
Journal of Mathematical Sciences: Advances and Applications
Volume 46, 2017, Pages 51-70
Available at http://scientificadvances.co.in
DOI: http://dx.doi.org/10.18642/jmsaa_7100121826

2010 Mathematics Subject Classification: 68U35.
Keywords and phrases: anomaly-based intrusion detection system, ssh brute force attack, k-
means, cluster analysis.
Received May 1, 2017

 2017 Scientific Advances Publishers

EVALUATING K-MEANS++ CLUSTERING FOR
ANOMALY-BASED INTRUSION DETECTION
SYSTEMS-FOCUS ON EXTERNAL THREATS

MATTHEW K. COUGHLAN1, JOHN TUCKER1, THOMAS NELSON2
and BENJAMIN KLIMKOWSKI3

1United States Military Academy
West Point
NY 10996
USA

2Department of Mathematical Sciences
United States Military Academy
Building 601 (Thayer Hall)
Room 221A, Cullum Road
West Point
NY 10996
USA
e-mail: thomas.m.nelson@gmail.com

3Department of Electrical Engineering and Computer Sciences
United States Military Academy
West Point
NY 10996
USA

MATTHEW K. COUGHLAN et al. 52

Abstract

Intrusion detection systems (IDS) are systems used to defend a network against
cyber attacks. Specifically, anomaly-based IDSs are systems that detect
malicious activity on a network by identifying departures in network traffic
from a previously established norm. For this project, we use a data set of
network activity and assess the validity and effectiveness of k-means++
clustering at designating certain external traffic as malicious. We focus our
detection efforts in on secure shell (SSH) brute force attacks. We evaluate the
chosen clustering method by looking at benchmarks such as success/failure
rates, false positive rates, and consistency across varying data.

1. Intrusion Detection Systems: A Background

A. Background

Pathan [6] discusses the evolution, implementation, and operation of
intrusion detection systems (IDS). Intrusion detection systems have been
around since the beginning of the internet. Although IDS saw vast
improvement in the 1980s, it was not until the early 1990s that IDS
found commercial significance with the invention of the automated
security measurement system (ASIM) by the US Air Force. IDS are now
one of the most popular methods of security in networking.

IDS can be classified into two main categories: misuse IDS
(commonly referred to as signature-based IDS) and anomaly-based IDS.
Misuse IDS identify potential attacks on a network by comparing the
attack to known signatures which have been encoded into an expert
database. Through the pattern matching method, misuse IDS match
snippets of text or binary acquired from the malicious packet to formerly
established signatures. Misuse IDS are susceptible to many limitations,
including the ability of hackers to circumvent the system altogether by
simply changing around certain pieces of their code such that no
signature in the database matches the malicious code. The biggest
limitation of misuse IDS is simply that they lack the ability to detect
zero-day attacks on a network (attack for which there is no known
signature). Anomaly-based IDS on the other hand are capable of
identifying attacks that have never been detected before. Anomaly-based

EVALUATING K-MEANS++ CLUSTERING FOR … 53

IDS create models that represent the normal or expected behaviour of
networks. Deviations from this expected behaviour raise an alarm. Both
types of detection systems have four possible outcomes. A false negative
is the most dangerous outcome in which the system fails to detect an
actual attack. A true negative occurs when the system correctly dismisses
network traffic as non-malicious. False positives are where the IDS
misidentifies specific traffic as an intrusion. Finally, a true positive is the
ideal situation in which an IDS correctly identifies an attack (Pathan
[6]).

IDS architecture can be broken down into three main types: host-
based IDS (HIDS), network-based IDS (NIDS), and hybrids. HIDS
monitor behaviour on a specific machine and confront threats directed to
the machine without having to capture traffic from the whole network.
NIDS, on the other hand, monitor data on large pieces of the network.
NIDS consist of a data collector, manager, and communication module
that transmits/receives analysis results. Neither type of architecture is
capable of monitoring encrypted traffic. Hybrid combines the advantages
of HIDS and NIDS into one system. Generally, hybrids combine misuse
and anomaly-based methods in order to maximize detection and
minimize false positives. Hybrids also allow for centralized management
of the network as well as each individual host. IDS architecture can be
centralized (one manager responsible for event analysis, detection,
classification, and system action), hierarchical (NIDS and HIDS managed
separately), or distributed (multiple agents handle processing, analysis,
and detection) (Pathan [6]).

