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Abstract 

A control chart is a tool that monitors quality characteristics of a process to 
ensure that process control is being maintained when monitoring multiple 
characteristics that are correlated, it is imperative to use multivariate control 

chart. Hotelling’s 2T  quality control chart is used to determine whether or not 
the process mean vector for two or more variables is in-control. It is allowing us 
to simultaneously monitor whether two or more related variables are in control, 
and it is shown that multivariate quality control chart do not indicate which 
variables cause the out-of control signal so that the interpretation of the out-of-
control signal. Also, in this paper develops the multivariate quality control 
charts of the out of-control signal, this will be maintained by making and 
industrial application on the fertilizers factory. It is important to know that this 
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factory has a special department for quality control, in order to maintain 
International Standardization Organization (ISO). 

1. Introduction 

The statistical control chart is a well-known tool in today’s industry, 
and it is one of the most powerful tools in quality control. First developed 
in the 1920’s by Walter Shewhart, the control chart found widespread use 
during World War II and has been employed, with various modifications 
ever since. The drawbacks to multivariate charting schemes is their 
inability to identify which variable was the source of the signal. 

With today’s use of computers, it is common to monitor several 
correlated quality characteristics simultaneously. Various types of 
multivariate control charts have been proposed to take advantage of the 
relationships among the variables being monitored. Alt [1]; Jackson [7]; 
Lowry and Montgomery [11]; and Mason et al. [12] discuss much of the 
literature on this topic. The formatter will need to create these 
components, incorporating the applicable criteria that follow. 

The rapid growth data acquisition technology and the uses of online 
computers for process monitoring led to an increased interest in the 
simultaneous control of several related quality characteristics. These 
techniques are often referred to multivariate statistical process control 
procedures. The use of separate univariate control chart for each quality 
characteristic has proved to be inappropriate. This is because, it neglects 
the correlation between the multiple quality characteristics; and this 
leads to incorrect results. 

The modern statistical process control took place when Walter 
Shewhart [20] developed the concept of a control chart based on the 

monitoring of the process mean level through sample mean ( )chartX  

and process dispersion through sample range (R chart) or sample 
standard deviation chart. In the multivariate setting, Harold Hotelling 
[4] published what can be called the first major works in multivariate 

quality control. Hotelling developed the 2T  statistic and the statistics 
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based on the sample variance-covariance matrix S procedure, and its 
extensions to control charts to combine measurements taken on variables 
in several dimensions into a single measure of excellence. 

After Hotelling there was no significant work done in this field until 
the early sixties, when with the advances in computers, interest in 
multivariate statistical quality control was revived. Since then, some 
authors have done some work in this area of multivariate quality control. 

Houshmand and Javaheri [5] presented two procedures to control the 
covariance matrix in a multivariate setting. The advantages of these 
procedures are that they allow the investigators to identify the sources of 
the out-of-control signal. These procedures are based on constructing 
tolerance regions to control the parameters of the correlation matrix. 

Linna et al. [10] presented a model for correlated quality variables 
with measurement error. The model determined the performance of the 
multivariate control charting methods. The usual comparison of control 
chart performance does not directly apply in the presence of 
measurement error. 

The most familiar multivariate process monitoring and control 

procedure is the Hotelling’s 2T  control chart for monitoring the mean 

vector of the process. It is a direct analog of the univariate Shewhart X  
chart. Shewhart, a pioneer in the development of the statistical control 
chart (Shewhart charts), first recognized the need to consider quality 
control problems as multivariate in character. Hotelling [4] did the 
original work in multivariate quality control. He applied his procedure, 
which assumed that P-quality characteristics are jointly distributed as    
P-variate normally and random samples of size n are collected across 

time from the process. 2T  is sensitive to shifts in the means, as well as to 
shifts in the variance, but it cannot distinguish between location shifts 
and scale shifts. 

Multivariate charts are also useful for monitoring quality profiles as 
discussed by Woodall et al. [24]. Alt [1] defined two phases in 
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constructing multivariate control charts, with phase I divided into two 
stages. In the retrospective Stage 1 of phase I, historical data 
(observations) are studied for determining whether the process was in 
control and to estimate the in-control parameters of the process. The 

Hotelling’s 2T  control chart is utilized in this stage (Alt and Smith [2]; 
Tracy et al. [21]; and Wierda [23]). In phase II, control charts are used 
with future observations for detecting possible departure from the 
process parameters estimated in phase I. In phase II, one uses charts for 
detecting any departure from the parameter estimates, which are 
considered in the in-control process parameters (Vargas [22]). 

An important aspect of the Hotelling’s 2T  control chart is how to 
determine the sample variance-covariance matrix used in the calculation 
of the chart statistics, the upper control limit (UCL) and the lower control 
limit (LCL). 

Onwuka and Hotelling [15] discussed the principal component 

analysis and Hotelling’s 2T  tests were used, with the 3-characteristics 
measured showing negligible low correlation with nearly all the 
correlation coefficients small. 

2. Multivariate Quality Control Chart 

Multivariate quality control charts are a type of variables control 
that how correlated, or dependent, variables jointly affect a process or 
outcome. The multivariate quality control charts are powerful and simple 
visual tools for determining whether the multivariate process is in-
control or out-of-control. In other words, control charts can help us to 
determine whether the process average (center) and process variability 
(spread) are operating at constant levels. Control charts help us focus 
problem – solving efforts by distinguishing between common and 
assignable cause variation. Multivariate control chart plot statistical 
from more than one related measurement variable. The multivariate 
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control chart shows how several variables jointly influence a process or 
outcome. 

It is demonstrated that if the data include correlated variables the 
use of separate control chart is misleading because the variables jointly 
affect the process. If we use separate univariate control chart in a 
multivariate situation, type I error and probability of a point correctly 
plotting in-control are not equal to their expected values the distortion of 
those values increases with the number of measurement variables. 

It is shown that multivariate control chart has several advantages in 
comparison with multiply univariate charts: 

■ The actual control region of the related variables is represented. 

■ We can maintain specification type I error. 

■ A signal control limit determines whether the process is in control. 

■ Multivariate control chart simultaneously monitors two or more 
correlated variables. To monitor more than one variable using univariate 
charts, we need to create a univariate chart for each variable. 

■ The scale on multivariate control charts unrelated to the scale of 
any of the variables. 

■ Out-of-control signals in multivariate charts do not reveal which 
variable or combination of variables cause the signal. 

A multivariate control chart consists of: 

■ Plotted points, each for which represents a rational subgroup of 
data sampled from the process, such as a subgroup mean vector 
individual observation, or weighted statistic. 

■ A center line, which represents the expected value of the quality 
characteristics for all subgroups. 

■ Upper and lower control limits (UCL and LCL), which are set a 
distance above and below the center line. These control limits provide a 
visual display for the expected amount for variation. The control limits 
are based on the actual behaviour of the process, not the desired 
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behaviour or specification limits. A process can be in control and yet not 
be capable of meeting requirements. 

