ( )( ) ,,1
, ηηω= ∫
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− dAAFAFa iiiiF  (28) 
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− dAAFAGFAF iii
i

iii
i

FR  (29) 

and .def
22 η=η  Next calculating weak expansions for other terms from 

(14) we pass to linear combinations of ( ) ( ),,2,1, ∗−δ=ϕ−δ′ xxix i  and 

( )∗−δ′ xx  (see also [3, 4, 9]). Therefore, we obtain: 

( ) ( ) ,2,1,0,
1
0,1 ==β′− ′ iAgaKVa iiigiii  (30) 

( ) ( ) ( ) ,2,1,032 2
0

2
,22,

2
0,2 2 ==β′+β+ iKaAgaKVa iiiiiigiii   (31) 
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2
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1
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where 

( ) ,~, 2,21,22
2

2 aaaAgf g ′′=′
β
′

= ′R  (34) 

( ) ( ) ( ) ,~232 0
1,22112

2
1

2
,2

2
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β′+β′−
β

−= ∑
=

RGGaKaAgF iii
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( ) ( ) ( ) ( ) ( ),,, 010
n

i
n

i
n
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n
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ii

n
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i KKK
A

K
G

K −=
β

=
β

=  (36) 

( ) ( ) ( ) ,~,,,~
1

2,21,222112
2

2 aaadAAaR ii =ηηωηωη= ∫
∞

∞−
 (37) 

and ( )0
1,2R  is of the form (37) for ( )0

2R  but with ω′′ ,~
2a  instead of .,~

2 ωa  

3.3. Analysis of the model equations (30)-(33) 

Analyzing the Equation (11) it is easy to verify the statement (see 
also [9]): 

Lemma 1. The algebraic equations (30), (31) imply again the relations 
(9), (10) between ,, iiA β  and .iV  

To analyze the system (32), we assume: 

.1,2,1,1 <<θ=>> iAi   (38) 

Moreover, let the function 1g  be of the form (12). Then (9), (10) imply: 

( )( ) ( ) .2,1,2,2,1 11 ==′=′+β′= −−′ − iccqqAOcA nnn q
nn

qq
i

q
ii  (39) 

Let us define the following notation: 

( ) .2,1,
11

2 =β′
β

=
−−′ icS q

i
i

iκ  (40) 
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Definition 4. A function ( )θ,τf  is said to be of the value ( )kθSO  if 

there exists a function ( )τs  from the Schwartz space such that the 
estimate 

( ) ( )ττ scf kθ≤θ,   (41) 

holds uniformly in τ  for a constant .0>c  

We also note that, under the conditions (19), the convolution 
( ) 00
2 →R  as ±∞→τ  with an exponential rate. 

Assumptions (38) and (12) allow us to prove the statement: 

Lemma 2. Let the assumptions (12) and (38) be satisfied. Then the 
algebraic equations (32) have a unique solution 21, SS  with the property 

(20). Moreover, 

( ) ( ) .,, 2,1,112
220

2
1
2

1 iii
q

S
q aaaaORa

a
=−=θ+θ+θ= ′′ κκκ  (42) 

Now let us simplify the Equations (33). Firstly we note that in view of 
the first part of Equation (32) and the identity ( ) σ=χ−χβ 211  one can 

eliminate iχ  from the left-hand side of the first part of Equation (33), 
since 

( ) ( ){ } ( ) ( ).1
11

1
1,11

1
0,1

2

1

1
11

1
0,1

2

1
KaKaKKa iii

i
iiiii

i
β
σ+ϕ=χ+ϕ ∑∑

==

 

Simplifying in the same manner the second part of Equation (33), we 
transform this system to the following form: 

( ) ( ) ,1
11

1
1,11

1
0,1

2

1
0 fKaKad

dv iii
i

=












β
σ+ϕ/ ∑

=
τ

 (43) 

( ) ( ) ( ) ( ) ( ) ,~2 1
2

1
2

1
12

2
11

1
1,21

2
0,2

2

1
0 FRKKaKaKad

dv iii
i
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θ+
β
σ+ϕ/ ∑

=
τ

 (44) 

where f and F are defined in (34) and (35). 
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The second step is the elimination of 1iϕ  from the model system. To 

do it we divide σ  into the growing ( ) ττ −=/−β 0211 vVV  and the 

bounded (if the assumptions (19) are satisfied) τ+σ=σ~  parts. Since 

,~
12111 βσ+ϕ=ϕ   (45) 

we obtain from (43) 

