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Abstract 

To address the problem of fitting a 3D straight line, the TLS method based on the Lagrange 
function is used to solve it. The number of parameter to be estimated is decreased from six 
to four by changing the standard equation of the straight line into the projective equation of 
it. The problem of fitting a 3D straight line is converted to the problem of fitting two 2D 
straight lines with errors in both coordinates. And then the total least square (TLS) and 
least square (LS) method are employed to fit the two 2D straight line. A simulated example 
is carried out to demonstrate the effectiveness and applicability of proposed algorithms. 

Keywords: 3D straight line fitting, 2D straight line fitting, least square, 
total least squares. 
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1. Introduction 

3D line fitting is a common problem in many metrological and 
measurement systems. Nowadays, as most of the instruments provide 3D 
coordinates, engineers and scientists have to work within a 3D 
coordinates frame. For all the coordinates contain errors, the 3D line 
fitting problem can be discussed in total least square (TLS) framework. 
Since Pearson [9] solved the problem of fitting 2D lines to data with 
errors in both coordinates, quite a number of total least squares (TLS) 
methods were developed to deal with the 2D line fitting. Now, there are 
many researches about the total least squares in algorithms such as the 
singular value decomposition (SVD) algorithm (Golub and Van Loan [2]) 
and the algorithm based on the Lagrange function (Schaffrin and Wieser 
[12]). For more information about the methodology of TLS, one can refer 
to Huffel et al. [3, 4]. York [15] gave a detailed discussion of the 
calculation of the “best straight line” by the method of least squares (LS). 
Reed [10] reiterated York’s solution and indicated an easier way to solve 
for the slope of the best-fit line. Neri et al. [8] solved the line regression 
problem with a straightforward analytical approach that uses the 
minimization of the shortest distance between each experimental point 
and the theoretical line. Wong [14] discussed and compared the 
likelihood-based methods for obtaining approximate confidence intervals 
for the slope in a simple linear regression when both variables were 
measured with errors. Schaffrin et al. [11] obtained TLS solution by 
solving non-linear normal equations via a newly developed iterative 
approximation algorithms. Fitting a straight line to data with 
uncertainties in both coordinates was discussed by reducing to a one-
dimensional search for a minimum in Krystek and Anton [6] and 
generalized to the case when there are correlations in Krystek and Anton 
[7]. Amiri-Simkooei et al. [1] presented a simple and reliable formulation 
for the linear regression fit using the weighted total least squares 
(WTLS) problem, when both variables are subjected to different and 
possibly correlated noise. However, these methods cannot be readily 
extended to solve the problem of fitting spatial line to points with noisy 
coordinates in three dimensions. 
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Up to now, there are little literatures focused on 3D line fitting. Kahn 
[5] presents a simple non-iterative linear procedures for finding the least 
squares line in three dimensions by minimizing the sum of the squared 
perpendicular distances between the data points and the fitted line. Snow 
and Schaffrin [13] solved the problem of fitting lines in 3D space using a 
new algorithm for the TLS solution under a nonlinear Gauss-Helmert 
model. In Snow’s paper, only four parameters were estimated, thereby 
avoiding over-parameterization. 

In this paper, by projecting the 3D straight line onto two coordinate 
plane, only four parameters are to be estimated. 3D line fitting is 
investigated with the objective of minimizing the total sum of all squared 
random errors in the 3D variables. The structure of this paper is as 
follows. Section 2 introduces 3D line fitting with errors in y coordinate 
and z coordinate. Section 3 shows 3D line fitting when all the three 
coordinates contain errors. A simulation study is included in Section 4, 
and it is concluded in Section 5. 