3. Construction of Hotelling’s 2T  Control Chart 

The Hotelling multivariate control chart signals that a statistically 
significant shift in the mean has occurred as soon as: 

( ) ( ).
12

oioi XX µ−′µ−=χ
−∑   (1) 

If the sample covariance matrix ∑ and the sample mean vector 0µ  are 

known, but if ∑ and 0µ  are known, then the 2T  statistic is the 

appropriate statistic for the Hotelling multivariate control chart. In this 

case, the sample covariance matrix, S and sample mean vector ,X  are 

used to estimate ∑ and ,0µ  respectively. 

This statistic has the from: 

( ) ( ).12 XXSXXT ii −′−= −   (2) 

Suppose that we have a random sample from a multivariate normal 
distribution – Say, ,,,,, 321 nXXXX …  where the th-i  sample vector 

contains observations, .,,,, 321 ipiii XXXX …  

Let the sample mean vector is: 

( ),211 pp XXXX …=×  

where 

( ),,,2,1
1

piXX iL

n

L
i …== ∑

=

 

and the sample covariance matrix is: 
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where 2
is  is the variance of the th-i  variable and ( ) th-ij  element of         

S-matrix is the estimated covariance between the variables i and j, 

( ) ( ).1
1

1
jjLiiL

n

L
ij XXXXnS −−

−
= ∑

=

 

Note that we can show that the sample mean vector and the sample 
covariance matrix are unbiased estimators of the corresponding 
population quantities that is 

( ) ( ) .and ∑=µ= SEXE   (4) 

Seber [18] gives the distribution properties of this estimate as 
follows: 

(i) .1,~ 




µ ∑nNX p   (5) 

(ii) If X  distribution as in (i) then: ( ) ( ) .~ 21
pXXn χµ−′µ−

−∑   (6) 

(iii) ( ) ( ),,1~1 ∑−− nWSn p  

where ( )∑− ,1nWp  stands for the Wishart distribution. 

(iv) If Z and D are independent, random variables distributed, 
respectively as: 

( )
ZpNZ ∑,0~  
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( ) ( ),,1~1
Zp nWDn ∑−−  

then the quadratic form: 

,12 ZDZT −′=   (7) 

is distributed as: 

( )
( ) .1~ ,

2
pnpFpn

pnT −−
−   (8) 

(v) If ( )ZpNZ ∑,0~  and ( ) ( ) ( ) ,1,,1~1 pnnWDn Zp >−−− ∑  

where ( )Dn 1−  can be decomposed as: 

( ) ( ) ,21 1 ZZDnDn ′+−=−  

where 

( ) ( ),,2~2 1 Zp nWDn ∑−−  

and Z is independent of 1D  then the quadratic form: 

,12 ZDZT −′=   (9) 

is distributed as: 

( ) ( ),1,1~2 −−β− pnpnT  

where 

( )1, −−β pnp  is the central Beta distribution. 

(vi) If the sample is composed of k  subgroups of size n with subgroup 

means kX j ,,3,2,1, …=j  and grand mean ,X  i.e., 

,
111

nXX ij

n

ij
j

j
kkX

kk

∑∑∑
===

==  

then 
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( ) ( ).,0~1 ∑−
− pj NXXn

k
k  (10) 

(vii) If the sample is composed of K subgroups of n identically 
distributed multivariate normal observations and if jS  is the sample 

covariance matrix from the th-j  subgroup, ),,,3,2,1 Kj …=  then  

( ) ( ),,~1 1 ∑∑ −− npj KWSn   (11) 

these distributional properties of SX ,  and 2T  are used in the 

multivariate quality control procedures. 

Now, we present two versions of Hotelling 2T  chart: 

(a) Subgroup data 

Suppose that P-related quality characteristic pXXXX ,,,, 321 …  are 

controlled jointly according to the P-multivariate normal distribution. 
The procedure requires computing the sample mean for each of the P-
quality characteristics from a sample of size n. 

Let the set of quality characteristic means is represented by the 
( )1×p  vector X  as: 
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Then the test statistic plotted on the Chi-square control chart for 
each sample is: 

( ) ( ),12
0 µ−

′
µ−=χ

−∑ XXn  (12) 

where 
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( )pµµµ=µ ,,,' 21 …  is the ( )1×p  vector of in-control means for each 

quality characteristic and ∑ is covariance matrix. 

Now, suppose that m-subgroup are available. The sample means and 
variances are calculated from each subgroup as usual that is: 

,1

1
kk ij

n

i
j XnX ∑

=

=  

( ) ,1
1 2

1

2
kkk jij

n

i
j XXnS −

−
= ∑

=

 

,,,2,1;,,2,1 mpj …… == k  (13) 

where kijX  is the th-i  observation on the th-j  quality characteristic in 

the th-k  subgroup. 

( ) ( ).1
1

1
kkkkk hihjij

n

i
jh XXXXnS −−

−
= ∑

=

 

,,,,2,1 hjn ≠= …k  (14) 

represents the covariance between quality characteristic j and quality 
characteristic h in the th-k  subgroup. 

The statistics kkk jhjj SSX ,, 2  are the averaged over all m-subgroups 

to obtain 

,,,2,1,1

1
pjXmX j

m

j …== ∑
=
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MULTIVARIATE STATISTICAL PROCESS OF … 11
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=

=  (15) 

where hj ≠  and jX  are the th-i  elements of the ( )1×p  sample mean 

vector X  and ( )pp ×  average of sample covariance matrices S is formed 

as: 
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There are consider the unbiased estimate of µ  and ∑ when the process 

is in control. If, we replace µ  with X  and ∑ with S in (12), the test 

statistic now becomes 

( ) ( ).12 XXSXXnT −
′

−= −   (17) 

Alt [1] has pointed out that there are two distinct phases of control 
chart using. Phase I is the use of the chart for establishing control, that 
is, testing whether the process was in control when m-subgroups were 

drawn and the sample statistic X  and S computed. The objective in 
phase I is to obtain an in-control set of observations, so that control limits 
can be established for phase II which is the monitoring of future 
production. 

In the phase I the control limits for the 2T -control chart is given by: 

( ) ( )
.

0LCL

1
11UCL 1,,








=

+−−
−−

= +−−α pmmnPFpmmn
nmP

 (18) 
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In the phase II when the chart is used for monitoring future 
production, the control limits are as follows: 

( ) ( )
,

0LCL
1

11UCL 1,,






=
+−−
−+

= +−−α pmmnPFpmmn
nmP

 (19) 

when the parameters µ  and ∑ are estimated from a large number of 

subgroups, it is often to use 2
,UCL pαχ=  as the upper limit in both 

phases. Retrospective analysis of samples to test for statistical control 
and establish control limits also occurs in the univariate control chart 

setting. For the X -chart, it is well-known that if use ≥m  20 or 25, 
samples, the distribution between phase I and phase II limits is usually 
unnecessary, because the phase I and phase II limits will nearly coincide. 
However, with multivariate control charts, we must be careful. 