Once an intrusion is detected, the IDS has a few different post-
detection options. The system can take an active approach, which is
commonly referred to as an intrusion prevention system (IPS). The IPS
sends packets to the site of the intrusion in order to interrupt and/or
cease the connection. The IPS also interacts with the edge routers
(routers standing between the network and the outside world) in order to
establish rules regarding certain, potentially hazardous, source

MATTHEW K. COUGHLAN et al. 54

addresses. In contrast to the active approach, the system can take a
passive approach where it simply generates and sends notifications to the
system operator indicating that there has been an intrusion (Pathan [6]).

In addition to the pattern-based method inherent in misuse IDS, IDS
can take a few other approaches to detect intrusions. Most IDS analyze
the header contents of common protocols: internet protocol (IP),
transmission control protocol (TCP), and user datagram protocol (UDP).
More advanced IDS go further, performing what is known as “protocol
analysis”. If anything about the traffic deviates from the standards
established by the industry protocol, then the system raises an alarm.
Protocol analysis facilitates detection of both known and unknown
attacks; thus, it falls under the category of anomaly-based IDS since it
looks for anomalies in the protocol standards. IDS can also use the
statistical and probabilistic approach. Instead of rules or signatures,
many IDS rely on Bayesian statistics, which are heavily centered on
conditional probability. The Bayesian model is created using both real
attack samples and false positive samples (the sample must be large).
The statistical approach is generally implemented into an already
existing misuse IDS in order to increase the system’s accuracy. Finally,
the neural network based approach is an approach that requires no user
defined parameters. Instead, it emphasizes constant learning based on
experience. Neural network based IDS are mostly research-based as of
right now; commercial products are a rarity.

Bolzoni et al. [2] claim that anomaly-based intrusion detection
systems are often inefficient when it comes to classifying the attacks they
detect. Therefore, security teams or administrators have to manually
process each alert generated by the IDS. There are two main challenges
for security personnel. First, the most harmful attacks occur in stages
and security teams must catch these attacks in the early stages. Second,
there are a lot of alerts generated by BOTnets and automatic scanners
that, although considered true positives, are not regarded as harmful.
Therefore, there are many small attacks that a security team must sift

EVALUATING K-MEANS++ CLUSTERING FOR … 55

through in order to get to the main attacks. Whereas classification is
trivial when it comes to signature-based IDS, anomaly-based
classification is far more difficult. Bolzoni et al. present Pancea, a system
that uses machine learning techniques to automatically and
systematically classify attacks detected by the IDS. Pancea analyzes the
payload of an attack, so an attack without a payload cannot be properly
analyzed. Most attacks inject some kind of data in to their targeted
systems, so this is not a major limitation.

The researchers use two algorithms in their experiments: support
vector machines (SVM) and the RIPPER rule learner. These non-
incremental algorithms iterate on samples several times to build a best
classification model unless the training phase is started from scratch.
SVM is a set of supervised learning methods used for classification. SVM
uses “support vectors” and “margins” to classify data into different groups
and then assigns new data to a specific group based on distance (Bolzoni
et al. [2]). RIPPER is a rule induction algorithm that uses a set of IF-
THEN rules. IF (condition), THEN (conclusion). Essentially, RIPPER
takes already identified data, and builds an algorithm from the ground
up that accurately classifies each data value. It heuristically adds one
condition at a time until all of the data has been accurately classified.
RIPPER then implements an optimization phase in order to simplify the
set. Once the algorithm has performed on the teaching set, it is ready to
be used on outside sources of intrusion. After implementing the
algorithms, the study showed that the classification accuracy is almost
always above 75%, with SVM outperforming RIPPER by a narrow
margin in each trial (Bolzoni et al. [2]).