2. 3D Line Fitting under LS Criterion 

Suppose that a 3D straight line B goes through the point ( )000 ,, zyx  

and has a direction vector ( ),,, zyx ppp  and standard equation of line B 

can be expressed as 
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The straight line can be regarded as the intersection of the two planes 
represented by the two equations, and only four parameters need to be 
estimated. We can fit the x and y coordinates of the data to Equation (1) 
to get the estimated value of a and b, and fit the y and z coordinates of 
the data to Equation (2) to get the estimated value of c and d. We assume 

the variables x and y have equal variances .2σ  Using n observations 
( ) ( )niyx ii ,,1, =  and the accompanying fixed values ( ),,,1 nizi =  

we can get the LS estimate of a, b, c, and d. 
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For the normal vectors of the plane expressed by (1) and (2), we can 
formulate, respectively, as 

( ) ( ),ˆ,1,0,ˆ,0,1 21 cnan −=−=  

 and get a direction vector of the line B 
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Because under the LS criterion the straight line fitted by the data goes 
through the center of the data, the place expressed by (1) goes through 
( ) ( ),,, yzyx ∀  and the place expressed by (2) goes through ( ) ( ).,, xzyx ∀  
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Therefore, the estimated line B goes through the center ( )zyx ,,  of the 

data. The estimated line B can be expressed as 

.1ˆˆ
zz

c
yy

a
xx −=−=−  (4) 

3. 3D Line Fitting under TLS Criterion 

Assuming the z variable is contaminated by gross errors besides x 

variable and the y variable, and have variance .2σ  Using n observations 
( ) ( ),,,1,, nizyx iii =  we can form the following equations according 

to (1) and (2): 
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Letting 
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(5) and (6) can be expressed in matrix notion 

( ) ,1 xnz ebeZaX +⋅+−=   (7) 

( ) .1 ynz edeZcY +⋅+−=   (8) 
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Therefore, the problem of 3D line fitting is transformed into two 2D line 
fitting problems with errors in both coordinates. (7) and (8) have the 
same form, and the same coefficient matrix, so the solution of (7) and (8) 
have similar representation. For this reason, only the solution of (7) is 
discussed below. 

The total least squares principle is to minimize the objective function 
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By employing the equivalent target function in accordance with Lagrange 
method, we have 
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where tildas indicate “predicted” vectors, and hats indicate “estimated” 
ones. 
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Now, xe~  and ze~  can be expressed in terms of λ̂  by using (9) and (10). 

This leads to that 

,ˆ~ λ= xxe Q   (14) 

,ˆ~ λ−= zz ae Q   (15) 

and after inserting this into (11), we have that 
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Using (20), we can get 
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Inserting (21) into (19), the closed-form expression of the estimated 
parameter vector a and b can be derived as 
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4. Case Study 

In this section, the proposed TLS approach will be applied to a simulated 
example, compared with the LS approach. A 3D straight line is given as 
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The projective equation of the straight line is given as 
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Taking z as 21 numbers distributed uniformly in [–10, 10], and 
calculating the values of y and z according to Equation (24), 21 pairs of 
points are formed. The normal random error is generated and added to 
the coordinates of each point. The design is as follows: the LS method, the 
proposed TLS method are implemented for comparison purposes. The LS 
solution are given as the initial values for iterations of the TLS method, 

and 1010−=ε  is chosen as the convergence tolerance. The means and the 
root mean square errors (RMSE) of the parameters 1β  and ,2β  and the 

maximum deviation between the calculated value and the true value are 
computed for 1000 experiments for the two methods. The results are 
shown in Table 1. 

Table 1. Comparisons of the LS method and the proposed TLS method 

  LS TLS 

Mean(a) 3.91414061 3.94550270 True value(a)  
4 RMSE(a) 0.22405128 0.08445361 

Mean(b) – 11.16109969 – 10.96450923 True value(b)  
– 11 RMSE(b) 0.10040905 0.06405110 

Mean(c) – 1.95131821 – 1.96537423 True value(c)  
– 2 RMSE(c) 0.74550929 0.05493878 

Mean(d) 4.70268519 3.95538625 True value(d)  
4 RMSE(d) 0.08971675 0.04103927 
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As we can be seen from Table 1, for all the parameters to be estimated, 
the parameter estimates obtained by TLS are closer to the true values 
than LS, and have smaller RMSE. 

5. Conclusion 

By changing the standard equation of the 3D straight line into the 
projective equation of it, the number of parameter to be estimated is 
decreased from six to four. Using a minimum parameterization, we have 
solved the 3D straight line fitting problem by converting it to the problem 
of fitting two 2D straight lines with errors in both coordinates. And then 
the TLS method is adopted to fit the 2D straight line by minimizing the 
sum of the squared error. Moreover, a simulated example is carried out to 
demonstrate the effectiveness and applicability of the proposed 
algorithm. 
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