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Abstract 

Intrusion detection systems (IDS) are systems used to defend a network against 
cyber attacks. Specifically, anomaly-based IDSs are systems that detect 
malicious activity on a network by identifying departures in network traffic 
from a previously established norm. For this project, we use a data set of 
network activity and assess the validity and effectiveness of k-means++ 
clustering at designating certain external traffic as malicious. We focus our 
detection efforts in on secure shell (SSH) brute force attacks. We evaluate the 
chosen clustering method by looking at benchmarks such as success/failure 
rates, false positive rates, and consistency across varying data. 

1. Intrusion Detection Systems: A Background 

A. Background 

Pathan [6] discusses the evolution, implementation, and operation of 
intrusion detection systems (IDS). Intrusion detection systems have been 
around since the beginning of the internet. Although IDS saw vast 
improvement in the 1980s, it was not until the early 1990s that IDS 
found commercial significance with the invention of the automated 
security measurement system (ASIM) by the US Air Force. IDS are now 
one of the most popular methods of security in networking. 

IDS can be classified into two main categories: misuse IDS 
(commonly referred to as signature-based IDS) and anomaly-based IDS. 
Misuse IDS identify potential attacks on a network by comparing the 
attack to known signatures which have been encoded into an expert 
database. Through the pattern matching method, misuse IDS match 
snippets of text or binary acquired from the malicious packet to formerly 
established signatures. Misuse IDS are susceptible to many limitations, 
including the ability of hackers to circumvent the system altogether by 
simply changing around certain pieces of their code such that no 
signature in the database matches the malicious code. The biggest 
limitation of misuse IDS is simply that they lack the ability to detect 
zero-day attacks on a network (attack for which there is no known 
signature). Anomaly-based IDS on the other hand are capable of 
identifying attacks that have never been detected before. Anomaly-based 
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IDS create models that represent the normal or expected behaviour of 
networks. Deviations from this expected behaviour raise an alarm. Both 
types of detection systems have four possible outcomes. A false negative 
is the most dangerous outcome in which the system fails to detect an 
actual attack. A true negative occurs when the system correctly dismisses 
network traffic as non-malicious. False positives are where the IDS 
misidentifies specific traffic as an intrusion. Finally, a true positive is the 
ideal situation in which an IDS correctly identifies an attack (Pathan 
[6]). 

IDS architecture can be broken down into three main types: host-
based IDS (HIDS), network-based IDS (NIDS), and hybrids. HIDS 
monitor behaviour on a specific machine and confront threats directed to 
the machine without having to capture traffic from the whole network. 
NIDS, on the other hand, monitor data on large pieces of the network. 
NIDS consist of a data collector, manager, and communication module 
that transmits/receives analysis results. Neither type of architecture is 
capable of monitoring encrypted traffic. Hybrid combines the advantages 
of HIDS and NIDS into one system. Generally, hybrids combine misuse 
and anomaly-based methods in order to maximize detection and 
minimize false positives. Hybrids also allow for centralized management 
of the network as well as each individual host. IDS architecture can be 
centralized (one manager responsible for event analysis, detection, 
classification, and system action), hierarchical (NIDS and HIDS managed 
separately), or distributed (multiple agents handle processing, analysis, 
and detection) (Pathan [6]). 

Once an intrusion is detected, the IDS has a few different post-
detection options. The system can take an active approach, which is 
commonly referred to as an intrusion prevention system (IPS). The IPS 
sends packets to the site of the intrusion in order to interrupt and/or 
cease the connection. The IPS also interacts with the edge routers 
(routers standing between the network and the outside world) in order to 
establish rules regarding certain, potentially hazardous, source 
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addresses. In contrast to the active approach, the system can take a 
passive approach where it simply generates and sends notifications to the 
system operator indicating that there has been an intrusion (Pathan [6]). 

In addition to the pattern-based method inherent in misuse IDS, IDS 
can take a few other approaches to detect intrusions. Most IDS analyze 
the header contents of common protocols: internet protocol (IP), 
transmission control protocol (TCP), and user datagram protocol (UDP). 
More advanced IDS go further, performing what is known as “protocol 
analysis”. If anything about the traffic deviates from the standards 
established by the industry protocol, then the system raises an alarm. 
Protocol analysis facilitates detection of both known and unknown 
attacks; thus, it falls under the category of anomaly-based IDS since it 
looks for anomalies in the protocol standards. IDS can also use the 
statistical and probabilistic approach. Instead of rules or signatures, 
many IDS rely on Bayesian statistics, which are heavily centered on 
conditional probability. The Bayesian model is created using both real 
attack samples and false positive samples (the sample must be large). 
The statistical approach is generally implemented into an already 
existing misuse IDS in order to increase the system’s accuracy. Finally, 
the neural network based approach is an approach that requires no user 
defined parameters. Instead, it emphasizes constant learning based on 
experience. Neural network based IDS are mostly research-based as of 
right now; commercial products are a rarity. 