2. Clustering Methods

A. Cluster analysis

Leung and Leckie [4] provide a good overview of cluster analysis
methods. Unsupervised anomaly detection makes two assumptions about
the data: the majority of the network data is normal and some portion is

MATTHEW K. COUGHLAN et al. 56

malicious; the attack traffic is statistically different from the normal
traffic. The algorithm takes unlabelled data and attempts to find
intrusions buried in the data. Many techniques involve the classification
of threats first through clustering, then intrusion detection through the
use of an algorithm.

Clustering is the method of grouping observations into meaningful
subclasses. Members of a subclass are meant to be similar whereas
members of different clusters should be noticeably different. Clustering
methods can be useful in classifying large amounts of data. Once an
observation is labelled, it is then grouped into a cluster with observations
that share similar traits.

A few different clustering methods currently in use are partitioning
methods, density-based methods, and grid-based methods. Given a
database of n objects, a partitioning method constructs k partitions of
data where each partition represents a cluster. Density-based methods
are based on the assumption that clusters are dense regions in the data
space that are separated by regions of lower density. Rather than data
points being assigned to a cluster, a cluster is defined as a specific
density or higher within a given radius. Grid-based methods divide the x-
y grid into a finite number of cells. This approach has a very fast
processing time. The algorithm in Leung’s paper assumes that any point
falling within the clusters is normal while all others are considered
anomalies (Leung and Leckie [4]). In many cases, clustering algorithms
will place anomalies in an entirely separate cluster of their own.

B. K-means and k-means++

Arthur and Vassilvitskii [1] provide insight into the method of
k-means++. In the original k-means formulation, we are given an integer
k and a set of n data points. The goal is to choose k centers in a way that
minimizes ,ϕ the sum of the squared distances between each point and
its closest center. K-means involves choosing k centers (usually uniformly
random) and assigning each data point to the closest center. The center is
then recalculated to be the center of mass of the cluster of data points.

EVALUATING K-MEANS++ CLUSTERING FOR … 57

This process occurs over and over until the optimal clustering out of all
nk possibilities is achieved.

,min 2cxCc
Xx

−=ϕ ∈
∈
∑

where c is the mean of a specific cluster center, and x is the value of a
given observation.

Arthur and Vassilvitskii propose a way of initializing k-means by
choosing random starting centers with very specific probabilities – choose
a point p as a center with probability proportional to p’s contribution to
the overall potential. In the original k-means, we choose initial centers
uniformly at random. By recalculating the center of mass of each cluster
during each iteration, ϕ is guaranteed to decrease with each iteration.
The algorithm for k-means is:

1. Arbitrarily choose k initial centers { }.,,1 kccC …=

2. For each { },,,1 ki …∈ set the cluster iC to be the set of points in

X that are closer to ic than they are to jc for all .1≠j

3. For each { },,,1 ki …∈ set ic to be the center of mass of all points

in .1: xccC
iCxi

ii ∑ ∈
=

4. Repeat Steps 2 and 3 until C no longer changes” (Arthur).

The k-means++ also begins with an arbitrary set of cluster centers;
however, k-means++ employs a new algorithm:

Let ()xD denote the shortest distance from a data point x to the
closest center which we choose.

1a. Choose an initial center 1c uniformly at random from X.

1b. Choose the next center ,ic selecting Xxci ∈′= with probability

()
()

.2

2

xD
xD

Aa∑ ∈

′

MATTHEW K. COUGHLAN et al. 58

The probability term is known as 2D“ weighting”.

1c. Repeat Step 1b until we have chosen a total of k centers.

2-4. Proceed with the standard k-means algorithm noted above
(Arthur).

The researchers tested k-means and k-means++ on four datasets and
tested ,25,10=k and 50. The k-means++ consistently outperformed

k-means, both by achieving a lower potential value (),ϕ in some cases by

several orders of magnitude, and also by having a faster running time.

The 2D seeding ran slightly slower than uniform seeding, but was still a
faster algorithm since the search converged after fewer iterations. In
contrast to k-means, k-means++ almost always perfectly clustered
synthetic, pre-distributed datasets. K-means++ achieved a 10% accuracy
improvement over k-means on the real-world datasets as well.
K-means++ also achieved potentials that were 20 to 1000 times smaller
than those achieved by k-means.

