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Abstract 

A mixed weighted total least squares (MWTLS) method is presented for an errors-in-
variables (EIV) model with some fixed columns in the coefficient matrix. An iterative 
algorithm is derived based on the proposed MWTLS method. Compared with the classical 
WTLS method, the method represented in this paper improves the computing speed of the 
estimated parameter, while the fixed columns of the coefficient matrix keeps unperturbed. 
Furthermore, a simulated example is carried out to demonstrate the performance of the 
proposed algorithm. 
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1. Introduction 

Consider the linear model 

,ε+β= AY  

( ),,0~ 2Qσε  (1) 

where pnRA ×∈  is the coefficient matrix with ,mn >  and pRY ∈  is 

the observation vector. It is often assumed in the least square (LS) 
problem that, the coefficient matrix is exactly known, and only the 
observation vector has measurement errors. In practice, however, we may 
encounter the situation in which some or all the elements of the 
coefficient matrix A are not given deterministically, and they are 
measured or derived from measurements with random errors. Ignoring 
such errors in the coefficient matrix usually results in biased estimates of 
the parameter vector ,β  which may cause difficulties and complications 

in conducting statistical analysis. Models with a random coefficient 
matrix A have been well known as errors-in-variables (EIV) models (see 
Fuller [7]; Cheng and Van Ness [5]; Carroll et al. [4]; Buonaccorsi [3]). An 
appropriate approach to solve EIV models is the total least squares (TLS) 
method. Now, there are many researches about the total least squares in 
algorithms such as the singular value decomposition (SVD) algorithm 
(Golub and Van Loan [8]) and the algorithm based on the Lagrange 
function (Schaffrin et al. [16, 17]; Fang [6]). For more information about 
the methodology of TLS, one can refer to Huffel et al. [10, 11]. Recently, 
TLS has attained much attention. In many applications, such as remote 
sensing and geodetic datum transformation, data are collected by 
different instruments with different precisions. Then the ordinary TLS 
approach is generalized to so called weighted TLS (WTLS) approach 
where both the observation vector and coefficient matrix have different 
weight matrices (Schaffrin et al. [16]; Jazaeri et al. [12]). 
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In practice, some of the columns of the coefficient matrix may be 
known exactly. For example, in linear regression with measured 
independent variables, the elements of the first column of the coefficient 
matrix is often equal to unity and are surely not random. In system 
identification, when inputs and outputs of a system are measured with 
error, and the system is modelled as a transfer function, the coefficient 
matrix of the function may have exactly known columns. An EIV model 
with exactly known columns is called a mixed EIV (MEIV) model. 
Obviously, the computational cost of the MEIV model will increase 
dramatically according to the traditional solutions of EIV model. For the 
MEIV model, Golub et al. [9] developed the mixed LS-TLS method by 
computing a QR factorization of the known columns and then solved a 
TLS problem of reduced dimension. And later, this method was extended 
by Huffel et al. [10, 11] to the multi-dimensional case. 

In survey engineering, Akyilmaz [1] performed mixed LS-TLS 
method to solve coordinate transformation problems. Amiri-Simkooei et 
al. [2] presented the weighted TLS formulation for a MEIV model based 
on the standard least squares. In this paper, we will provide the mixed 
weighted total least squared (MWTLS) estimators for the MEIV models 
by Lagarange-multiplier method. The structure of this paper is as 
follows. Section 2 presents MWTLS estimators for MEIV models. A 
simulation study is included in Section 3, and the paper is concluded in 
Section 4. 

2. Weighted Total Least Squared Estimators for the MEIV Model 

Let the EIV model be defined as follows: 
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where y and ye  are the 1×n  observation vector and the corresponding 

random error vector in (2), respectively. Matrix A and AE  are full 

column-rank pn ×  stochastic and the corresponding random error 

matrix, respectively. Vector ξ  is the unknown parameter vector by .1×n  

Denote ( )AA Eece ν=  (‘ ecν ’ denotes the operator that stacks one column 

of a matrix underneath the previous one). The symbol 2
0σ  denotes the 

unknown variance component. Matrices yQ  and yP  are the cofactor 

matrix and the weight matrix of the observation vector y, and AQ  and 

AP  are the cofactor-matrix and the weight matrix of the matrix .Ae  

Without loss of generality, we assume that the first tp −  columns of the 

coefficient matrix do not contain errors, but the last t columns of the 
coefficient matrix do not contain errors. The MEIV model be defined as 
follows: 

( ) ,22211 yeEAAy +β−+β=  

.
0

0
,

0

0
~

2

2

2



























σ





























Q

Qyy

e

e
 (3) 

In (3), y and ye  are the 1×n  observation vector and the 

corresponding random error vector, respectively. Matrices 1A  is the 

( )tpn −× matrix, 2A  is the tn ×  matrix, 2E  is the corresponding tn ×  

matrix of random errors, 1β  is the tp −  vector of unknown parameters, 

2β  is the t vector of unknown parameters, ( )22 Eece ν=  (‘ ecν ’  denotes 

the operator that stacks one column of a matrix underneath the previous 

one). The symbol 2
oσ  denotes the unknown variance component and yQ  

is the cofactor matrix of the observation vector y, and 2Q  is the cofactor 

matrix of .2E  
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Using ( ) ( ) ( )BecACABCec T ν⊗=ν  (Lütkepohl [13]), the model in (3) 

can be rewritten as 

( ) ,222211 yn
T eeIAAy +⊗β−β+β=  (4) 

where ⊗  denotes the Kronecker product of matrices. 

