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Abstract

We propose a method of approximation for the percentiles of the sample
coefficient of variation based on the samples drawn from a normal population
via Cornish-Fisher expansion. We derive the asymptotic expansion of the
distribution of the sample coefficient of variation by using the normal
approximation of the Chi-square variable and some useful expectation formulas.
Finally, we observe the superiority of our result on the percentiles of the test
statistic for one-sample problem by conducting Monte Carlo simulation under
some selected parameters.

1. Introduction

In this paper, we consider statistical inference for the coefficient of
variation R, that is, the ratio of the mean to the standard deviation which

has applications in various research areas; see, for example, [7].

Under normality, one of the traditional results in this study is given

by [6], who proposed an approximation to the distribution of the sample
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coefficient of variation that asymptotically follows the x2 distribution

(recently, [2] showed that approximation derived by [6] essentially
follows a type-II noncentral beta distribution). Several authors concluded

that approximation considered in [6] performs well under R < 2/ 3.

For testing the coefficients of variation, various procedures have been

proposed. [1] proposed the likelihood ratio test that follows
asymptotically the xz distribution under the null hypothesis in
k-sample problem; this was later modified by [11]. [4] derived the Wald
type test and the Score test. [10] considered a divergence based test
statistic. Employing the stochastic expansion used in [9], [8] proposed a

simple test statistic by using the asymptotic normality of the sample

coefficient of variation.

In this paper, we show the asymptotic normality of the sample
coefficient of variation. It will be applicable to a test statistic for one-
sample problem of R, which is asymptotically equivalent to [8]. Further,

we derive the asymptotic distribution up to the higher order with respect
to n! and (n —1)!, where n denotes the sample size, in order to obtain

more accurate approximation for the percentiles of the considered test
statistic via Cornish-Fisher expansion. Simulation studies observe the
size of the test on the basis of our result, which is compared to the test
derived by [8]. Finally, in our concluding remarks, we address the

direction for further study.

2. The Distribution of the Sample

Coefficient of Variation

Let Xy, ..., X,, be the n independent samples from N(u, 6?). The

sample coefficient of variation R is defined as

. a Y - 1w 1~ -
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where the symbol d denotes the equivalent in the sense of the
distribution, Y is a random variable that follows the x2 distribution with
n —1 degrees of freedom, Z is a random variable that follows N(0, 1), Y

is independent of Z, and R is the coefficient of variation o/ .

Employing the useful notations of the order n =mp,n—-1=mk,
where p and A are some constants as in [3], and the normalizing
approximation of the Chi-square variable

Y -m)A
2mh\

U =

4 N(0, 1) (m — o), 1)

the distribution of the sample coefficient of variation R can be expressed

o d Vmna vz i (. N2 V(. R )
R = —_R\/E[1+MUJ [1+\/m_ij

Z + 3P
R
Henceforth, we consider the asymptotic distribution of R = y/n/(n — 1)R.

Applying Taylor expansion to the standardized 1~?, we have

7(r) - YR R) d o)+ MB BB o, 73,

where ¢ = Rx/{l/(27»)} +(R? /p),

R? R
tn(R) = — Z + U,
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Noting that T'(R) d to(R) +0,(1), (2) coincides with the result shown by
[8].

A

Theorem 1. For a large n, R is asymptotically distributed as N(R,

{R*/(n-1)}(1/2 + R?)).

3. Asymptotic Expansion for the Distribution
of the Test Statistic

In this section, we show the asymptotic expansion of the distribution

of T(R) in a similar manner to [5]. Further, we can approximate the

percentiles of T(R).

The characteristic function of T(R) can be expanded as

Efexp(itT(R)) |

= E{exp(it -to(R)) - exp {it(% + @ + Op(m_% )jH

- Elexplit - to(R)) |+ % E[- 0 explit - 1o(R) 1, (R) |

2 )
+ % E{— 0 exp(it - to(R))to(R) + 97 exp(it - ty(R)) {t; (R)}z} +O0(m 2 ),

3

where 0 = —it. In order to obtain the expectations, we have a lemma.

Lemma 2. The density function of u can be obtained as

_ 1 (N2 5 A2
fu(U)—¢(u){1+M[3ﬁ 2l

(1l 6_ 7T ,4,2,2 1 -3
+m(9>\u el tu 6%)}+O(m ),
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where §(z) is the density function of Z.

Further, let I;(a) be the following integration:

.[ioxi x/;_n exp [—%(x - (- 90))2}(136.

Then we have

Jw x' exp(it - ax)p(x)dx = exp (— %athJIi(a). 4)

To calculate I;(a), we also have the following corollary:

Corollary 8. For i =0, ..., 6, the integration I;(a) can be obtained

In(@) =1, Ij(a)=-(0a), Iy(a)=1+(6a),
I3(a) = -3(6a) - (0a)®, I,(a)=3+6(0a)’ + (0a)?,
I5(a) = —15(0a) — 10(0a)® — (6a)®,

Ig(a) = 15 + 45(0a)? +15(0a)* + (0a)®.