Bolzoni et al. [2] claim that anomaly-based intrusion detection 
systems are often inefficient when it comes to classifying the attacks they 
detect. Therefore, security teams or administrators have to manually 
process each alert generated by the IDS. There are two main challenges 
for security personnel. First, the most harmful attacks occur in stages 
and security teams must catch these attacks in the early stages. Second, 
there are a lot of alerts generated by BOTnets and automatic scanners 
that, although considered true positives, are not regarded as harmful. 
Therefore, there are many small attacks that a security team must sift 
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through in order to get to the main attacks. Whereas classification is 
trivial when it comes to signature-based IDS, anomaly-based 
classification is far more difficult. Bolzoni et al. present Pancea, a system 
that uses machine learning techniques to automatically and 
systematically classify attacks detected by the IDS. Pancea analyzes the 
payload of an attack, so an attack without a payload cannot be properly 
analyzed. Most attacks inject some kind of data in to their targeted 
systems, so this is not a major limitation. 

The researchers use two algorithms in their experiments: support 
vector machines (SVM) and the RIPPER rule learner. These non-
incremental algorithms iterate on samples several times to build a best 
classification model unless the training phase is started from scratch. 
SVM is a set of supervised learning methods used for classification. SVM 
uses “support vectors” and “margins” to classify data into different groups 
and then assigns new data to a specific group based on distance (Bolzoni 
et al. [2]). RIPPER is a rule induction algorithm that uses a set of IF-
THEN rules. IF (condition), THEN (conclusion). Essentially, RIPPER 
takes already identified data, and builds an algorithm from the ground 
up that accurately classifies each data value. It heuristically adds one 
condition at a time until all of the data has been accurately classified. 
RIPPER then implements an optimization phase in order to simplify the 
set. Once the algorithm has performed on the teaching set, it is ready to 
be used on outside sources of intrusion. After implementing the 
algorithms, the study showed that the classification accuracy is almost 
always above 75%, with SVM outperforming RIPPER by a narrow 
margin in each trial (Bolzoni et al. [2]). 

2. Clustering Methods 

A. Cluster analysis 

Leung and Leckie [4] provide a good overview of cluster analysis 
methods. Unsupervised anomaly detection makes two assumptions about 
the data: the majority of the network data is normal and some portion is 
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malicious; the attack traffic is statistically different from the normal 
traffic. The algorithm takes unlabelled data and attempts to find 
intrusions buried in the data. Many techniques involve the classification 
of threats first through clustering, then intrusion detection through the 
use of an algorithm. 

Clustering is the method of grouping observations into meaningful 
subclasses. Members of a subclass are meant to be similar whereas 
members of different clusters should be noticeably different. Clustering 
methods can be useful in classifying large amounts of data. Once an 
observation is labelled, it is then grouped into a cluster with observations 
that share similar traits. 

A few different clustering methods currently in use are partitioning 
methods, density-based methods, and grid-based methods. Given a 
database of n objects, a partitioning method constructs k partitions of 
data where each partition represents a cluster. Density-based methods 
are based on the assumption that clusters are dense regions in the data 
space that are separated by regions of lower density. Rather than data 
points being assigned to a cluster, a cluster is defined as a specific 
density or higher within a given radius. Grid-based methods divide the x-
y grid into a finite number of cells. This approach has a very fast 
processing time. The algorithm in Leung’s paper assumes that any point 
falling within the clusters is normal while all others are considered 
anomalies (Leung and Leckie [4]). In many cases, clustering algorithms 
will place anomalies in an entirely separate cluster of their own. 

B. K-means and k-means++ 

Arthur and Vassilvitskii [1] provide insight into the method of            
k-means++. In the original k-means formulation, we are given an integer 
k and a set of n data points. The goal is to choose k centers in a way that 
minimizes ,ϕ  the sum of the squared distances between each point and 
its closest center. K-means involves choosing k centers (usually uniformly 
random) and assigning each data point to the closest center. The center is 
then recalculated to be the center of mass of the cluster of data points. 