There is an alternate supervised anomaly detection method called
“K-means + C4.5” (Muniyandi et al. [5]). It combines k-means with the
C4.5 decision tree. The k-means method is cascaded with the C4.5 by
building decision trees using the instances in each k-means cluster. This
alleviates two problems in k-means: forced assignment and class
dominance. Forced assignment occurs when the k parameter is
significantly less than the number of natural groupings within the
training data. Class dominance occurs in a cluster when the training
data has a large number of instances from one class and very few
instances from the others. Cascading involves the selection phase and the
classification phase. In the selection phase, the closest cluster to the
observation is selected. In the selected cluster, the decision tree
corresponding to that cluster is generated. In the classification phase, the
test instance is classified as normal or anomaly (intrusion) using the
decision tree result. The observation is included in the cluster with a
label of either normal or anomaly.

EVALUATING K-MEANS++ CLUSTERING FOR … 59

The C4.5 algorithm is as follows:

Given a set S of cases, C4.5 grows an initial decision tree using a
divide-and-conquer algorithm.

“1. If all the cases in S belong to the same class or S is small, the tree
is a “leaf” (i.e., box) labelled with the most frequent class in S.

A. Otherwise, choose a test based on a single attribute with two or
more outcomes (i.e., great than, less than). Make this test the root of the
tree with one branch for each outcome of the test, partition S into
corresponding subsets S1, S2, … according to the outcome for each case,
and apply the same procedure recursively to each subset” (Muniyandi et
al. [5]).

K-means + C4.5 does noticeably better than k-means alone when
classifying a data set.

K-means clustering has two main shortcomings: number of clusters
dependency and degeneracy. “Number of clusters dependency” simply
means that the value of k is extremely important to the clustering result.
The mathematical program R contains both methods of k-clustering and
methods of determining the optimal number of k’s. Degeneracy means
that the end result of the clustering may include some empty clusters
which are useless. There are algorithms which can overcome the issue of
degeneracy (Guan et al. [3]).

3. The Data Set

A. Data source

 The effective comparison of various intrusion detection systems is
hinged upon implementing the systems across a robust and realistic data
set. Data sets are more often than not suboptimal for the needs of
intrusion detection research. Most data sets are static datasets which
means that they likely fail to reflect the most current and ever-changing
state of intrusions. Static data sets are simply “outdated, unmodifiable,

MATTHEW K. COUGHLAN et al. 60

inextensible, and irreproducible” (Shiravi). Intrusion detection systems
must be rigorously tested, evaluated, and retested prior to their
implementation into real-world applications. The best method for testing
and evaluating an IDS is running it through a real network that is
transmitting both normal and intrusive traffic. However, realistic data
sets are extremely hard to come by, and most data sets that are readily
available are over-specified to the IDS that they were originally created
to test.

The Information Security Center for Excellence at the University of
New Brunswick (UNB ISCX) used live network devices and workstations
in order to create the UNB ISCX intrusion detection evaluation data set
(Shiravi). Agents on the network imitated previously observed user
behaviours while attack scenarios were executed to replicate real-world
malicious traffic. The data set itself is comprised of multiple individual
data files captured over the course of various days in 2010. The files are
comprised of simulated network traffic, containing malicious HTTP,
distributed denial of service (DDoS), and secure shell attacks as well as
countless examples of normal, baseline traffic (Shiravi). The data file we
use, captured on June 17, 2010, is 13 gigabytes of realistic SSH Brute
Force data mixed with normal network traffic.

 For various reasons, the UNB dataset is by far the best dataset to use
for comparing different IDS-related clustering methods. First, as
previously mentioned, the dataset contains realistic network traffic. No
anomalies have been artificially implanted into the data, and the data
contains no tags within the actual data that indicate the true normal or
malicious nature of the traffic – had these identifiers been added to the
raw data, then there is the possibility that inconsistencies would be
introduced into the final dataset (Shiravi). Second, the dataset is
externally labelled, which means that there is an identified distinction
between the anomalous and normal traffic. After running a clustering
algorithm, we are able to evaluate our results by comparing them to the
actual labelled traffic. This greatly assists in the evaluation process and
allows for more realistic benchmarks in IDS performance.