Lowry and Montgomery [11] showed that in many situations a large 
number of samples would be required before the exact phase II control 
limits are well approximate by the Chi-square. 

(b) Individual observations 

In some situation the subgroup size is naturally .1=n  Suppose that 
m samples each of size 1=n  are available and that p is the number of 

quality characteristics observed in each sample. The Hotelling 2T  
statistic becomes: 

( ) ( ).12 XXSXXT −′−= −   (20) 

Ryan [17] defined the phase II control limits for this statistic as: 

( ) ( )
( ) .

0LCL

11UCL ,,






=
−

−+
= −α pmPFpmm

mmP
 (21) 

Jackson [7] suggested that for large ( )100>mm  then we can use an 

approximate control limit, either 
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( )
( ) ,1UCL ,, pmPFpm

mP
−α−

−=  (22) 

or 

.UCL 2
, pαχ=  (23) 

Equation (23) is only appropriate if the covariance matrix is known. 

Lowry and Montgomery [11] suggested that if p is large-say 10≥p  

then at least 250 samples must be taken ( )250≥m  before Chi-square 

upper control limit is a reasonable approximation to the correct value. 

Tracy et al. [21] point out that if ,1=n  the phase I limits should be 

based on a beta distribution that is, the phase I limits defined as: 

( )
.

0UCL

1UCL
2

1
2 ,,

2







=

β−= −−α pmPm
m

 (24) 

The average run length performance for a Hotelling’s 2T  

Mason et al. [12] suggested that the average run length (ARL) for a 

control procedure is defined as: ,1ARL p=  where p represents the 

probability of being outside the control region. For a process that is        
in-control, this probability is equal to ,α  the probability of type I error. 

The ARL has a number of uses in both univariate and multivariate 
control procedures. They suggested that it can be used to calculate the 
number of observations that one would expect to observe, on average, 

before a false alarm occurs. This given by: .1ARL p=  

Another use of the ARL is to compute the number of observations one 
would expect to observe before detecting a given shift in the process. The 
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probability of a type II error. The ARL for detecting the shift is given by: 

.1
1ARL
β−

=  

Multivariate control charts using Hotelling’s 2T  statistic is popular 

and easy to use. A major advantage of Hotelling’s 2T  statistic is that it 
can be shown to be the optimal test statistic for detecting a general shift 
in the process mean vector for an individual multivariate observation. 
However, the technique has several practical drawbacks. A major 

drawback is that when the 2T  statistic indicates that a process is out of 
control, it does not provide information in which variable or set of 
variables is out of control. Further, it is difficult to distinguish location 

shifts from scale shifts since the 2T  statistic is sensitive to both types of 
process changes. 

The MYT decomposition 

Mason, Young and Tracy (MYT) extended that the interpretation of 

signals from a 2T  chart to the setting where there is more than process 
variables MYT decomposition. The MYT decomposition is the primary 
tool used in this effort, and they examined many interesting properties 
associated with it. They showed that the decomposition terms contained 
information on the residuals generated by all possible linear regressions 
of one variable on any subset of the other variables. And they add that to 
being an excellent aid in locating the source of a signal in terms of 
individual variables or subsets of variables, this property has another 

major function. It can be used to increase the sensitivity of the 2T  
statistic in the area of small process shifts. 

Mason et al. [14] presented decomposition procedure. They 

considered that, the 2T  statistic for a p-dimensional observation vector 

( )pXXXX ,,, 21 …=  can be represented as 

( ) ( ),1\2 XXSXXT −−= −   (25) 
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where X  and S are the common estimators of the mean vector and 
covariance matrix obtained from historical data set (HDS), they 

partitioned the vector ( )XX −  as: 

( ) [( ( ) ( ) ) ( )] ,, \11\
pp

pp XXXXXX −−=− −−  

where ( ) ( )121
1 ,,,

\
−

− = p
p XXXX …  represented the ( )1−p -dimensional 

variable vector excluding the th-p  variable pX  and ( )1−pX  represented 

the corresponding 1−p  elements of the mean vector. They also partition 

the matrix S so that 

,
\ 













=

xxxX

xXXX

ss

sS
S  (26) 

where XXS  is the ( ) ( )11 −×− pp  covariance matrix for the first ( )1−p  

variables, 2
pS  is the variance of ,pX  and xXs  is a ( )1−p -dimensional 

vector the containing the covariances between pX  and the remaining 

( )1−p  variables. 

The 2T  statistic in (25) can be partitioned into two independent 
parts (see Rencher [16]). These components are given by 

.2
1,,2,1,

2
1

2
−− += ppp TTT …  (27) 

The first term in (27), 

( ( ) ( ) ) ( ( ) ( ) ),111\112
1

−−−−−
− −−= pp

XX
pp

p XXSXXT  (28) 

uses the first ( )1−p  variables and is itself a 2T  statistic. 

Mason et al. [14] proved that the last term in (27) was the            
th-p  component of the vector iX  adjusted by the estimates of the     
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mean and standard deviation of the conditional distribution pX  given 

( ).,,, 121 −pXXX …  It is given by 

( )
,2

1.,,2,1,

2
1.,,2,1,2

1,,2,1,
−

−
−

−
=

pp

ppp
pp

S

XX
T

…

…
…  (29) 

where 

( ( ) ( ) ),11\
1.,,2,1,

−−
− −+= pp

pppp XXBXX …  

and ,1\
xXXXp sSB −=  is the ( )1−p -dimensional vector estimate of the 

coefficients from the regression of pX  on the ( )1−p  variables ,, 21 XX  

., 1−pX…  It can be shown that the estimate of the conditional variance is 

given as ,1\22
1,,2,1, xXXXxXppp sSsSS −
− −=…  since the first term of (27) is 

a 2T  statistic, it too can be separated into two orthogonal parts: 

.2
2,,2,1,1

2
2

2
1 −−−− += pppp TTT …  

The first term, ,2
2−pT  is a 2T  statistic, on the first ( )2−p  components of 

the X vector, and the second term ,2
2,,2,1,1 −− ppT …  is the square of 1−pX  

adjusted by the estimates of the standard deviation of the conditional 
distribution of 1−pX  given ( ).,,, 221 −pXXX …  They proposed one from 

of MYT decompositions of a 2T  statistic. It is given by. 

2
1,,2,1,

2
2,1,3

2
1,2

2
1

2
−++++= ppTTTTT ……  

 .2
,,1,1

1

1
2

1 jj
p

j
TT …+

−

=∑+=  (30) 

The 2
1T  term in (30) is the square of the univariate for the first variable 

of the vector X and is given as 
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( ) .2
1

2
112

1
S

XXT −
=  (31) 

This term is not a conditional term, as its value does not depend on a 
conditional distribution. In contrast, all other terms of the expansion in 
(30) are conditional terms, since they represent the value of a variable by 
the mean and standard deviation from the appropriate conditional 
distribution. 