EVALUATING K-MEANS++ CLUSTERING FOR … 57

This process occurs over and over until the optimal clustering out of all 
nk  possibilities is achieved. 

,min 2cxCc
Xx

−=ϕ ∈
∈
∑  

where c is the mean of a specific cluster center, and x is the value of a 
given observation. 

Arthur and Vassilvitskii propose a way of initializing k-means by 
choosing random starting centers with very specific probabilities – choose 
a point p as a center with probability proportional to p’s contribution to 
the overall potential. In the original k-means, we choose initial centers 
uniformly at random. By recalculating the center of mass of each cluster 
during each iteration, ϕ  is guaranteed to decrease with each iteration. 
The algorithm for k-means is: 

1. Arbitrarily choose k initial centers { }.,,1 kccC …=  

2. For each { },,,1 ki …∈  set the cluster iC  to be the set of points in 

X that are closer to ic  than they are to jc  for all .1≠j  

3. For each { },,,1 ki …∈  set ic  to be the center of mass of all points 

in .1: xccC
iCxi

ii ∑ ∈
=  

4. Repeat Steps 2 and 3 until C no longer changes” (Arthur). 

The k-means++ also begins with an arbitrary set of cluster centers; 
however, k-means++ employs a new algorithm: 

Let ( )xD  denote the shortest distance from a data point x to the 
closest center which we choose. 

1a. Choose an initial center 1c  uniformly at random from X. 

1b. Choose the next center ,ic  selecting Xxci ∈′=  with probability 

( )
( )
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The probability term is known as 2D“  weighting”. 

1c. Repeat Step 1b until we have chosen a total of k centers. 

2-4. Proceed with the standard k-means algorithm noted above 
(Arthur). 

The researchers tested k-means and k-means++ on four datasets and 
tested ,25,10=k  and 50.  The k-means++ consistently outperformed      

k-means, both by achieving a lower potential value ( ),ϕ  in some cases by 

several orders of magnitude, and also by having a faster running time. 

The 2D  seeding ran slightly slower than uniform seeding, but was still a 
faster algorithm since the search converged after fewer iterations. In 
contrast to k-means, k-means++ almost always perfectly clustered 
synthetic, pre-distributed datasets.  K-means++ achieved a 10% accuracy 
improvement over k-means on the real-world datasets as well.                  
K-means++ also achieved potentials that were 20 to 1000 times smaller 
than those achieved by k-means. 

There is an alternate supervised anomaly detection method called   
“K-means + C4.5” (Muniyandi et al. [5]). It combines k-means with the 
C4.5 decision tree.  The k-means method is cascaded with the C4.5 by 
building decision trees using the instances in each k-means cluster.  This 
alleviates two problems in k-means: forced assignment and class 
dominance.  Forced assignment occurs when the k parameter is 
significantly less than the number of natural groupings within the 
training data.  Class dominance occurs in a cluster when the training 
data has a large number of instances from one class and very few 
instances from the others. Cascading involves the selection phase and the 
classification phase.  In the selection phase, the closest cluster to the 
observation is selected.  In the selected cluster, the decision tree 
corresponding to that cluster is generated. In the classification phase, the 
test instance is classified as normal or anomaly (intrusion) using the 
decision tree result. The observation is included in the cluster with a 
label of either normal or anomaly. 
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The C4.5 algorithm is as follows: 

Given a set S of cases, C4.5 grows an initial decision tree using a 
divide-and-conquer algorithm. 

“1. If all the cases in S belong to the same class or S is small, the tree 
is a “leaf” (i.e., box) labelled with the most frequent class in S. 

A. Otherwise, choose a test based on a single attribute with two or 
more outcomes (i.e., great than, less than). Make this test the root of the 
tree with one branch for each outcome of the test, partition S into 
corresponding subsets S1, S2, … according to the outcome for each case, 
and apply the same procedure recursively to each subset” (Muniyandi et 
al. [5]). 

K-means + C4.5 does noticeably better than k-means alone when 
classifying a data set. 

K-means clustering has two main shortcomings: number of clusters 
dependency and degeneracy. “Number of clusters dependency” simply 
means that the value of k is extremely important to the clustering result. 
The mathematical program R contains both methods of k-clustering and 
methods of determining the optimal number of k’s. Degeneracy means 
that the end result of the clustering may include some empty clusters 
which are useless. There are algorithms which can overcome the issue of 
degeneracy (Guan et al. [3]). 