( ) ( ).1
10

1
0

1,1
1

1
1

2110 Kv
a

fKrd
dv

β
/−=









β
σ+ϕ/ τ

 (46) 

Here and in what follows we use the notation 

( ) .2,1for,01,

,
2

1
== ∑

=

jKa
a

r j
ij

ij

i
j  (47) 

Now, transforming (44) in the same manner and applying the first part of 
assumption (19) we pass to the problem: 

( ) ( ) ,1, −→σσ=σ
−∞→τττ

FQd
d  (48) 

where 

( ) ( ) ( ) ( ) ( ),2 1
2

1
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1
1
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1
1

1
22
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RKK
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β
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2
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1
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1
22
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−
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 −

β
−= fra

rFavKr
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Sufficiently simple analysis of the Equation (48) implies the statement: 

Lemma 3. Under the assumptions (12), (38), ( ) ( )12 RCQ ∈σ  and 

( ) ( ).11 RC∈σF  Moreover, the following relations hold: 

( ) ( ) .,
1
2

2
1

21
1
2

2
1

21






 θ+θ+θ−

β
=







 θ+θ+θ−

β
−=

σ
′′′′ q

S
qq

S
q Oa

aAAOa
aAA

d
dQ

F  
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The uniform in τ  inequality 0>F  and the exponential type behaviour 

of F  and Q imply the existence of the function σ  such that τ+σ=σ~  is 

bounded and tends to its limiting values with an exponential rate. This 
and the equalities (45), (46) justify the existence of the required phase 
corrections 1iϕ  with the property (19).  

The main result of this section is the following: 

Theorem 2. Let the assumptions (12), (38) be satisfied. Then the 
solitary wave collision in the problem (1), (17) preserves the elastic 

scenario with accuracy ( )2ε′DO  in the sense of Definition 2. The weak 

asymptotic solution has the form (18). 

The next theorem allows us to treat the weak asymptotics (30) in the 
classical sense: 

Theorem 3. Let the assumptions (12), (38) be satisfied. Then the 

function u of the form (18) is a weak asymptotic mod ( )2ε′DO  solution of 

(1) if and only if u satisfies the following conservation and balance laws: 

( ) ,0,0,0 2 =′−== ∫∫∫∫
∞

∞−

∞

∞−

∞

∞−

∞

∞−
dxugxudxdt

ddxudt
dudxdt

d  (49) 

( ) .032
2

2
2 =







∂
∂ε++ ∫∫∫

∞

∞−

∞

∞−

∞

∞−
dxx

udxugdxxudt
d  (50) 

To prove the Theorem 3, it is enough to rewrite the equalities        
(30)-(33) as integrals of the function (18) and its derivatives. 

Results of direct numerical simulations confirm the traced asymptotic 
analysis. Figure 1 depicts the collision of two solitons for the nonlinearity 

223 uug +=′  in the case 1.0=ε  (see also [10] for the nonlinearity 
23u ). 



NUMERICAL AND ASYMPTOTIC DESCRIPTION … 39

 

Figure 1. Evolution of two solitary waves with 5.11 =A  and 5.02 =A   

for the nonlinearity .223 uug +=′  

4. Finite Difference Scheme 

Obviously, it is impossible to create any finite difference scheme for 
the problem (1), (17) which remains stable uniformly in 0→ε  and 

( ],,0 Tt ∈  .const=T  So we will treat ε  as a small but fixed constant. 

Concerning the original KdV-type equation (1), we simulate firstly 
the Cauchy problem by a mixed problem over a { ( ),,0 LxT ∈=Ω  

( ] }const.,,0 =∈ LTt  with zero boundary value. Next, we define a mesh 

{( ) ( ) }.,,0,,,0,,, def
,, JjNijihtx jihT …… ====Ω ττ  To simulate the 

interaction phenomena, we assume that L, T, and the initial front 
positions 0

ix  of solitons are such that the solitary wave trajectories have 

an intersection point which belongs to ( ) ( ).2,0,0 TL ×  Furthermore, 
we assume that, uniformly in ,Tt ≤  