EVALUATING K-MEANS++ CLUSTERING FOR … 61

The third advantage to using the UNB dataset lies in how much
detail the dataset captures. The data includes all of the traffic that occurs
on the network over the course of one 30-minute period. It excludes no
network interactions. Similarly, for every interaction, the dataset
includes information about the traffic’s payload data. This allows for a
more robust analysis of the data that is passing through the network
(Shiravi). The final advantage of the UNB dataset is that it contains a
diverse set of intrusion scenarios. Cyber-attacks have evolved into
different classes of size, type, and complexity. Some attacks vary in
frequency while others may follow a multi-stage algorithm in order to
undermine a network with exacting precision over time. The UNB
dataset takes the variance of attacks into account and includes multiple
types of intrusions, making the dataset more realistic and giving the IDS
methods a real-world test of effectiveness (Shiravi).

B. The attack: Brute force SSH

Secure shell (SSH) is a protocol used for remote login which allows a
user to securely operate a remote host over an unsecure network. A brute
force attack occurs when a system such as a BOTnet tries to crack a
password by simply testing a high volume of randomly generated
combinations of characters or words (Shiravi). As password length
increases, the average amount of time to find the correct password
increases exponentially.

Brute force attacks are a very common type of intrusion since they
can break into accounts with weak username-password combinations.
The dataset that we are using contains various instances of brute force
attacks which pursued an SSH account on the simulated UNB network.
The attacks used a dictionary style method; the protocol ran through a
5000 word dictionary that contains entries of varying lengths and
characters. The overall attack ran for 30 minutes and was able to acquire
the account credentials of the network admin. The attacker then used the
account credentials to remotely log into the server (Shiravi).

MATTHEW K. COUGHLAN et al. 62

C. Initial data analysis

Each protocol executed in the network is defined in the dataset by a
range of variables, including the source and destination IP addresses, the
start and end times, the total source and destination bytes, the total
source and destination packets, and the protocol type. For analysis
purposes, we took a small slice of the data; specifically, of the nearly
700,000 unique observations from June 17, 2010 we choose a random
sample of 61,832 which allowed us to more efficiently carry out some
preliminary work with the data. Of those protocols, 61,651 were normal
traffic and 181 were malicious attacks. Using the external labels
provided by UNB, we saw that all 181 attacks were an SSH protocol,
though there were 27 other SSH attempts that were simply normal
traffic. All SSH traffic was sent to the destination IP of 192.168.5.122 on
port 22 and all malicious SSH attempts originated at IP 131.202.243.90.

Comparison of IP and port destination frequencies did not
immediately show any significant results. However, one of the data
variables that immediately jumped out at us was the difference in time
duration between the different protocols. The time duration of all
protocols ranged from less than 1 second to nearly 14 hours; however, for
SSH specifically, the time durations ranged from 2 seconds to just under
10 minutes. Of all 181 SSH attacks, 149 were either 3 seconds or 4
seconds in length, whereas normal SSH traffic generally took at least 10
seconds to complete. Given that over 80% of the observed malicious SSH
traffic falls within the 3-4 second range, it appears that time duration
may play a significant role in identifying SSH attacks when compared to
normal SSH traffic. One possible explanation for this discrepancy in
timing between attacks and normal traffic is that the benign traffic is
usually initiated by a human user whereas the attacks are generally
BOTnets executing commands at a much higher rate than the average
person ever could.

EVALUATING K-MEANS++ CLUSTERING FOR … 63

4. Preliminary Results

A. Initial efforts

The purpose of our project changed direction a few times from the
start. At first, we intended to compare the effectiveness of different
clustering methods in detecting SSH brute force attacks. However, we
ran into some issues when trying to analyze the initial data set. The first
issue was that we did not have enough SSH data. Given that only 208 of
the 61,832 protocols were SSH, we simply could not make any major
inferences on the nature of the SSH traffic. Taking into account the
variables of packet size, number of packets, and time duration of each
protocol and applying the method of k-means proved to be useless. We
used the method of linear discriminant analysis, a technique that
incorporates pattern recognition and machine learning to create a linear
algorithm which separates data into different classes, in order to
illuminate the underlying issues with our data set. The linear model that
we created accurately classified 12 out of the 181 attacks correctly. The
other 169 attacks were classified as “normal”. Likewise, 373 of the 61,651
normal traffic protocols were classified as “attack”, essentially drowning
out the 12 that we had correctly assigned as attacks. The relatively low
amount of SSH in the larger dataset meant that clustering methods
would have low false positive rates, but also low accuracy rates. Clearly,
using the dataset in its entirety was not going to work for clustering
purposes.