By using Lemma 2 and Corollary 3, we have the characteristic

function stated in (3) and the distribution function of T'(R).
Theorem 4. The distribution function of T(R) is obtained as
®(x) + [a11(R) + arp(R)Hy (x)

+ agy (R)H; (x) + age(R)Hs(x) + ags(R)H5(x)]o(x) + 0%,

where O3 denotes the remainder terms of the 3 /2-th order with respect
2

ton' and (n-1)71,
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and H,(x) denotes the r-th Hermite polynomial:
Hi(x)=x, Hy(x)=2x%2-1, Hs(x)=x>-3x,
Hs(x) = x° —10x® + 15x.
Proof. Using Lemma 2 and (4), we obtain the following expressions:
R2
po

I(j) = E{Zj exp(it : _TZH
© i (. R
= J._Oozj exp (zt : —Ezjfz(z)dz

1 R* R?
= exp(—§—2 t2j1j£— —J, (5)
po po
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I,(j) = E[Uj exp (it : LUH
V2ro
= J.OO u exp(it . Lu)fu(u)du
o V2o
1 R? [ ( R j
=exp|-=—— || I.|] —=—
p( 2 202 ] N\ oo

e )
el el

+

3~

3
el il e o
By using the above expressions, we derive some moments in order to
obtain the main result.
For the leading terms, we need to obtain the expectation
E[ exp(it - ty(R))] = 1,(0)I,(0) up to the terms of m™l. Substituting
J = 0 into (5) and (6) and making use of Corollary 3, we have

1 R*
HZ(O) = exp[— §—zt2],

pPo
1 R 1 03R>
0= e - e ){1ﬁ[w

4 pd 6 p6 _3
+L(63R4+ 656]}+O(m 2).
mi{ 8\°c 720

Because it holds that

1. 1 R* 9 1 R? 9
exp(——t j:exp(———t exp|—— t= |,
2 2 p62 2 9c?
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we can obtain

3p3
Blexplit - to(R)] - exp[~ 5 | {1 R %(_ R 3}

4 p4 6 p6 _3
+L(ef + 9R6j}+0(m2). (7)
m{ st 7204

We also need to obtain the expectation
E[- 0 explit - to(R) t,(R) ]

oR?

" Tpo

2
L10) + e L) + L0V (2)

Substituting j =1, 2 into (5) and (6) and making use of Corollary 3, we

have

4L ( 0*R" + o'R j}+0(m_1)
ym (V2rlhe?  6v202hot ’

2 252
[,(2)= exp(— % 2;% 3 tzJ{l + ZXR2
(e} (e}

1 20R 70°R® 0°RP 1
|2 - +0(m™),
Jm | A 6263 123367

Recalling the results of 1,(0) and 1,(0), we can obtain
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E[- 0 explit - to(R) t,(R) ]

( ){ OR  OR® ©03R® 03R° 0%R7
= exp —§t +

4 po 2c3 2p7\.63 p263

.1 (_e’R* 70'R' 20°R°
Jm

222 24336 3patot

6 p6 6 p8 6 pl10

B ef6+ e§6+ 92R2 6] +0(m™). @
48\°c 12pA°c 6p“\°c

Finally, we need to obtain the expectation
: 62 :
E{ 0 explit - to(R)) to(R) + & exp (it - 1o (R) (R)}Z}

fj; L)L, (o>—%jx6ﬂz<2) W) f R | @)

V2 20R | 02R?
W I,(0)I, (3)+ 2p I,(4)I,(0) - Faodoro? ——— L,(3)1,(1)

L) -2 1 o).
327\°c

L ORY
42 Jprrc?

Substituting j = 3, 4 into (5) and (6) and making use of Corollary 3, we

have

1 R* 5 36R2 03RS
I,(3)=exp|—-—= t
el

4 2 pd 4p8

I,(4) = exp —lR—2t2J[3+%+ 92R4J

2 poc poc p“oc

1 R? 30R 0>R? -1
[,(8)=exp|l-=——=t J(— - +0(m 2),
“ 2 962 Voo 2v2aine?
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2 2 p2 4 p4
R tzj(3+36R L 'R

1 _1
[,(4) =exp|-= +O0(m 2).
“ ( 2 962 rG2 4x2c4]

Recalling the results of 1,(j) and 1,(j) for j = 0, 1, 2, we can obtain

2
E{ 0 explit -ty (R) 3 (R) + & exp it -ty (R) iy (R)}ﬂ

1 t2) 150°R*  0°R'  90°R°  50'R'  o'R°
320262 4pro’ 20262 323ct 20026t

= exp (— 5

204R8  4p*R10 NG N 06R12  bpRl4
t Y it s * 46 36 038, 6 o046
p Ao p°c 12817 c 16pA°c 2p°Ac 2p o