( ) [ ] { } ( ) [ ] { },,max,,,max, 22
,

22
,0 hctxuhctxu LLxx ε≤ε≤ δ−∈δ∈  (51) 

for some 0>c  and sufficiently small .0>δ  
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To create a finite difference scheme for the Equation (1), we should 
choose appropriate approximations for the differential terms and for the 
nonlinear term. Let us do it separately. We write firstly a preliminary 

nonlinear “scheme” of the local accuracy ( ):2hO +τ  

( ) ,022 =ε+γε++ xxxxxxt hyyyQy ν   (52) 

where ( ) 0,1,,defdef >−=γ== ννhtxuyy ji
j
i  is a constant, 

,,, def
1

defdef1defdef1def
t

j
i

j
ij

tix

j
i

j
ij

xix

j
i

j
ij

ix y
yy

yyh
yy

yyh
yy

y =
−

==
−

==
−

=
−

−+
τ

 

and ( ) .2def
xxx yyy +=  

For the nonlinearity of the form (6), (12), we define 

( ) ( ) ( ) ( ) ( ){ }.,1 1

1
x

q
x

q
n

yyyyQyQqcyQ kk
kkkk

k
+=+= +

=
∑  (53) 

This choice of Q guarantees the equality 

( ) ,0
1

1
=∑

−

=

j
i

j
i

N

i
yQyh  

for all set functions y with zero boundary value. This implies the identity 

,02222 =ε++∂ j
xx

j
t

j
t yhyy ντ  (54) 

where ⋅  is the discrete version of the ( )LL ,02  norm. Obviously, the 
equality (54) is the discrete version of the conservation law 

.02 =∫
∞

∞−
dxudt

d  

The additional terms in (54) demonstrate the property of a parabolic-type 
regularization of the scheme (52). On the other hand, (54) implies a weak 

convergence of j
iy  as 0, →hτ  to the solution of the corresponded mixed 

problem for (1). 
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Theorem 4. Let the systems (52), (53) supplemented by initial and 
boundary conditions have a solution hyy ,τ=  and let ( )txy h ,,τ  be its 

continuation over .TΩ  Then there exists a subsequence ( )txy h ,,τ  such 

that 

( ) ( )( ) ( ) ( )( )LHTLLLTLinweaklyuy h ,0;,0,0;,0- 1
0

22
, ∩∞∗→τ  

 (55) 

as .0, →hτ  

Furthermore, we note that for polynomial ,g ′  that is for integer ,kq  

( ) ( ) ,2 1
3

1

+

=

+=′ ∑ k
k

k
k ucug  (56) 

it should be used a more effective formula [5]: 

( ) ( ) ( ) ( ) .,2 1
1

1

3

1
x

ll

l
yyyQyQcyQ −+

+

==
∑∑ == k
k

kkk
k

 (57) 

Such approximation implies that the solution of (52) satisfies both (54) 
and the mean value conservation law: 

.,2,1,0
0

…==∂ ∑
=

jy j
i

N

i
t  (58) 

Moreover, for the KdV case, ,2ug =′  and sufficiently smooth initial data 
it can be proved the following a-priori estimate: 

( ) ( ) ( ) ( ) ( ) ,2222
k

kkk Cjyhjyy xxxtx
j

x ≤ε∂ε+∂ε+∂ε τ   (59) 

where ( )j⋅≥ ,1k  is the discrete version of the ( )jtL Ω2  norm, and 

( ( ) )ε∂ε= ,,, 00 yyCC x
k

kk …  does not depend on τ  and h. Obviously, 

the estimate (59) implies the convergence of a subsequence of y. 
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Theorem 5. Let the assumptions of Theorem 4 be satisfied and 

.2ug =′  Then there exists a subsequence ( )txy h ,,τ  such that 

( ) ( )( ),,0;,0- 4
0, LHTLinweaklyuy h

∞∗→τ  

( ) ( )( )LHTLinweaklyt
u

t
y h ,0;,0- 1

0
, ∞∗∂

∂→
∂

∂ τ  (60) 

as .0, →hτ  

To solve the Equation (52) for any fixed 1≥j  we apply an iterative 

procedure. Namely, we construct a sequence of functions ( ) { ( ),0
def ss ϕ=ϕ  

( )} ,0,, ≥ϕ ssN…  where ( ) 1def0 −==ϕ jyy  and the consequent terms ( )sϕ  

we define depending on the nonlinearity. If ,11 <q  then to find ( )sϕ  we 

solve the linear system: 

