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Abstract 

Based on a two-level structural equation model, this simulation study examines 
how omitted variables affect estimation bias in matching hierarchical data. Six 
simulated cases of omitted variables are examined by manipulating level-1 

and/or level-2 residual variances and .2R  Results show that (1) Mahalanobis 
distance matching is less effective than propensity score matching; (2) level-1 
matching is less sensitive to omitted variables than level-2 matching; (3) dual-
matching (level-1 plus level-2 matching) is robust to omitted variable problems; 
and (4) different sizes of caliper should be used for level-1 and level-2 matching 
because caliper matching depends on the data structure. To address the 
challenges encountered when matching more complicated hierarchical data with 
omitted variables, directions for future research are suggested. This study can 
help researchers choose an appropriate matching strategy to reduce selection 
bias for program evaluation when hierarchically structured data are used. 

1. Introduction 

Omission of variables occurs frequently in education studies due to 
the complex structure of school systems (Kim & Frees [39]). Omitted 
variables are a source of hidden bias in treatment effect estimation 
(Shadish et al. [74]). How exactly do omitted variables affect bias 
reduction rate in matching? Cochran and Rubin [21] have studied the 
failure to include a confounding variable in matching when the true 
linear regression has two covariates, 1x  and .2x  Matching is performed 

on only ,1x  and 2x  is omitted from matching. Bias reduction of matching 

on only 1x  depends on the regression relationship between 1x  and .2x  If 

the regression of 2x  on 1x  has equal slopes but non-equal intercepts in 
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the two populations – i.e., treated and control – then the final bias due to 
matching on only 1x  is larger than the initial difference. This is referred 

to as the “parallel but not identical” case (p. 45). If the regression of 2x  

on 1x  has a “parallel but non-linear” (p. 45) relationship and the sample 

sizes are large, then matching on only 1x  reduces partial selection bias 

due to .2x  The reduced selection bias due to 2x  is only proportional to 

the partial linear regression coefficient of 2x  on .1x  

When the number of covariates is large, the omitted and included 
covariates have more complex relationships. Omitted covariates can 

cause a biased estimate of treatment effect and an attenuated 2R  in a 

regression model. ,2R  as an index of goodness of fit of regression, 

indicates the proportion of variance explained by the model. The pattern 
of bias reduction due to omitted covariates is examined in this simulated 
study through a two-level structural equation model (SEM, Bollen [11]; 
Jöreskog & Sörbom [36]). 

2. Brief Review of Relevant Literature 

2.1. Bias and bias reduction 

The negative effect of initial difference of covariates X has been 
studied for decades in treatment effect analysis (Neyman [49]; Rubin 
[67]). The initial difference can bias the treatment effect estimation and 
mislead one’s conclusions (Campbell & Stanley [12]). Bias reduction 
(Cochran [20]; Cochran & Rubin [21]; Rubin [60-65]) is critical for 
treatment effect estimation in causal inference and program evaluation. 
Research has shown that the best bias reduction is achieved (Cochran & 
Rubin [21]; Rubin [61-64]) through a combination of matching and 
regression adjustment (e.g., Stuart & Rubin [77]). 
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2.2. Bias reduction and post-hoc matching 

Bias reduction techniques include Cochran’s three approaches of 
pairing, balancing, and stratification (Cochran [15]1), post-hoc matching 
(Abadie & Imbens [1, 2]; Rubin [60-65]), analysis of covariance (e.g., 
Cochran [16-18]), inverse propensity score weighting (Angrist & Pischke 
[3]; Horvitz & Thompson [32]; McCaffrey & Hamilton [46]), statistical 
modelling with adjustment (e.g., WLS estimation in HLM framework, see 
Hong & Raudenbush [31]), and double robust estimation using regression 
adjustment and inverse propensity score weighting (Kang & Schafer 
[37]). Because the “golden rule” of randomization is generally broken in 
observational studies (Cochran [15]; Rosenbaum [57]), the post-hoc 
matching approach uses covariates or summary measures of covariates 
(e.g., Mahalanobis distance in Rubin [65]) to remove bias by matching the 
treatment and control groups (Rosenbaum & Rubin [59]). Post-hoc 
matching approaches differ in regard to the summary measure, a 
functional composite of covariates (Rubin [66]). The most commonly used 
composites are the Mahalanobis distance (e.g., Rubin [65]) and 
propensity score (Rosenbaum & Rubin [58]). 