+ O(m_% ). )

Combining (7)-(9), we have

exp(—ltzj L. L [6R 0R®  0°R®  0°R® O°R7
2 Vm | 4ho  po 94)%63 2pkc3 p203

1 02R?>  0°R* 902R® o*R*  0*R® 20*R® 40*R'Y
Tl 2 2 " RS 3.4 24 9, a7 34
mi 32)\"c“ 4pkoc 2p“c 96A°c™ 6pAic p Ao p°c

66R6 GGRS 66R10 66R12 96R14 _3
16T 36 2,26 3, 6 46J+O(m2)'
11521°c 48pL°c 6p“\°c 2p°Ac 2p%c

Inverting the characteristic function, the distribution function can be

obtained as

1 | R R® R3 R® R’
) + ﬁ{m Cpo (247203 2pr0® | pZo? Halx)) o)
1[( R? R* 9R" J
+ = - - H,(x)
m { 30262 4pro®  2p262)
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R* RS 2R® 4R
57 a2 a5 1 s |
96)\°c 6pL°c p Ao p°c
6 8 10 12 14
- R46+ R36+ §ZG+ 1§ 6+R46H5(x)¢(x)
11521 °c 48pA’c 6p“Aoc 2p°AG 2p"c
_3
+0(m 2),
which completes the proof. O

By the last theorem, we have approximation to the upper 100a
percentile of T(R), i.e., {(R, o) that satisfies Pr[T(R) > (R, a)]~a can

be obtained as
tR, o) =z, + Fi(R, zo) + F5(R, z,),

where 2z, 1is the upper 100a percentile of the standard normal

distribution,

R(R, x) = —a11(R) - a19(R)Hy(x),
Fy(R, x) = - 5ayy(B) [ay; (R) - dayy(R) o
—ayy(R) [ayy (B) - 2a,5(R) [eH (x)
- 5 a1 (R) PalHy(x) 12 —ay, (RH, (x)
~ayy(R) Hy(x) —ans(R) Hs(x).
4. Simulation Studies

In order to investigate the performance of the testing procedure based

on T(R) and t(R, o) for one-sample problem, we conduct a Monte Carlo

simulation with 1,000,000 replications under the selected parameters:

o = 0.10, 0.05, n =10, 15, 20, 40, R = 0.3, 0.6. We primarily evaluate
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the empirical size in the following one-sample testing for the coefficient of
variation Hy : R=R;, Hs: R< R;, and Hs: R > Ry,. All of the

simulation results under R = R; are listed in Tables 4.1-4.3. In this

paper, we compare the attained type I error and the nominal type I error

denoted by o for the following tests:

o Test 1 ([8]; cf. Theorem 1): The test statistic is

R-R,
1 R:
RO\/Z(n—1)+ n-1

H; is rejected if |Th; (Ry)| > 24, Hy is rejected if Ty (Ry) > 2z, and Hg
2

Ty (Ry) =

is rejected if Thy(Ry) < —z4-

e Test 2 (Test based on T(R)): The test statistic is T(Ry), Hy 1is
rejected if |T'(Ry)| > z%, H, is rejected if T(Ry) > z,, and Hj is rejected
if T(Ry) < -2,

e Test 3 (Test based on T(R) with the critical value obtained by
Cornish-Fisher expansion up to the terms of 1/2-th order): The test
statistic is T(Ry), H; is rejected if [T(Ry)| > t*(Ry, o/ 2), Hy is rejected
if T(Ry)>t"(Ry, o), and Hj is rejected if T(Ry) < t*(Ry, 1 - o), where
t"(Ro, &) = 24 + F1(Ry, 2).

e Test 4 (Test based on T(R) with the critical value obtained by

Cornish-Fisher expansion up to the terms of 1st order): The test statistic
is T(Ry), H; 1is rejected if |T(Ry)| > t(Ry, a/2), Hy is rejected if
T(Ry) > t(Ry, o), and Hjy is rejected if T(Ry) < t(Ry, 1 — o).
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For testing H;, there are several cases such that Tests 1 and 2 are

recommended. In particular, Test 2 is a nearly exact test in all the cases
for Ry =0.3. This implies that the approximated percentiles we
proposed are not very useful in these cases. On the other hand, for

testing H, and Hg the tests based on the modified percentiles derived

in this paper, i.e., applying Tests 3 and 4 are obviously recommended. In

particular, we observe that Test 4 can almost exactly control type I error.
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Table 4.1. Empirical size of the test for H;