3. The Data Set 

A. Data source 

 The effective comparison of various intrusion detection systems is 
hinged upon implementing the systems across a robust and realistic data 
set. Data sets are more often than not suboptimal for the needs of 
intrusion detection research. Most data sets are static datasets which 
means that they likely fail to reflect the most current and ever-changing 
state of intrusions. Static data sets are simply “outdated, unmodifiable, 
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inextensible, and irreproducible” (Shiravi). Intrusion detection systems 
must be rigorously tested, evaluated, and retested prior to their 
implementation into real-world applications. The best method for testing 
and evaluating an IDS is running it through a real network that is 
transmitting both normal and intrusive traffic. However, realistic data 
sets are extremely hard to come by, and most data sets that are readily 
available are over-specified to the IDS that they were originally created 
to test. 

The Information Security Center for Excellence at the University of 
New Brunswick (UNB ISCX) used live network devices and workstations 
in order to create the UNB ISCX intrusion detection evaluation data set 
(Shiravi). Agents on the network imitated previously observed user 
behaviours while attack scenarios were executed to replicate real-world 
malicious traffic. The data set itself is comprised of multiple individual 
data files captured over the course of various days in 2010. The files are 
comprised of simulated network traffic, containing malicious HTTP, 
distributed denial of service (DDoS), and secure shell attacks as well as 
countless examples of normal, baseline traffic (Shiravi). The data file we 
use, captured on June 17, 2010, is 13 gigabytes of realistic SSH Brute 
Force data mixed with normal network traffic. 

 For various reasons, the UNB dataset is by far the best dataset to use 
for comparing different IDS-related clustering methods. First, as 
previously mentioned, the dataset contains realistic network traffic. No 
anomalies have been artificially implanted into the data, and the data 
contains no tags within the actual data that indicate the true normal or 
malicious nature of the traffic – had these identifiers been added to the 
raw data, then there is the possibility that inconsistencies would be 
introduced into the final dataset (Shiravi). Second, the dataset is 
externally labelled, which means that there is an identified distinction 
between the anomalous and normal traffic. After running a clustering 
algorithm, we are able to evaluate our results by comparing them to the 
actual labelled traffic. This greatly assists in the evaluation process and 
allows for more realistic benchmarks in IDS performance. 
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The third advantage to using the UNB dataset lies in how much 
detail the dataset captures. The data includes all of the traffic that occurs 
on the network over the course of one 30-minute period. It excludes no 
network interactions. Similarly, for every interaction, the dataset 
includes information about the traffic’s payload data. This allows for a 
more robust analysis of the data that is passing through the network 
(Shiravi). The final advantage of the UNB dataset is that it contains a 
diverse set of intrusion scenarios. Cyber-attacks have evolved into 
different classes of size, type, and complexity. Some attacks vary in 
frequency while others may follow a multi-stage algorithm in order to 
undermine a network with exacting precision over time. The UNB 
dataset takes the variance of attacks into account and includes multiple 
types of intrusions, making the dataset more realistic and giving the IDS 
methods a real-world test of effectiveness (Shiravi). 

B. The attack: Brute force SSH 

Secure shell (SSH) is a protocol used for remote login which allows a 
user to securely operate a remote host over an unsecure network. A brute 
force attack occurs when a system such as a BOTnet tries to crack a 
password by simply testing a high volume of randomly generated 
combinations of characters or words (Shiravi). As password length 
increases, the average amount of time to find the correct password 
increases exponentially. 

Brute force attacks are a very common type of intrusion since they 
can break into accounts with weak username-password combinations. 
The dataset that we are using contains various instances of brute force 
attacks which pursued an SSH account on the simulated UNB network. 
The attacks used a dictionary style method; the protocol ran through a 
5000 word dictionary that contains entries of varying lengths and 
characters. The overall attack ran for 30 minutes and was able to acquire 
the account credentials of the network admin. The attacker then used the 
account credentials to remotely log into the server (Shiravi). 
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C. Initial data analysis 

Each protocol executed in the network is defined in the dataset by a 
range of variables, including the source and destination IP addresses, the 
start and end times, the total source and destination bytes, the total 
source and destination packets, and the protocol type. For analysis 
purposes, we took a small slice of the data; specifically, of the nearly 
700,000 unique observations from June 17, 2010 we choose a random 
sample of 61,832 which allowed us to more efficiently carry out some 
preliminary work with the data.  Of those protocols, 61,651 were normal 
traffic and 181 were malicious attacks. Using the external labels 
provided by UNB, we saw that all 181 attacks were an SSH protocol, 
though there were 27 other SSH attempts that were simply normal 
traffic. All SSH traffic was sent to the destination IP of 192.168.5.122 on 
port 22 and all malicious SSH attempts originated at IP 131.202.243.90. 