Computing the decomposition terms 

They considered that the first ( )1−p  terms of (30) correspond to the 
2T  value of the sub vector ( );,,, 121

\
1 −− = pp XXXX …  i.e., 

( ) ,2
2,,2,1,1

2
2,1,3

2
1,2

2
1

2
,,, 121 −−++++=

− ppXXX TTTTT
p …… …  

similarly, the first ( )2−p  terms of this expansion correspond to the sub 

vector ( );,,, 221
\

2 −− = pp XXXX …  i.e., 

( ) ,2
3,,2,1,2

2
2,1,3

2
1,2

2
1

2
,,, 221 −−++++=

− ppXXX TTTTT
p …… …  

continuing in this fashion, they compute the 2T  values for all sub vectors 
of the original vector X. The last sub vector, consisting of the first 

component ( ) ( )11 XX =  is used to compute the unconditional 2T  term 

given in (31); i.e., .2
1

2
1

TTX =  

All the 2T  values, ( ) ( ) ( ),,, 22
,,,

2
,,, 112121 XXXXXXX TTT

pp −……  are 

computed using the general formula 

( )
( ) ( )( ) ( ( ) ( ) ),1\2

,,, 21
jj

jj
jj

XXX XXSXXT
j

−−= −
…  (32) 

where ( )jX  represents the appropriate sub vector, ( )jX  is the 
corresponding sub vector mean, and jjS  denotes the corresponding 
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covariance sub matrix obtained from the overall S matrix given in (26) by 
deleting all unused rows and columns. The terms of the MYT 
decomposition can be computed as follows: 

( ) ( ) ,2
,,,

2
,,,

2
1,,2,1, 12121 −

−=− pp XXXXXXpp TTT ………  

( ) ( ) ,2
,,,

2
,,,

2
2,,2,1,1 221121 −−

−=−− pp XXXXXXpp TTT ………  

""  

""  

""  

( ) ,2
1

2
,

2
1,2 21

TTT XX −=  

( ) .2
1

2
112

1
s

XXT −
=  (33) 

Properties of the MYT decomposition 

Many properties are associated with the MYT decomposition. 

Consider they dimensional vector defined as ( )pXXXX ,,, 21
\ …=  

they interchange the first two components to form another vector 
( )pXXX ,,, 12 …  so that the only difference between the two vectors is 

the two vectors such that the first two components have been permuted 

the 2T  value of the two vectors is the same; i.e., 

( ) ( ).
2

,,,
2

,,, 1221 pp XXXXXX TT …… =  

This occurs because 2T  values cannot be changed by permuting the 
components of the observation vector. This invariance property of 

permuting the 2T  components that each ordering of an observation 

vector will produce the same overall 2T  value. Since there are  
( )( ) ( ) ( ) ( )1221! …−−= pppp  permutations of the components of the 
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vector  ( )pXXX ,,, 21 …  this implies that we can partition a 2T  value 

in !p  different ways. To illustrate his result, suppose .3=p  There are  

( ) ( ) ( ) 6123!3 ==  decompositions of the 2T  value for an individual 

observation vector. These are listed below: 

2
2,1,3

2
1,2

2
1

2 TTTT ++=  

2
3,1,2

2
1,3

2
1 TTT ++=  

2
3,2,1

2
2,3

2
2 TTT ++=  

2
2,1,3

2
2,1

2
2 TTT ++=  

2
3,1,2

2
3,1

2
3 TTT ++=  

.2
3,2,1

2
3,2

2
3 TTT ++=  (34) 

Each row of (34) corresponds to a different permutation of the 
components of the observation vector. For example, the first row 
corresponds to the vector written in its original form as ( ),,, 321 XXX  

whereas the last row represents ( ).,, 123 XXX  Note that all six possible 

permutations of the original vector components are included. 

The importance of this result is that it allows one to examine the 2T  
statistic from many different perspectives. The p terms in any particular 
decomposition are independent of one another, although the terms across 
the decompositions are not necessarily independent. With p partition and 

!p  partitions, there are !pp ×  possible terms to evaluate in a total MYT 

decomposition of a particular partition, as certain terms occur more than 

once. In general, there are ( )12 −× pp  distinct terms among the possible 

decompositions. These unique terms are the ones that need to be 

examined for possible contribution to a 2T  signal, when p is large. 
Computing all these terms can be cumbersome. 
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They considered the MYT decomposition given in (30) and suppose 
2

1T  dominates the overall value of the 2T  statistic. This indicates that 

the observation on the variable 1X  is contributing to the signal. 

However, to determine if the remaining variables in this observation 

contribute to the signal, we must examine the 2T  value associated with 
the sub vector ( )pXXX ,,, 32 …  which excludes the 1X  component. 

Small values of the 2T  statistic for this sub vector imply that no signal is 
present. They also indicate that one need not examine any term of the 
total decomposition involving these ( )2−p  variables. 

They considered another important property of 2T  statistic is the 

fact that the ( ( ) )12 1 −−pp  unique conditional terms of a MYT 

decomposition contain the residuals from all possible linear regressions of 
each variable on all subsets of the other variables. This property of the 

2T  statistic provides a procedure for increasing the sensitivity of the 2T  

sensitivity of the 2T  statistic to process shifts. 

Locating signaling variables 

They seek to relate a 2T  signal and its interpretation to the 
components of the MYT decomposition. They consider signaling 
observation vector: 

( ) ( ) .UCLthatsuch,,, 2
,,,21

\
21

>=
pXXXp TXXXX ……  

They proposed two methods one for locating the variables contributing to 
the signal is to develop a forward iterative scheme. This was 
accomplished by finding the subset of variables that do not contribute to 

signal from (27) and (29) such that a 2T  statistic can be constructed on 

any subset of the variables .,,, 21 pXXX …  Construct the 2T  statistic 

for each individual variable ,,,2,1, pjX j …=  so that 
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( )
,2

2
2

j

jj
j

S

XX
T

−
=  

where jX  and 2
jS  are the corresponding mean and variance estimates as 

determined from the HDS. Compare these individual 2
jT  values to their 

UCL, where 

( )
( ) ( )

( ) ( )pnpX Fpnn
nnp

j −α







−
−+

= ,,
11UCL  

( ),
1

1,1, −α





 += nFn

n  (35) 

is computed for an appropriate α  level and for a value of .1=p  Exclude 
from the original set of variables all jX  for which 

( ),UCL2
jXjT >  

since observations on this subset of variables are definitely contributing 
to the signal. 