Ry =0.3 and o =0.10
n Test 1 Test 2 Test 3 Test 4
10 0.088799 0.096023 0.087964 0.089321
15 0.092960  0.097974  0.090986  0.091797
20 0.094837 0.098067 0.091989 0.092481
40 0.097217 0.099045 0.094441 0.094689
Ry =0.6 and o =0.10
n Test 1 Test 2 Test 3 Test 4
10 0.083176 0.101864 0.064327 0.057172
15 0.088983  0.101481  0.067334  0.061362
20 0.091760 0.101129 0.069853 0.064910
40 0.095809 0.100495 0.076505 0.073543
Ry =0.3 and o =0.05
n Test 1 Test 2 Test 3 Test 4
10 0.035804 0.046823 0.035433 0.035755
15 0.042853  0.048058  0.038147  0.038298
20 0.044876 0.048638 0.039828 0.039911
40 0.047581 0.049608 0.043036 0.043054
Ry =0.6 and a =0.05
n Test 1 Test 2 Test 3 Test 4
10 0.042427 0.058993 0.032642 0.027590
15 0.044780  0.056288  0.031283  0.027172
20 0.045895 0.054776 0.031242 0.027636
40 0.048238 0.052736 0.033449 0.031012
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Table 4.2. Empirical size of the test for Hg

Ry =0.3 and o =0.10

n Test 1 Test 2 Test 3 Test 4

10 0.059291 0.094065 0.098529 0.099800
15 0.066672 0.095718 0.099156 0.099948
20 0.070467 0.095653 0.098684 0.099268

40 0.079379 0.097370 0.099361 0.099629

Ry =0.6 and o =0.10

n Test 1 Test 2 Test 3 Test 4

10 0.086272 0.119602 0.104625 0.101295
15 0.089378 0.116410 0.102808 0.100319
20 0.090970 0.114373 0.102117 0.100141

40 0.094155 0.110297 0.100897 0.099811

Ry =0.3 and o =0.05

n Test 1 Test 2 Test 3 Test 4

10 0.030765 0.052833 0.049489 0.050066
15 0.034387 0.052849 0.049719 0.050092
20 0.036585 0.052142 0.049425 0.049647

40 0.040605 0.051766 0.049609 0.049733

Ry =0.6 and a =0.05

n Test 1 Test 2 Test 3 Test 4

10 0.054028 0.077903 0.056929 0.052126
15 0.054084 0.073017 0.054641 0.051053
20 0.053825 0.069762 0.053378 0.050604

40 0.053519 0.064110 0.051818 0.050254
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Table 4.3. Empirical size of the test for Hg

Ry =0.3 and o =0.10

n Test 1 Test 2 Test 3 Test 4

10 0.136235 0.104466 0.097801 0.099521
15 0.130466 0.103482 0.098891 0.099904
20 0.126678 0.102754 0.099014 0.099718

40 0.119087 0.101731 0.099316 0.099631

Ry =0.6 and o =0.10

n Test 1 Test 2 Test 3 Test 4

10 0.096378 0.078200 0.104922 0.098339
15 0.099715 0.082293 0.103866 0.099533
20 0.100487 0.084312 0.102722 0.099488

40 0.101434 0.088586 0.101260 0.099630

Ry =0.3 and o =0.05

n Test 1 Test 2 Test 3 Test 4

10 0.058034 0.043190 0.048243 0.049116
15 0.058573 0.045125 0.049268 0.049734
20 0.058252 0.045925 0.049546 0.049921

40 0.056612 0.047279 0.049794 0.049933

Ry =0.6 and a =0.05

n Test 1 Test 2 Test 3 Test 4

10 0.029148 0.023961 0.058551 0.046692
15 0.034889 0.028464 0.055862 0.048403
20 0.037935 0.031367 0.054452 0.049027

40 0.042290 0.036385 0.051962 0.049422




APPROXIMATION FOR THE PERCENTILES OF... 71

5. Conclusion and Discussion

We can approximate the percentiles of the sample coefficient of
variation via the normal approximation of the Chi-square variable and
Cornish-Fisher expansion. We also present the direction to derive the

expectation in order to obtain the main result in this paper.

By the simulation results, in particular, the tests based on the
approximate percentiles are recommended for the use of the one-sided
test in many cases: it 1s obviously implied that our approximation
performs well when the critical value of the test statistic is not so large.
For one-sided test, when the accuracy of the critical value of the test
statistic is strongly required, we particularly recommend applying Test 4
to the dataset. On the other hand, when the simplicity of the critical

value is favorable, we recommend applying Test 2 or Test 3.

Finally, we address future problems. A similar theoretical result may
also be derived on the basis of Wilson and Hilferty’s transformation
instead of (1). In this case, its effect appears in the terms of the higher
order and it may improve our results. In the case that Test 3 is not

conservative and Test 4 is conservative, the correction of #(Ry, o) and
to(Rg, a) by the other tuning parameter will be considered in order to

obtain more accurate percentiles in a view of the practical application.
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