The weighted total least squares principle is to minimize the 
objective function 

.2
1
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1 eeeeS T

yy
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−− += QQ  

By employing the equivalent target function in accordance with 
Lagrange, we have 

( ) ( )[ ].2,,, 2222112
1

22
1

2 yn
TTT

yy
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yy eeIAAyeeeeee −⊗β+β−β−λ++=ξλΦ −− QQ  

Then the necessary Euler-Lagrange conditions are derived, namely, 
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where tildas indicate “predicted” vectors, and hats indicate “estimated” 

ones. Now, ye~  and 2
~e  can be expressed in terms of λ̂  by using (5) and 

(6). This leads to 
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,ˆ~ λ= yye Q   (10) 

( ) ,ˆˆ~
222 λ⊗β−= nIe Q   (11) 

and after inserting this into (7), we obtain 

( ) ( )[ ] ( ).ˆˆˆˆˆ 2211
1

222 β−β−⊗β⊗β+=λ
−

AAyII nn
T

y QQ  (12) 

Let 

( ) ( ),ˆˆ 2221 nn
T

y II ⊗β⊗β+= QQQ  (13) 

where 1Q  is invertible. We readily obtain 

( ).ˆˆˆ 2211
1

1 β−β−=λ − AAyQ  (14) 

Inserting (14) into (8), we get 
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and using 

( ) ,~ˆˆ~
22 eIE T

t
T λ⊗=λ  (16) 

we obtain from (9) that 

( ) ( )[ ].~ˆˆ 23
1

232 eIyA T
t λ⊗−=β − QQ  (17) 

Inserting (17) into (15), the closed-form expression of the estimated 

parameter vector 1β̂  and 2β̂  can be derived as 
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(18) 
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In the analogy with the standard least squares, the estimator of the 

variance component 2σ  is given as 
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Substitution of ye~  from (10) and 2e  from Equation (11) into (19), yields 
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From (13), 2
0σ̂  can be obtained as 

( ) .ˆˆˆ
ˆ 22112

0 pn
AAyT

−
β−β−λ

=σ  (21) 

After giving an initial value of the parameter vector, we compute the 
solution with (18) iteratively. Note that, in each iteration, the matrices 
and vectors containing the parameter vector and the error matrix should 
be updated. Therefore, the MWTLS procedure for parameter estimation 
is summarized as follows: 

MWTLS Algorithm: 
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Step 2. For ,N∈i  compute 
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Step 3. Stop when ε<β−β −1
11 ˆˆ ii  and ε<β−β −1

22 ˆˆ ii  for a chosen 

threshold .ε  
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3. Numerical Examples 

In order to demonstrate the performance of Algorithm 1, in this 
section, the algorithm will be applied to a straight line fitting problem 
representing the MEIV problem, compared with the general WLS 
algorithm and the algorithm proposed by Fang [6]. The observed data 
and their corresponding weights are listed in Table 1. We try to estimate 
the slope a and the intercept b of the regression line 

( ) ,bexaey ii xiyi +−⋅=−   (22) 

using the MWTLS algorithm above. 

Table 1. Observed data ( )ii yx ,  and corresponding weights, taken from 

Neri et al. [14] 

i ix  ixW  iy  iyW  

1 0.0 1000.0 5.9 1.0 

2 0.9 1000.0 5.4 1.8 

3 1.8 500.0 4.4 4.0 

4 2.6 800.0 4.6 8.0 

5 3.3 200.0 3.5 20.0 

6 4.4 80.0 3.7 20.0 

7 5.2 60.0 2.8 70.0 

8 6.1 20.0 2.8 70.0 

9 6.5 1.8 2.4 100.0 

10 7.4 1.0 1.5 500.0 
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Modifying (22) as follows: 
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where (23) is a typical MEIV model and * means that there is no result 
about the estimator of the variance component in Neri’s paper. 

Table 2. Results of straight line fit to observed data of Table 1 

Parameter 
estimate 

Exact solution 
(Neri et al.) 

WLS WTLS 
(Schaffrin et al.) 

MTLS 
(this paper) 

a – 0.480533407 – 0.610812956 – 0.480533407 – 0.480533407 

b 5.47991022 6.100109317 5.479910224 5.479910224 

2σ̂  * 4.29315094 1.48329415 1.48329415 

Cpu time * 0.0468 0.0624 0≈  

The threshold ( )1010−=ε  has been chosen such as to allow a 

comparison of our MTLS to the “exact solution” reported by Neri et al. 
[14] and the solution reported by Schaffrin and Wieser [17]. In fact, the 
results indicate that the estimated line parameters are the same and 
coincide with the exact solutions as reported by Neri et al. [14] and 
Schaffrin and Wieser [17]. Therefore, it is possible to find exact results 
for a regression line analysis affected by errors, without requiring any 
kind of approximation. Compared with WTLS, the MTLS algorithm 
presented in this paper consumes little time, therefore, the computation 
speed is accelerated. In fact, if the coefficient matrix has more fixed 
columns, the MTLS algorithm can present its superiority over the TLS 
algorithm. 
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4. Conclusion 

For a MEIV model, considering the random errors may exist in both 
of the observation vector and the coefficient matrix, and the coefficient 
matrix have some fixed columns, the MWTLS algorithm is constructed in 
this paper. A numerical example is carried out to demonstrate the 
performance of the MWTLS compared with WTLS. When all the columns 
of the coefficient matrix are fixed, the MTLS solution reduces to the 
ordinary LS estimate. When all the columns of the coefficient matrix are 
random, the MTLS solution becomes the TLS solution. So, it will have a 
more wide range of application. 
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