From the set of variables not contributing to the signal. Compute the 
2T  statistic for all possible pairs of variables. For example, for all 

( )ji XX ,  with ji ≠  compute ( ),
2

, ji XXT  and compare these values to the 

upper control limit, 

( )
( ) ( )

( ) ( ).2
112UCL 2,2,, −α







−
−+

= nXX Fnn
nn

ji  

Exclude from this group all pairs of variable for which 

( ) ( ).UCL ,
2

, jiji XXXXT >  

The excluded pairs of variables in addition to exceeded single 
variable comprise the group of variables contributing to the overall signal 
continue to iterate in this fashion so as to exclude from the remaining 
group all variables of signaling groups of three variables four variables 
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etc. The procedure produces a set of variables that contribute to the 
signal. And another method of locating the vector components 
contributing to a sing al is to examine the individual terms of the MYT 
decomposition of a signaling observation vector and to determine which 
are large in value. This method was accomplished by comparing each 
term to its corresponding critical value. 

Mason et al. [14] proposed that the distribution governing the 
components of the MYT decomposition for the situation where there are 
no signals is F distribution. For the case of p variables, these are given by 

( ),
1~ 1,1

2
−






 +

nj Fn
nT  (36) 

for unconditional terms, and by 

( ) ( )
( ) ( ),1

11~ 1,1
2

1,,2,1, −−− 







−−
−+

kk njj Fnn
nnT …  (37) 

for conditional terms. Where k  equals the number of conditioned 
variables. For ,0=k  the distribution in (37) reduces to the distribution 

in (36). Using these distributions, critical values for a specified α  level 
and HDS sample of size n for both conditional and unconditional terms 
are obtained as follows: 

( ),
1:termsnalunconditio 1,1, −α





 += nFn

nCV  

( ) ( )
( ) ( ).1

11:termslconditiona ,1, kk −α







−−
−+

= nFnn
nnCV  (38) 

They add that we can compare each individual term of the decomposition 
to its critical value and make the appropriate decision. 

Interpretation of a signal on a 2T  component 

They (Mason et al. [12]) considered one of the p possible 

unconditional, terms resulting from the decomposition of the 2T  statistic 
associated with a signaling observation. As stated earlier, the term 
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( )
pj

s

XX
T

j

jj
j ,,2,1,2

2
2 …=

−
=  is square of a univariate t statistic for 

the observed value of the th-j  variable of an observation vector X. For 

control to be maintained, this component must be less than its critical 

value, i.e., ( ) ,1
1,1,

2
−α






 +< nj Fn

nT  since ( ) ( )1,1,1,2
−α−

=α nn Ft  they  

re-expressed this condition as jT  being in the following interval: 

( ) ( ) ( ) ( ),
11

1,1, 22 −− αα
+<<+− njn tn

nTtn
n  (39) 

or as 

( ) ( ) ( ) ( ),
11

1,1, 22 −− αα
++<<+− njn tn

nXXtn
nX  (40) 

where ( )1,2 −α nt  is, the appropriate value from a t-distribution with 1−n  

degrees of freedom. This is equivalent to using a univariate Shewhart 
control chart for the th-j  variable. And they considered the form of a 

general conditional term given as 

( )
,2

1,,2,1,

2
1,,2,1,2

1,,2,1,
−

−
−

−
=

jj

jjj
jj

s

XX
T

…

…
…  (41) 

if the value in (41) is to be less than its control limit, 

( ) ( )
( ) ( ) .1

11
1,1,

2
1,,2,1, −−α− 








−−
−+

< kk njj Fnn
nnT …  

Its numerator must be small, as the denominator of these terms is fixed 
by the historical data this implies that component jX  from the 

observation vector ( )pj XXXXX ,,,,, 21
\ ……=  is contained in the 

conditional distribution of jX  given 121 ,,, −jXXX …  and falls in the 

elliptical control region. 
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A signal occurs on the term in (41) when jX  is not contained in 

conditional distribution of jX  given ,,,, 21 jXXX …  i.e., when 

( ) ( )
( ) ( ).1

11
1,1,

2
1,,2,1, −−α− 








−−
−+

> kk njj Fnn
nnT …  

Regression perspective 

Mason et al. [13, 14]  proposed that, in general, 2
1,,2,1, −jjT …  is a 

standardized observation on the th-j  variable adjusted by the estimated 

of the mean and variance form the conditional distribution associated 
with ( ).,,,| 121 −jj XXXX …  The general from of this term was given in 

(41). They considered the estimated mean of jX  adjusted for 

,,,, 121 −jXXX …  and estimated this mean by using the prediction 

equation. 

( ) ( )( ),11\
1,,2,1,

−−
− −+= jjjjjj XXBXX …  (42) 

where jX  is the sample mean of jX  obtained from the historical data. 

The sub vector ( )1−jX  is composed of the observation on ( ,,, 21 …XX  

)1−jX  and ( )1−jX  is the corresponding estimated mean vector, ,jjS  is 

the covariance matrix of the first j components of the vector X. To obtain 

jjS  partition S as follows: 

( )

( ) ( ) ( )
.

\















=

−−−

−

jpjpjpj

jpjjj

SS

SS
S  

Further, partition the matrix jjS  as 

( ) ( ) ( )

( )

.
2\

1

111
















=

−

−−−

jjj

jjjj
jj

SS

SS
S  

Then 
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( ) ( ) ( ) ,1
1

11 −
−

−−= jjjjj SSB  

since the left-hand side of (42) contains ,1,,2,1, −jjX …  which is the 

predicted value of ,jX  the numerator of (41) is a regression residual 

represented by 

( ),1,,2,1,1,,2,1, −− −= jjjjj XXr ……  

rewriting the conditional variance as 

( ).1 2
1,,2,1,

22
1,,2,1, −− −= jjjjj RSS ……  

(see, e.g., Rencher [16] and substituting 1,,2,1, −jjr …  for ( −jX  

),1,,2,1, −jjX …  they expressed 

( )
( )

.
1 2

1,,2,1,
2

2
1,,2,1,2

1,,2,1,
−

−
−

−
=

jjj

jj
jj

Rs

r
T

…

…
…  (43) 

The above results indicate a 2T  signal may occur if something goes 
astray with the relationships between subsets of various variables. This 

situation can be determined by examination of the conditional 2T  terms. 
A signaling value indicates that a contradiction with historical 
relationship between the variables has occurred either (1) due to a 
standardized component value that is significantly larger or smaller than 
that predicted by a subset of the remaining variables or (2) due to a 
standardized component value that is marginally smaller or larger than 
that predicted by a subset of the remaining variables when there is a 

very severe collinearity (i.e., a large 2R  value) among the variables. 
Thus, a signal results when an observation on a particular variable or set 
of variables, is out of control and/or when observations on a set of 
variables are counter to the relationship established by the historical 
data. 
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Improving the sensitivity of the 2T  statistic 

Mason et al. [12, 13] used the decomposition for improving the 

sensitivity of the 2T  in signal detection. They showed that the 2T  
statistic to be a function of all possible regressions existing among a set of 
process variables. Furthermore, they showed that the residuals of the 
estimated regression models are contained in the conditional terms of the 

MYT decomposition. Large residuals produce large 2T  components for 
the conditional terms and are interpreted as indicators of counter 
relationships among the variables. However, a large residual also could 
imply an incorrectly specified model. This result suggests that it may be 

possible to improve the performance of the 2T  statistic by more carefully 
describing the functional relationships existing among the process 
variables. Minimizing the effects of model misspecification on the 

signaling ability of the 2T  should improve its performance in detecting 
abrupt process shifts. They showed when compared to other multivariate 

control procedures, the 2T  lacks the sensitivity of detecting small 
process shifts. They showed that this problem can be overcome by 
monitoring the error residuals of the regressions contained in the 

conditional terms of the MYT decomposition of 2T  statistic. 
Furthermore, they showed that such monitoring can be helpful in certain 
types of on-line experimentation within a processing unit. 