Comparison of IP and port destination frequencies did not 
immediately show any significant results. However, one of the data 
variables that immediately jumped out at us was the difference in time 
duration between the different protocols. The time duration of all 
protocols ranged from less than 1 second to nearly 14 hours; however, for 
SSH specifically, the time durations ranged from 2 seconds to just under 
10 minutes. Of all 181 SSH attacks, 149 were either 3 seconds or 4 
seconds in length, whereas normal SSH traffic generally took at least 10 
seconds to complete.  Given that over 80% of the observed malicious SSH 
traffic falls within the 3-4 second range, it appears that time duration 
may play a significant role in identifying SSH attacks when compared to 
normal SSH traffic. One possible explanation for this discrepancy in 
timing between attacks and normal traffic is that the benign traffic is 
usually initiated by a human user whereas the attacks are generally 
BOTnets executing commands at a much higher rate than the average 
person ever could. 
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4. Preliminary Results 

A. Initial efforts 

The purpose of our project changed direction a few times from the 
start. At first, we intended to compare the effectiveness of different 
clustering methods in detecting SSH brute force attacks. However, we 
ran into some issues when trying to analyze the initial data set. The first 
issue was that we did not have enough SSH data. Given that only 208 of 
the 61,832 protocols were SSH, we simply could not make any major 
inferences on the nature of the SSH traffic. Taking into account the 
variables of packet size, number of packets, and time duration of each 
protocol and applying the method of k-means proved to be useless. We 
used the method of linear discriminant analysis, a technique that 
incorporates pattern recognition and machine learning to create a linear 
algorithm which separates data into different classes, in order to 
illuminate the underlying issues with our data set. The linear model that 
we created accurately classified 12 out of the 181 attacks correctly.  The 
other 169 attacks were classified as “normal”. Likewise, 373 of the 61,651 
normal traffic protocols were classified as “attack”, essentially drowning 
out the 12 that we had correctly assigned as attacks. The relatively low 
amount of SSH in the larger dataset meant that clustering methods 
would have low false positive rates, but also low accuracy rates. Clearly, 
using the dataset in its entirety was not going to work for clustering 
purposes. 

Even once we focused in on the SSH traffic by itself, clustering 
methods could not properly parse out malicious SSH attempts from the 
benign attempts because, of the 208 SSH protocols in the sample, 181 of 
them were malicious. In reality, there should be far fewer instances of 
attack than normal traffic in any given type of protocol. Again, we were 
able to illuminate the issues with our dataset by running a linear 
discriminant analysis on the SSH attempts alone. Of the 181 attacks, we 
accurately predicted that 179 of them were in fact attacks. However, of 
the 27 remaining normal protocols, our model assessed 22 of them as 
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being attacks. Thus, our model had a generally high accuracy rate but a 
high false positive rate as well. 

Subsection A in Section 5 describes the methods by which we were 
able to correct both the issue of low accuracy and that of high false 
positive rates. We focused solely on SSH traffic (disregarding other 
protocol types) and added more normal SSH data so that there was far 
more normal traffic in our dataset than there was attack data.  
Additionally, we made slight changes to the types of variables across 
which we carried out the k-means clustering. 

5. Final Results 

A. Dataset modification and variables 

As stated above, one of the main issues we encountered in our 
preliminary attempts to analyze the network traffic for SSH attacks was 
that there were simply not enough SSH attacks to make any significant 
claims about the data. Thus, the first step we took to improve our 
predictive capability was to expand the data set to one that contained far 
more normal SSH data than it did attack data. In any network, it is not 
unreasonable to assume that normal SSH protocol will outnumber any 
malicious traffic in the network. Likewise, it is likely that an IDS 
searching for an SSH attack will analyze only SSH data, meaning that 
we could essentially ignore other types of protocols and just build a 
dataset that consisted of only SSH traffic. In order to build a dataset with 
more SSH, we used the other six days of data in the UNB ISCX dataset. 
Whereas the SSH Brute Force data was compiled on June 17, 2010 the 
dataset contains other network traffic that was analyzed from June 11 to 
June 16, 2010 including denial of service attacks and days of normal 
activity. Each of these six days contain plenty of benign SSH data that 
we used in order to establish a baseline for normal SSH. In total, our new 
dataset contained a total of 14,449 instances of SSH being used. Of those 
14,449 observations, there were still only 181 that were attacks. This 
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ratio of normal to malicious is far more realistic than our original 
dataset. 