Even once we focused in on the SSH traffic by itself, clustering
methods could not properly parse out malicious SSH attempts from the
benign attempts because, of the 208 SSH protocols in the sample, 181 of
them were malicious. In reality, there should be far fewer instances of
attack than normal traffic in any given type of protocol. Again, we were
able to illuminate the issues with our dataset by running a linear
discriminant analysis on the SSH attempts alone. Of the 181 attacks, we
accurately predicted that 179 of them were in fact attacks. However, of
the 27 remaining normal protocols, our model assessed 22 of them as

MATTHEW K. COUGHLAN et al. 64

being attacks. Thus, our model had a generally high accuracy rate but a
high false positive rate as well.

Subsection A in Section 5 describes the methods by which we were
able to correct both the issue of low accuracy and that of high false
positive rates. We focused solely on SSH traffic (disregarding other
protocol types) and added more normal SSH data so that there was far
more normal traffic in our dataset than there was attack data.
Additionally, we made slight changes to the types of variables across
which we carried out the k-means clustering.

5. Final Results

A. Dataset modification and variables

As stated above, one of the main issues we encountered in our
preliminary attempts to analyze the network traffic for SSH attacks was
that there were simply not enough SSH attacks to make any significant
claims about the data. Thus, the first step we took to improve our
predictive capability was to expand the data set to one that contained far
more normal SSH data than it did attack data. In any network, it is not
unreasonable to assume that normal SSH protocol will outnumber any
malicious traffic in the network. Likewise, it is likely that an IDS
searching for an SSH attack will analyze only SSH data, meaning that
we could essentially ignore other types of protocols and just build a
dataset that consisted of only SSH traffic. In order to build a dataset with
more SSH, we used the other six days of data in the UNB ISCX dataset.
Whereas the SSH Brute Force data was compiled on June 17, 2010 the
dataset contains other network traffic that was analyzed from June 11 to
June 16, 2010 including denial of service attacks and days of normal
activity. Each of these six days contain plenty of benign SSH data that
we used in order to establish a baseline for normal SSH. In total, our new
dataset contained a total of 14,449 instances of SSH being used. Of those
14,449 observations, there were still only 181 that were attacks. This

EVALUATING K-MEANS++ CLUSTERING FOR … 65

ratio of normal to malicious is far more realistic than our original
dataset.

Another issue we faced when analyzing our original data was that
the variables on which we were conducting the k-means clustering, and
verifying by linear discriminant analysis, were not ideal indicators of a
brute force attack. Although timing effects were definitely an important
factor in identifying attacks, we needed to rework the way in which we
considered the time. In the other words, rather than looking at the
duration of time that a given protocol is open, we instead considered the
inter-packet timing for a given IP address. For instance, in the case of
our attacker’s IP (131.202.243.90), we looked at the timing between SSH
packets sent to the network with the assumption that small time
differences between the end and start times of successive packets sent
from a single IP would indicate a brute force SSH attack.

In addition to inter-packet timing, we also considered the average
packet size, the average number of packets that an IP address sends, and
the average number of packets an address receives over the course of a
given period of time. For all four variables, we analyzed them over
intervals of 1 second, 2 seconds, 5 seconds, 10 seconds, 30 seconds, and 60
seconds. By adjusting the time parameter and observing the resulting
sensitivity of the detection methods, we intended to determine what time
interval best assists an IDS in correctly separating SSH attacks from
normal network traffic. The reason for testing different time intervals of
consolidation and analysis of traffic data is twofold. In almost any
situation, a low time interval is ideal since we hope to identify and block
attacks as soon as possible – the difference between 2 and 60 seconds can
be drastic when it comes to protecting a network. However, 2 seconds of
data provides far less information to an IDS than 60 seconds, so there are
benefits to allowing the detector to gather more data before making a
conclusion about a given protocol or piece of traffic. Thus, we tested our
detection methods on six different intervals. An example of our data
output for the 10 second interval is shown in Table 1.