They proposed an alternative form of condition terms, they 
considered the conditional term of the MYT decomposition in (51). This is 
the squares of the th-j  variable of the observation vector which adjusted 

by the estimates of the mean and variance of the conditional distribution 
of jX  given .,,, 121 −jXXX …  They showed that (51) could be written as 

( ) ,2
1,,2,1,

1,,2,1,2
1,,2,1,

−

−
− =

jj

jj
jj s

r
T

…

…
…  (44) 
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this was achieved by noting that 1,,2,1, −jjX …  can be obtained from the 

regression of jX  on :,,, 121 −jXXX …  i.e., 

,11221101,,2,1, −−− ++++= jjjj XbXbXbbX "…   (45) 

where jb  are the estimated regression coefficients. Since 1,,2,1, −jjX …  is 

the predicted value of .jX  The numerator of (41) is the raw regression 

residual, 

( )1,,2,1,1,,2,1, −− −= jjjjj XXr ……   (46) 

given in (44). 

Another form of the conditional term in (41) is obtained by 
substituting the following quantity for the conditional variance contained 
in (44), i.e., by substituting 

( ),1 2
1,,2,1,

22
1,,2,1, −− −= jjjjj RSS ……  

where 2
1,,2,1, −jjR …  is the squared multiple correlation between jX  and 

121 ,,, −jXXX …  this yields: 

( )
.

1 2
1,,2,1,

2

2
1,,2,1,2

1,,2,1,
−

−
−

−
=

jjj

jj
jj

Rs

r
T

…

…
…  (47) 

Much information is contained in the conditional terms of the MYT 
decomposition. Since these terms are, in fact, squared residuals from 
regression equations they can be helpful in improving the sensitivity of 

the 2T  statistic in detecting both abrupt process changes and gradual 
shifts in the process. 

They considered the better the fit of a model, the more sensitive the 
2T  control procedure will be to departures from the model. This suggests 

that more effort should be taken in phase I operations, during 
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construction of the historical database, to insure proper functional forms 
are chosen for the process variables and useful models are created. 

Principal components procedure 

Jakson [6, 8] recommended to use the principal components 
procedure to aid in the interpretation of an out-of-control signal. The 

principal component analysis (PCA) technique decomposes the 2T  
statistic into a sum of p independent principal components, which are 
linear combinations of the original variables, and using these components 
to help for solving this identification problem. The PCA used to reduce to 
dimensionality of a data set which consists of a large number of 
interrelated variables. While retaining as much as possible of the 
variation present in the data set. This goal is achieved by transforming 
the original variables to a new set of uncorrelated variables, which are 
called the principal components. This transformation is a principal axis 
rotation of the variance and covariance matrix of the data set, and the 
elements of the characteristic vectors or the eigenvectors of the 
covariance matrix are direction cosines of the new axes related to the old. 

The transformed new uncorrected variable or the principal 
components are normally numbered in descending order according to the 
amount at the variation. The use of the method of PCA in the field of 
multivariate quality control was first introduced by Jackson and Morris 
[9]. They identified a large number (p) of correlated variables that 
account for the quality of the process. 

They notice that the use of Hotelling’s 2T  may involve computational 
problems since the determinant of the variance and covariance matrix is 
near zero. The solution is to transform the original p variables to lesser k 
principal components. 

Jackson [6] proposed using PCA to interpretation an out-of-control 

single by decomposing 2T  into independent component. Jackson 
proposed that the starting point of the statistical application of the 
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method of principal components is the sample covariance matrix S, for a 
p-variate problem in (3). 

If the covariances are not equal to zero, it indicates a relationship 
existing between those two variables, the strength of that relationship (if 

it is linear) being represented by the correlation ( ) .
ji

ij
ij SS

S
r =  

A principal axis transformation will transform p correlated variables 

pXXX ,,, 21 …  into p new uncorrelated variables pZZZ ,,, 21 …  the 

coordinate axes of these new variables being described by the vectors iu  

which make up the matrix U of direction cosines used in the following 
transformation: 

( ),\ XXUZ −=   (48) 

the transformed variables are called the principal components of X. The 
th-j  principal component would be 

( ).\ XXuz ii −=   (49) 

If one wishes to transform a set of variables X by a linear transformation 

( ),\ XXUZ −=  whether U is orthogonal or not, the covariance matrix 

of the new variables zS  can be determined directly from the covariance 

matrix of the original variables S by the relationship: 

.\SUUSz =   (50) 

However, the fact that U is orthonormal is not a sufficient condition 
for the new variables to be independent. Only a transformation such as 
the principal axis transformation will produce the diagonal element zS  

of the matrix L, where 
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The fact that zS  is diagonal elements of L means that principal 

components are uncorrected. He added that we can also determine the 
correlation of each principal component with each of the original 
variables; this is useful for diagnostic purposes. The correlation of the 

th-i  principal component zS  and th-j  original variable jX  can be 

determined as 

.
j

iij
Xz s

Lu
r ji =  (51) 

Another interesting property of principal components is the fact that the 
Equation (48) can be inverted to 

,zUXX +=   (52) 

by virtue of the fact that U is orthonormal so that .\1 UU =−  This means 
that if we know the values of the principal components, we can determine 
what the original data were. 

Principal component form of 2T  

Jackson [8] proposed that the 2T  can be expressed as a function of 
the principal components of the estimated covariance matrix. He gives an 

alternative form of the 2T  statistic as: 

( ) ( ) ,
2

1
1\2

i
ip

i
zXXSXXT
λ

=−−= ∑ =
−  (53) 
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where pλ>>λ>λ "21  are the eigenvalues of the estimated covariance 

matrix S and the ,,,2,1, pizi …=  are the corresponding principal 

components. 

Each of these component is obtained by multiplying the vector 

quantity ( )XX −  by the transpose of the normalized eigenvector iU  of S 

corresponding to :iλ  i.e., ( ).\ XXUz ii −=  

Each iz  is a scalar quantity and the 2T  statistic is expressed in 

terms of these values. 