Another issue we faced when analyzing our original data was that 
the variables on which we were conducting the k-means clustering, and 
verifying by linear discriminant analysis, were not ideal indicators of a 
brute force attack. Although timing effects were definitely an important 
factor in identifying attacks, we needed to rework the way in which we 
considered the time. In the other words, rather than looking at the 
duration of time that a given protocol is open, we instead considered the 
inter-packet timing for a given IP address. For instance, in the case of 
our attacker’s IP (131.202.243.90), we looked at the timing between SSH 
packets sent to the network with the assumption that small time 
differences between the end and start times of successive packets sent 
from a single IP would indicate a brute force SSH attack. 

In addition to inter-packet timing, we also considered the average 
packet size, the average number of packets that an IP address sends, and 
the average number of packets an address receives over the course of a 
given period of time. For all four variables, we analyzed them over 
intervals of 1 second, 2 seconds, 5 seconds, 10 seconds, 30 seconds, and 60 
seconds. By adjusting the time parameter and observing the resulting 
sensitivity of the detection methods, we intended to determine what time 
interval best assists an IDS in correctly separating SSH attacks from 
normal network traffic. The reason for testing different time intervals of 
consolidation and analysis of traffic data is twofold. In almost any 
situation, a low time interval is ideal since we hope to identify and block 
attacks as soon as possible – the difference between 2 and 60 seconds can 
be drastic when it comes to protecting a network. However, 2 seconds of 
data provides far less information to an IDS than 60 seconds, so there are 
benefits to allowing the detector to gather more data before making a 
conclusion about a given protocol or piece of traffic. Thus, we tested our 
detection methods on six different intervals. An example of our data 
output for the 10 second interval is shown in Table 1. 



MATTHEW K. COUGHLAN et al. 66

Table 1. 

Observation Average packet 
size (kB) 

Average time  
between packets  

(sec) 

Number of 
packets: In 

Number of 
packets: Out 

Label 

1 1171.455253 0.004327131 25089 119867 Normal 

2 1272.184655 0.010430248 28829 227757 Normal 

3 16 3 45769 8079294 Attack 

4 1126.032628 0.004413063 17314 51485 Normal 

5 1048.536585 0.004786979 9787 24618 Normal 

6 16 3 45732 7935573 Attack 

7 28.8 3.333333333 46954 11031565 Attack 

8 24 4.5 45450 7123587 Attack 

9 21.33333333 6 45766 8031384 Attack 

10 8.404040404 0.005102041 408 2740 Normal 

11 1227.797918 0.006131208 19822 69718 Normal 

12 1184.873988 0.006952491 26542 145376 Normal 

13 837.6363636 0.007283321 12087 32111 Normal 

14 1125.333333 0 80717 13785576 Normal 

15 1301.5 0 79493 10016355 Normal 

16 48 0 79463 9847358 Normal 

17 152 0 79086 8556277 Normal 

18 854.1886792 0 31883 407330 Normal 

19 937.3913043 0 30467 325172 Normal 

Each 10 second interval is labelled as ‘Normal’ or ‘Attack’ for reference after clustering. 

B. Results 

We ran the six different interval data sets through a k-means++ 
algorithm in R in order to parse out potential attacks into their own 
cluster. The k-means++ algorithm created two separate clusters. In order 
to determine which cluster represented the attack cluster in each 
scenario, we looked at its mean average packet size, which is shown 
below for each detection time interval: 
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Table 2. Average packet size ( )kB  for both clusters in each of the six 

observation scenarios. The attack cluster is selected based on average 
packet size 

Observation time 
interval (sec) 

Cluster 1 average 
packet size (kB) 

Cluster 2 average 
packet size (kB) 

Attack 
cluster 

1 105.67 78.04 2 

2 108.88 77.13 2 

5 111.18 80.94 2 

10 117.75 83.19 2 

30 77.87 124.41 1 

60 79.39 132.27 2 

The attack cluster was selected based on the average packet size of 
each cluster. On average, the payload data in the normal traffic was 
around 119kB whereas the payload data in the attack traffic was 61kB. 
Thus, in each scenario, we choose the cluster with the significantly 
smaller average packet size as the attack cluster. 