Propensity score matching is commonly used on observational data to 
approximate the individual-randomized trials in order to study a 
treatment effect of interest (Cochran [15, 17]; Cochran & Rubin [21]; 
Rosenbaum & Rubin [58]; Rubin [60-61]). A propensity score (Rosenbaum 
& Rubin [58]) represents the conditional probability that a participant is 
assigned to receive treatment. Estimated through the logistic regression 
model, where the covariates are used as regressors and the binary 
treatment-control status variable is used as the dependent variable 
(Rosenbaum & Rubin [59]), the propensity scores are used to balance the 
treatment and control groups. Propensity score matching reduces 

                                                      
1Pairing is applied to exactly match each unit of treatment with a unit from the control 
group; balancing is applied to match the treatment and control group means of a covariate; 
and stratification is applied to stratify data using a covariate. 
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selection bias (Rubin & Waterman [69]), improves the accuracy of the 
average treatment effect estimate (Abadie & Imbens [1]), and facilitates 
causal inference (Greenland [24]). 

2.3. Omitted variables in general regression and multi-level 
modelling 

Omitted variables are “variables that are not in a model or analysis 
that influence both the cause and the effect and so may cause bias”         
(p. 510, Shadish et al. [74]). In a true experimental design, due to the use 
of randomization, the inclusion of covariates is not necessary in the 
analytical modelling (Solomon [75]) and omitted variables are not a 
problem. Randomization asymptotically evens out the effect of covariates 
in treatment and control groups; however, omitted covariates in quasi-
experimental designs cause serious problems in statistical analysis. 

The omitted variables can be related to both predictors (e.g., 
treatment) and outcome in the regression model; the treatment effect is 
biased due to the correlation between the treatment and omitted 
variables (Shadish et al. [74]). Angrist and Pischke [3] speculated the 
“omitted variables bias formula” (p. 60) to explain how the schooling 
effect was biased due to the correlation between omitted variables and 
schooling. In observational studies, an alternative measure can be used 
to adjust the bias through a two-stage “proxy control” regression (p. 67, 
Angrist & Pischke [3]). Instrumental variables methods (Angrist & 
Pischke [3]) and regression discontinuity (Shadish et al. [74]; Sun & Pan 
[76]) have been used to deal with omitted variable problems. 

The omission of variables can be severe and even dangerous (Kim & 
Frees [39]) in education and related fields, and can cause incoherent 
results in schooling effect estimation. For example, because the pretest 
score is the most important covariate, omitting it will cause seriously 
biased causal effect estimation, especially in complicated multi-level 
mediation analysis (Tofighi & Thoemmes [79]). Literature on the omitted 
variable problem in schooling effect estimation in econometrics can be 
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traced back to critical studies such as Griliches and Mason [26] and 
Chamberlain [13] (see more in Angrist & Pischke [3]). A systematic 
literature review on omitted variables in regression analysiscan be found 
in Kim and Frees ([39], p. 660-664) and Angrist and Pischke ([3], e.g.,      
p. 59-64). More literature can be referred to a recent multi-level 
modelling textbook (see Helwig & Anderson [29]; Leckie [41]) that 
included a whole chapter on omitted variables. 

It was the simulation study of Kim and Frees [39] that first examined 
the omitted variable problem in multi-level modelling (Raudenbush & 
Bryk [56]). Most recent multi-level modelling studies have examined the 
omitted variable problem in more complex data structures, including      
(1) time-series cross-sectional and panel data (Bell & Jones [9]); (2) multi-
level mediation analysis (Tofighi et al. [80]); and (3) latent variable 
mediation analysis (Preacher [51]). Bates et al. [8] studied how a 
correlation between the included covariates and level-2 omitted variables 
causes dependency of residual and covariate (i.e., cluster-level 
endogeneity, p. 529); and they proposed a per-cluster (PC) regression 
estimator (p. 534) to obtain unbiased parameter estimators. A Bayesian 
approach has been proposed to analyze educational data to account for 
residual-covariate correlation due to the level-1 omitted variables (Ebbes 
et al. [22]). 