The representation in (53) is derived from the fact that the estimated 
covariance matrix S is a positive definite symmetric matrix. Thus, its 

singular value decomposition is given as ,\UAUS =  where U is a pp ×  

orthogonal matrix whose columns are the normalized eigenvectors iU  of 

S, and A is a diagonal matrix whose elements are the corresponding 
eigenvalues, 

( ) .

00

00

00

and,,,
2

1

21



























λ

λ

λ

==

p

p AUUUU

"

""""

"

"

…  

Note that 

.\11 UUAS −− =   (54) 

Substituting this quantity into the 2T  statistic of (53), we have 

( ) ( )XXUUAXXT ii −−= − \1\2  

ZAZ 1\ −=  
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,
2

1 i
i

p

i

Z
λ

= ∑
=

 (55) 

where ( )XXUz ii −= \  and .,,, 21
\

pzzzZ …=  

A Hotelling’s 2T  statistic for a single observation also can be written 
as 

( ) ( ) ,1\1\2 YRYXXSXXT −− =−−=  

where R is the estimated correlation matrix and Y is the standardized 
observation vector of x, i.e., 

( )

,

1

1

1

1

1
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


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where ( )XjXrij ,corr 1=  and 

( ) ( ) ( )
[ ].,,,,,, 21

2
2

1
1

p
p

p yyyS
XX

S
XX

S
XX …… =











 −−−  

The matrix R (obtained from S) is a positive definite symmetric matrix 
and can be represented in terms of its eigenvalues and eigenvectors. 

Using a transformation similar to (64), the above 2T  can be written as 

,
2

1

2
i
i

p

i

WT
γ

= ∑
=

 (56) 

where pγ>>γ>γ …21  are the eigenvalues of the correlation matrix R, 

and pwww ,,, 21 …  are the corresponding principal components of the 
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matrix iwR,  can be determined by the following transformation: 

( ) ,,,2,1,\ piXXvw ii …=−=  where the ,,,, 21 pvvv …  are the 

corresponding normalized eigenvectors of R Equation (56) is not to be 
confused with (53). The first equation is written in terms of the 
eigenvalues and eigenvectors of the covariance matrix, and the second is 
in terms of the eigenvalues and eigenvectors of the estimated correlation 

matrix. These are two different forms of the same Hotelling’s 2T  as the 
mathematical transformations are not equivalent. 

The principal component representation of the 2T  plays a number of 
roles in multivariate statistical process control (SPC). The control region 

can be defined by the UCL. The observations contained in the 2T  values 
less than the UCL, i.e., for each ,iX  

UCL.2 <iT  

Thus, by (56) 

UCL.
2

2

2
2

1

2
12 <

γ
++

γ
+

γ
=

p

pwwwT …  

The control region is defined by the equality 

,UCL
2

2

2
2

1

2
1 =

γ
++

γ
+

γ p

pwww …  

which is the equation of a hyper ellipsoid in a p-dimensional space 
provided the eigenvalues pγ>>γ>γ …21  are all positive. The fact that 

the estimated correlation matrix R is a positive definite matrix 
guarantees that all the s’iγ  are positive. 

Note that in special case of the principal component space of the 

estimated correlation matrix, 2T  can be reduced to 
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UCL
2

2
2

1

2
12 =

γ
+

γ
=

wwT , (57) 

which gives the equation of the control ellipse. The length of the major 
axis of the ellipse in (57) is given by 1γ  and the length of the minor axis 

is given by .2γ  The axes of this space are the principal components, 1w  

and .2w  The absence of a product term in this representation indicates 

the independency between 1w  and .2w  This is a characteristic of 

principal components, since they are transformed to be independent. 

Assuming that the estimated correlation r is positive it can be shown 
that ( )r+=γ 11  and ( ).12 r−=γ  For negative correlations, the iγ  

values are reversed. One can also show that the principal components 

can be expressed as ( ) ( ) .2,2 122211 yywyyw −=+=  From these 

equations, one can obtain the principal components as functions of the 
original variables. 

4. Application of Multivariate 2T  in Industrial 

Delta Fertilizers and Chemical Industries is considered one of the 
leading companies in the field of fertilizers production in Egypt. About 
4500 employees are working for it, on the various managerial levels. 
Urea production is one of the major products of the company. The 
production of urea occurs through three stages, summarized as follows: 

A. High pressure stage 

In this stage, urea is produced through two reactions; the first 
reaction occurs by condensation of Ammonia gas and Carbon dioxide 
under high pressure and temperature for the sake of the production of 
intermediate material, known as Carbamate. The second reaction 
happens by separating the water from the Carbamate in order to a chive 
urea. In this, stage the condensation of urea approximately 56%. 
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It contains 16 variables, these are: 

1 X1 E-201Outlet Temperature 

2 X2 Outlet cold NH3 from E- 201 

3 X3 CO2 to Train 

4 X4 CO2 pressure to synthesis 

5 X5 CO2 after E-22 

6 X6 R-201 

7 X7 Temperature in reactor R-201 

8 X8 Temperature in reactor R-201 

9 X9 Temperature in reactor R-201 

10 X10 Temperature in reactor R-201 

11 X11 Stripper level 

12 X12 Liquid leaving the Stripper 

13 X13 Stream from E-204 to j-201 

14 X14 Conditioned water to scrubber E-204 

15 X15 Conditioned water from scrubber E-204 

16 X16 Stream from j-203 

 

Table analysis of laboratory in this stage: 

1 t1.1 NH3 Reactor outlet 

2 t1.2 CO2 Reactor outlet 

3 t1.3 UR Reactor outlet 

4 t1.4 B1 Reactor outlet 

5 t1.5 H2O Reactor outlet 

6 t2.1 NH3 Stripper outlet 

7 t2.2 CO2 Stripper outlet 

8 t2.3 UR Stripper outlet 

9  t2.4 B1 Stripper outlet 

10 t2.5 H2O Stripper outlet 
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B. Low pressure stage 

In this stage, the condensation of urea liquid rises from 56% to 71%. 
This happens through the decomposition of the remaining Carbamate 
and the elimination of water under low pressure. 

It contains seven variables, these are: 

1 y1 Urea solution from stripper E-202 

2 y2 Steam to E-205 

3 y3 Urea carbonate solution from stripper T-201 to E-205 

4 y4 Gas leaving T-201 

5 y5 Level in TK-201 

6 y6 P-203 

7 y7 Urea solution in TK-201 

 

Table analysis of laboratory in this stage: 

1 t3.1 NH3 D 202 Outlet 

2 t3.2 CO2 D 202 Outlet 

3 t3.3 UR D 202 Outlet 

4 t3.4 B1 D 202 Outlet 

5 t3.5 H2O D 202 Outlet 

6 t4.1 NH3 In TK 201 

7 t4.2 CO2 In TK 201 

8 t4.3 UR In TK 201 

9 t4.4 B1 In TK 201 

10 t4.5 H2O In TK 201 

11 t5.1 NH3 In PI 302 

12 t5.2 CO2 In PI 302 

13 t5.3 UR In PI 302 

C. Evaporation and prilling stage 

This stage occurs by two stages: 
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(i) Evaporation stage 

In this stage, the condensation of urea rises from 71% to 98.7% 
approximately and the urea liquid trams forms to urea melt. This 
happens under high pressure and temperature. 