The final results for the ability of the k-means++ algorithm to detect 
SSH brute force attacks are shown below in Table 3 and Table 4: 

Table 3. Final results for the ability of the k-means++ algorithm to 
identify SSH attacks at varying time intervals of observation 

Observation 
time interval 

(sec) 

Normal 
observation 

correctly 
identified 

Normal  
observation 
identified  
as attacks 

Attacks 
identified 
correctly 

Attacks 
identified  
as normal 

1 2388 1474 859 1731 

2 1542 898 505 997 

5 933 460 253 473 

10 511 258 146 263 

30 200 112 60 104 

60 118 67 34 59 
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Table 4. Statistics showing the accuracy, false positive, and false 
negative rates of the k-means++ algorithm at varying time intervals of 
observation 

Observation time 
interval (sec) 

Accuracy rate False positive 
rate 

False negative 
rate 

1 0.503254805 0.38166753 0.668339768 

2 0.519279554 0.368032787 0.663781625 

5 0.559697971 0.330222541 0.651515152 

10 0.557724958 0.33550065 0.643031785 

30 0.546218487 0.358974359 0.634146341 

60 0.54676259 0.362162162 0.634408602 

Our results show that, in general, k-means++ is not a very reliable 
method of brute force detection when using these variables to create 
clusters. Looking at intervals of 5 seconds appears to result in the highest 
accuracy rate and the lowest false positive rate. However, the 5 second 
interval also produces the 3rd highest false negative rate. Across all three 
metrics (accuracy, false positives, and false negatives), it appears that 
where an observation interval succeeds in one metric, it fails in another. 

One possible explanation for the shortcomings of the k-means++ 
algorithm is that we did not include enough variables in the clustering 
algorithm. Although we choose the four variables that we believed would 
have the largest impact on the clustering, we could have tried to include 
other variables, such as specific IP data. Incorporating the quantity and 
frequency of packets being sent to and from specific IP address may have 
shed more light on which packets were part of an SSH attack. Another 
more likely explanation is that anomaly-based intrusion detection often 
fails when it comes to detecting subtle differences in network traffic. In 
other words, had the SSH brute force attack caused a more noticeable 
shift in the dynamics of the network, the k-means++ algorithm would 
have had a much easier time labelling the attack as such. However, 
where the SSH attack was rather inconspicuous in nature (likely an 
intention of the attacker), the k-means++ algorithm had difficulties. 
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Anomaly-based detection systems work well when data is truly 
anomalous and work best when they are paired with other systems such 
as a signature-based IDS. 

C. Future work 

Our work here lays a ground work for future exploration of the          
k-means++ algorithm and its ability to detect SSH brute force attacks. By 
looking at the data through the lens of different time intervals, we note 
that cluster analysis can produce varying levels of output. Future work 
can expand on our work in a few ways. 

First, the k-means++ algorithm should be paired up with signature-
based capabilities in the future. Given that real world data does not often 
give clear-cut evidence to what is normal data and what is an attack,       
k-means++ will more than likely fall short of being able to make highly 
accurate predictions. In order to detect more inconspicuous attacks, a 
signature-based method that takes into account known vulnerabilities 
and attacks should be coupled with the ability of k-means++ to detect 
changes in the dynamic of the network traffic. 

In order to enact a combined signature-based and anomaly-based 
system, future research would need to take into account the data that the 
packets are carrying, something that we did not do since the payload data 
in our sample was encrypted. Analyzing packet headers through protocol 
analysis as well as understanding a packet’s entire payload would greatly 
increase the chance that an improved IDS could detect an attack and 
would greatly reduce the false negative rate of the system. 

Another expansion of our results should look at the practicality of 
different detection time intervals. If, for instance, it only takes an 
attacker 30 seconds to brute force a given password, then using 
observation intervals of 60 seconds is useless since it allows an attacker 
to conduct a full attack before we even begin to notice it. Dictionary style 
attacks further complicate this issue, especially since users rarely employ 
enough randomness in their password generation to beat these attacks. 
Therefore, future works should look to combine functional IDS with real-
world attacker tendencies. 
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