MATTHEW K. COUGHLAN et al. 66

Table 1.

Observation Average packet
size (kB)

Average time
between packets

(sec)

Number of
packets: In

Number of
packets: Out

Label

1 1171.455253 0.004327131 25089 119867 Normal

2 1272.184655 0.010430248 28829 227757 Normal

3 16 3 45769 8079294 Attack

4 1126.032628 0.004413063 17314 51485 Normal

5 1048.536585 0.004786979 9787 24618 Normal

6 16 3 45732 7935573 Attack

7 28.8 3.333333333 46954 11031565 Attack

8 24 4.5 45450 7123587 Attack

9 21.33333333 6 45766 8031384 Attack

10 8.404040404 0.005102041 408 2740 Normal

11 1227.797918 0.006131208 19822 69718 Normal

12 1184.873988 0.006952491 26542 145376 Normal

13 837.6363636 0.007283321 12087 32111 Normal

14 1125.333333 0 80717 13785576 Normal

15 1301.5 0 79493 10016355 Normal

16 48 0 79463 9847358 Normal

17 152 0 79086 8556277 Normal

18 854.1886792 0 31883 407330 Normal

19 937.3913043 0 30467 325172 Normal

Each 10 second interval is labelled as ‘Normal’ or ‘Attack’ for reference after clustering.

B. Results

We ran the six different interval data sets through a k-means++
algorithm in R in order to parse out potential attacks into their own
cluster. The k-means++ algorithm created two separate clusters. In order
to determine which cluster represented the attack cluster in each
scenario, we looked at its mean average packet size, which is shown
below for each detection time interval:

EVALUATING K-MEANS++ CLUSTERING FOR … 67

Table 2. Average packet size ()kB for both clusters in each of the six

observation scenarios. The attack cluster is selected based on average
packet size

Observation time
interval (sec)

Cluster 1 average
packet size (kB)

Cluster 2 average
packet size (kB)

Attack
cluster

1 105.67 78.04 2

2 108.88 77.13 2

5 111.18 80.94 2

10 117.75 83.19 2

30 77.87 124.41 1

60 79.39 132.27 2

The attack cluster was selected based on the average packet size of
each cluster. On average, the payload data in the normal traffic was
around 119kB whereas the payload data in the attack traffic was 61kB.
Thus, in each scenario, we choose the cluster with the significantly
smaller average packet size as the attack cluster.

The final results for the ability of the k-means++ algorithm to detect
SSH brute force attacks are shown below in Table 3 and Table 4:

Table 3. Final results for the ability of the k-means++ algorithm to
identify SSH attacks at varying time intervals of observation

Observation
time interval

(sec)

Normal
observation

correctly
identified

Normal
observation
identified
as attacks

Attacks
identified
correctly

Attacks
identified
as normal

1 2388 1474 859 1731

2 1542 898 505 997

5 933 460 253 473

10 511 258 146 263

30 200 112 60 104

60 118 67 34 59

MATTHEW K. COUGHLAN et al. 68

Table 4. Statistics showing the accuracy, false positive, and false
negative rates of the k-means++ algorithm at varying time intervals of
observation

Observation time
interval (sec)

Accuracy rate False positive
rate

False negative
rate

1 0.503254805 0.38166753 0.668339768

2 0.519279554 0.368032787 0.663781625

5 0.559697971 0.330222541 0.651515152

10 0.557724958 0.33550065 0.643031785

30 0.546218487 0.358974359 0.634146341

60 0.54676259 0.362162162 0.634408602

Our results show that, in general, k-means++ is not a very reliable
method of brute force detection when using these variables to create
clusters. Looking at intervals of 5 seconds appears to result in the highest
accuracy rate and the lowest false positive rate. However, the 5 second
interval also produces the 3rd highest false negative rate. Across all three
metrics (accuracy, false positives, and false negatives), it appears that
where an observation interval succeeds in one metric, it fails in another.