( ) ,, 22 yhR xxxxxx =ϕε+γϕε+ϕϕ+ϕ ντττ  (61) 

where ( ) ( ),1, −ϕ=ϕϕ=ϕ ss  

( ) ( ) ( ) ( ) ( ) .,,,1,
1

x
qq

n
xRRqcR ϕϕ+ϕϕ=ϕϕϕϕ+=ϕϕ ∑

=

kk
kkkk

k

 (62) 

If ,11 ≥q  then ( )sϕ  should satisfy the following system: 

( ) ( ) ( ),,1 22

1
ϕ−=ϕε+γϕε+ϕ++ϕ ∑

=

QyhwRqc xxxxxx

n
τντττ kkk

k
 (63) 

where ( )yQw ,ϕ−ϕ=  has been defined in (53), and 

( ) ( ) ( ) .1, 1 wqwwqwR x
q

x
q

x
q ϕϕ+ϕ+ϕ+=ϕ −kkk

kkk  (64) 

Finally, for polynomial nonlinearity of the form (56), we consider again 
the equations similar to (63) but with others Q and :kR  
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( ) ( ),,2 ~22

1
ϕ−=ϕε+γϕε+ϕ+ϕ ∑

=

QyhwRc xxxxxx

n
τντττ kk

k
 (65) 

where ( )yQ  has been defined in (57), and 

( ) ( ) ( ) ( ) .1,
1

11
1

1
wlwlwR x

ll

l
x

ll

l
ϕϕ−++ϕϕ=ϕ −

=

−−+
+

=
∑∑ k
k

k
k

k k  (66) 

The solvability of the described above algebraic systems is obvious for 

sufficiently small .3hτ  Next let us note that to estimate ϕ  we should 

have uniform in j estimates for .j
xxy  For this reason we consider the 

KdV case and use the estimate (44). A detailed analysis ([5]) concludes 
that the ϕ-sequence converges very rapidly, 

( ) ( ) ( ) ,1,1
2

2
,2 ≥








ε

≤ϕ−+ϕ
ε ε scssc

s

τ  (67) 

where ( ) ( ) .222
, fff r

x
def

r ∂ε+=ε  This implies the statement: 

Theorem 6. Let the assumption the Theorem 5 be satisfied. Then the 

sequence ( )sϕ  converges in the 2
0H  sense to the solution of the Equations 

(52), (57). Moreover, 

( ) ,2 2 ε≤ϕ− τcy   (68) 

where 0>c  does not depend on ,, τh  and .ε  

The convergence ( ) jys →ϕ  as ∞→s  for the scheme (61), (62) has 

been proved numerically. Moreover, it turns out that ( )2ϕ  approximates 

the solution jy  of (52) sufficiently well. This implies that we set 

( )2ϕ=jy  in the general case also. 
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To solve the systems of linear equations of the form (61), (63) and (65), 
we use the Gauss method adapted to systems with five non-zero 
diagonals. This implies the efficiency of the schemes in the sense that it 
executes ( )NO  arithmetic operations to pass to the next time-level. 

To define the function ( )A,ηω=ω  and subsequently the initial data 

(17), we consider the problem 

( ) ( ) ,,1 11 hAgAgd
d >ηω−ω−=
η
ω  

( ) ( )
( )

( )
( )

( ) ( ) ,4!441, 112
1

1
4

2
1
1

2







 ′′+′

′
+

′
−=ω AgAAg

Ag
AghAAg

AghAAh  

and apply the Runge-Kutta method of the fourth order. Next we define 
( ) 1,0 =ω A  and ( ) ( ).,, AA ηω=η−ω  

Some results of the numerical simulations are presented in the 
Figures 1 and 2. The computations have been realized for ,1.0=ε  

,2h=τ  and .107.1 3−⋅=h  

 

Figure 2. Evolution of the soliton triplet for .4ug =′  
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This numerical scheme is the natural generalization of the 
algorithms suggested in [5, 6] and [10] for the GKdV equations with 

homogeneous nonlinearities ( ) nuug =′  and ( ) ,κuug =′  respectively. The 

reader can find there all detail of the scheme analysis. 
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