(ii) Prilling stage 

In this stage, the urea melt is through formed into prilling in the 
prilling tower. 

It contains four variables, these are: 

1 Z1 Urea solution from D-204 to E-209 

2 Z2 D-205 Vacuum 

3 Z3 Urea to prilling tower X-202 

4 Z4 E-211 Vacuum 

 

Table analysis of laboratory in this stage: 

1 t6.1 B1 

2 t6.2 H2O 

3 t6.3 Pills > 3.35 

4 t6.4 Pills 3.35: 2.4 

5 t6.5 Pills 2.4: 1.4 

6 t6.6 Pills 1.4: 1.0 

7 t6.7 Pills < 1.0 

8 t6.8 UR 

Data description: 

For the application of multivariate quality control, chart data 
originate from urea production process, which consists of the three stages 
and the analysis of laboratory, which discussed above. 

The number of the sample is 732 observations taken per hour. 

The advantages of this sample that, it has several variables and 
several stages of the production. This advantage of the production is the 
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basic reason for choosing this production to allow us to study the 
multivariate quality control charts. 

In this application, we shall introduce the most common using 
technique of multivariate quality control charts; MEWMA control chart 

& Hotelling’s 2T  control chart. 

A Hotelling 2T  chart consists of: 

■ Plotted points, each of which represents 2T  statistic for each 
observation. 

■ A center line (green), which is the median of the theoretical 

distribution of 2T  statistic. 

■ Control limits (red), which provide a visual means for assessing 
whether the process is in-control. The control limits represent the 
expected variation. 

MINITAB marks points outside of the control limits with a red 
symbol. 

MINITAB indicates which points is out-of-control by using 

decomposition of 2T  statistic, along with the P-value for each significant 
variable. 

4.1. Hotelling 2T  chart of 16X,,1X …  and 5.2t,,1.1t …  

Test results for T squared chart of 16X,,1X …  and .5.2t,,1.1t …  

TEST. One point beyond control limits. 

Test Failed at points: (Less than LCL) 
114 118 123 128 133 134 138 140 143 147 

151 156 161 166 167 171 173 349 352 353 

354 361 373 374 378 384 385 386 576 578 

582 586 590 594 598 600 604 608 612 616 

620 624 626 630 634 638 642 646 650 652 

656 660  
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Test Failed at points: (Greater than UCL) 

13 20 30 40 43 45 48 50 52 56 

60 66 80 100 245 247 250 252 254 259 

261 265 276 448 458 483 636 647 657 658 

663 664 703 714 715 718 721 724 727 730 

 

Figure 1. 2T  chart of 16X,,1X …  and .5.2t,,1.1t …  

The Hotelling 2T  chart of 16X,,1X …  and 5.2t,,1.1t …  can be 

summarized as follows: 

● The lower and upper control limits are 9.7 and 52, respectively. 

Therefore, we expect the 2T  Statistics to fall between 9.7 and 52. The 
center line or median, is 25.3. 

● Test results indicate that 52 points less than LCL, for example, 
point 114 exceeds the lower control limit. 

● Test results indicate that 40 points greater than UCL, for example, 
the test results indicate that point 13 exceeds the upper control limit. 
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● Test results indicate 92 point through beyond the control limits. 
Then the out-of-control rate 12.6% and the in-control rate 87.4%. 

4.2. Hotelling 2T  chart of 7y,,1y …  and 5.4t,,1.3t …  

Test results for T squared chart of 7y,,1y …  and .5.4t,,1.3t …  

TEST. One point beyond control limits. 

Test Failed at points: (Greater than UCL) 

28 91 114 130 150 200 250 256 264 268 

551 703 714 715 718 721 724 727 730  

 

Figure 2. 2T  chart of 7y,,1y …  and .5.4t,,1.3t …  

The Hotelling 2T  chart of 7y,,1y …  and 5.4t,,1.3t …  can be 

summarized as follows: 

■ The lower and upper control limits are 0.2 and 43.6, respectively. 

Therefore, we expect the 2T  statistics to fall between 0.2 and 43.6. The 
center line, or median, is 19.3. 
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■ Test results indicate that 19 point greater than UCL, for example 
test results indicate that point 91 exceeds the upper control limit. 

■ Test results indicate 19 point that are beyond the control limit. 
Then the out of control rate 2.59% and the in-control rate 97.41%. 

4.3. Hotelling 2T  chart of 4Z,,1Z …  and 8.6t,,1.6t …  

Test results for T squared chart of 4Z,,1Z …  and 8.6t,,1.6t …  

TEST. One point beyond control limits. 

Test Failed at points: (Greater than UCL) 

245 248 250 252 254 259 261 265 269 272 276 

280 284 489 491 493 495 497 515 517 519  

 

Figure 3. 2T  chart of 4Z,,1Z …  and 8.6t,,1.6t …  

The Hotelling 2T  chart of 4Z,,1Z …  and 8.6t,,1.6t …  can be 

summarized as follows: 
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■ The lower and upper control limits are 2.37 and 31.63, respectively. 

Therefore, we expect the 2T  statistics to fall between 2.37 and 31.63. The 
center line, or median, is 11.35. 

■ Test results indicate that 21 point greater than UCL, for example 
test results indicate that point 245 exceeds the upper control limit. 

■ Test results indicate 21 point that are beyond the control limit. 
Then the out of control rate 2.87% and the in-control rate 97.13%. 

5. Test Results of Application 

The application is shown that in high process stage, test results of 

Hotelling 2T  chart indicate that the out-of-control percentage 87.4% and 
the in-control percentage 12.6%, and it shown that in low process stage, 

test results of Hotelling 2T  chart indicate that the out-of-control 
percentage 2.59% and the in-control percentage 97.41%. 

It is shown that in the evaporation and prilling stage, test results of 

Hotelling 2T  chart indicates that the out-of-control percentage 2.87% 
and the in-control percentage 97.13%. 

6. Conclusions 

The results allow us to determine whether the joint process 

variability is in control or out-of-control. Hotelling’s 2T  charts used to 
determine whether or not the process mean vector (a vector of the process 
means that accounts for the mean of each charted variable) for two or 
more variables is in-control. An in-control process exhibits only random 
variation with the control limits. An out-of-control process exhibits 
unusually variation, which may be due to the process of assignable 
causes (unusual occurrences that are not normally part of the process). 

2T  charts allow us to simultaneously monitor whether two or more 
related variables are in control. 
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Finally 

■ The company should use multivariate Hotelling’s 2T  quality 
control chart to monitor the quality of the urea production. 

■ Too, the company should use the Hotelling’s 2T  chart to determine 
variables which causes the out-of-control signals. 
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