One possible explanation for the shortcomings of the k-means++
algorithm is that we did not include enough variables in the clustering
algorithm. Although we choose the four variables that we believed would
have the largest impact on the clustering, we could have tried to include
other variables, such as specific IP data. Incorporating the quantity and
frequency of packets being sent to and from specific IP address may have
shed more light on which packets were part of an SSH attack. Another
more likely explanation is that anomaly-based intrusion detection often
fails when it comes to detecting subtle differences in network traffic. In
other words, had the SSH brute force attack caused a more noticeable
shift in the dynamics of the network, the k-means++ algorithm would
have had a much easier time labelling the attack as such. However,
where the SSH attack was rather inconspicuous in nature (likely an
intention of the attacker), the k-means++ algorithm had difficulties.

EVALUATING K-MEANS++ CLUSTERING FOR … 69

Anomaly-based detection systems work well when data is truly
anomalous and work best when they are paired with other systems such
as a signature-based IDS.

C. Future work

Our work here lays a ground work for future exploration of the
k-means++ algorithm and its ability to detect SSH brute force attacks. By
looking at the data through the lens of different time intervals, we note
that cluster analysis can produce varying levels of output. Future work
can expand on our work in a few ways.

First, the k-means++ algorithm should be paired up with signature-
based capabilities in the future. Given that real world data does not often
give clear-cut evidence to what is normal data and what is an attack,
k-means++ will more than likely fall short of being able to make highly
accurate predictions. In order to detect more inconspicuous attacks, a
signature-based method that takes into account known vulnerabilities
and attacks should be coupled with the ability of k-means++ to detect
changes in the dynamic of the network traffic.

In order to enact a combined signature-based and anomaly-based
system, future research would need to take into account the data that the
packets are carrying, something that we did not do since the payload data
in our sample was encrypted. Analyzing packet headers through protocol
analysis as well as understanding a packet’s entire payload would greatly
increase the chance that an improved IDS could detect an attack and
would greatly reduce the false negative rate of the system.

Another expansion of our results should look at the practicality of
different detection time intervals. If, for instance, it only takes an
attacker 30 seconds to brute force a given password, then using
observation intervals of 60 seconds is useless since it allows an attacker
to conduct a full attack before we even begin to notice it. Dictionary style
attacks further complicate this issue, especially since users rarely employ
enough randomness in their password generation to beat these attacks.
Therefore, future works should look to combine functional IDS with real-
world attacker tendencies.

MATTHEW K. COUGHLAN et al. 70

References

 [1] David Arthur and Sergei Vassilvitskii, k-means++: The advantages of careful
seeding, Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms Society for Industrial and Applied Mathematics, 2007.

 [2] Damiano Bolzoni et al., Pancea: Automating attack classification for anomaly-based
network intrusion detection systems, Recent Advances in Intrusion Detection (2009),
1-20.

 [3] Yu Guan, Ali-Akbar Ghorbani and Nabil Belacel, Y-means: A clustering method for
intrusion detection, 2003.

 [4] Kingsly Leung and Christopher Leckie, Unsupervised anomaly detection in network
intrusion detection using clusters, Proceedings of the Twenty-eighth Australasian
conference on Computer Science, Volume 38, Australian Computer Society, Inc.,
2005.

 [5] Amuthan Prabakar Muniyandi, R. Rajeswari and R. Rajaram, Network anomaly
detection by cascading k-means clustering and C4.5 decision tree algorithm, Procedia
Engineering 30 (2012), 174-182.

 [6] Al-Sakib Khan Pathan, Chapter 2 Network Traffic Monitoring and Analysis. The
State of the Art in Intrusion Prevention and Detection, Boca Raton FL: CRC Press,
2014, 23-46.

 [7] Steven L. Scott, A Bayesian paradigm for designing intrusion detection systems,
Computational Statistics & Data Analysis 45(1) (2004), 69-83.

 [8] Ali Shiravi et al., Toward developing a systematic approach to generate benchmark
datasets for intrusion detection, Computers & Security 31(3) (2012), 357-374.

g