2.4. Theoretical framework 

The feasibility of matching depends on the availability of the 
covariates in a study. A recent review (Wu et al. [86]) found 55 propensity 
score matching studies in 2012-13 published in four leading 
epidemiological journals, nine (16%) of which failed to report what 
covariates had been used for matching. Omission of variables often occurs 
in educational studies due to the complex structure of school systems, 
which involves an endless list of measures such as student 
characteristics, family background variables, teacher variables, and 
variables at the school and district levels (e.g., Kim & Frees [39]). 
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2.5. Omitted variables and matching 

The matching literature focuses on how bias reduction is affected by 
the relationship between included variables and the outcome variable, 
rather than how it is affected by the correlation between the omitted and 
included covariates (Austin et al. [4]). Austin et al. [4] conduct simulation 
studies that involve propensity score models containing (1) variables 
related to treatment allocation, (2) variables that were confounders for 
the treatment-outcome pair, (3) variables related to outcome, and (4) all 
variables related to either outcome or treatment or neither. When the 
propensity score model includes true confounders or variables related to 
the outcome, it achieves the best results in terms of the number of 
successfully matched pairs of treated and untreated units. Failing to 
include confounders in a propensity score model attenuates the bias 
reduction rate, results in a treatment-control-group imbalance on 
essential covariates, and biases the treatment effect estimation. 

The situation is more complicated when omitted variables occur in an 
analysis involving hierarchically structured data because an initial 
difference can occur on the level-1 and/or level-2 omitted covariates. 
Matching on a measure that is not highly correlated with the outcome 
variable results in ineffective matching (Martin et al. [45]). In order to 
obtain effective matching, the correlation between the matching covariate 
and the outcome variable needs to be at least 0.40 when 10 pairs of 
clusters are being matched (Martin et al. [45]). Austin et al. [4] examined 
matching on non-hierarchical data with omitted variables, and Martin et 
al. [45] used matching for power analysis of randomized clusters design 
rather than bias reduction for observation studies. Raab and Butcher [53] 
discussed balancing covariates in the design of cluster randomized trails 
without the omitted variable problem. More research is needed to 
examine the bias reduction in matching hierarchical data collected in 
quasi-experimental and observational studies. 
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2.6. Omitted variables and regression fit index 2R  

Traditionally, modelling and analyzing variance components have 
been an important topic in research on multi-level schooling effects      
(e.g., Raudenbush & Bryk [56]). The variance heterogeneity of     
schooling effect estimation occurs due to at least one of four factors: (1) 
omitted treatment-background interaction terms in randomized clusters 
design; (2) omitted student characteristic and background variables in 
observational studies; (3) omitted school-level characteristics indicating 
initial bias; and (4) measurement issues such as ceiling/flooring effects 
(Leckie et al. [42]). 

Omitting essential covariates from the schooling effect model would 
attenuate or strengthen the association between the outcome and the 
covariates included in the model (p. 60, Angrist & Pischke [3]); however, 

they always deflated the magnitude of .2R  In the general linear 
regression model, omitted covariates decrease the proportion of variation 
explained and inflate the residual variable. This results in an attenuated 

,2R  which is an explained variance measure and an index of the 
regression’s goodness of fit. Regarding the explained variance measures 

including level-1 and level-2 2R  in multi-level models, please refer to the 
most recent methodical study on the topic (LaHuis et al. [40]). The level-1 

and level-2 2R  of this study are similar to their mathematical definitions 

in Equations (6) and (7) on page 436. A larger 2R  indicates a smaller 

effect of omitted covariates. Manipulating 2R  allows us to examine how 
omitting covariates affects bias reduction in the use of propensity 
matching. 

2.7. Why study 2R  rather than ICC in matching hierarchical data 

Unlike the level-1 variation, which increases when covariates are 
omitted, between cluster variation will not necessarily increase when 
covariates are omitted (Raudenbush [55]). The relationship between 
omitted variables and the intraclass correlation (ICC) is complex. The 
level-1 and level-2 residual variances define an index, ICC, which 



OMITTED VARIABLES, ,2R  AND BIAS REDUCTION … 51

indicates the similarity among the units in a cluster (Hedges [28]; Hedges 
& Hedberg [27]). The decomposition of total variance of outcome variable 

indicates the within level-2 unit variation ( )2
1σ  and between level-2 unit 

variation ( ).2
2σ  ICC is defined in Raudenbush and Bryk [56] as 

( ).2
2

2
1

2
2 σ+σσ  

Because ICC indicates the similarity among the units in a cluster, 

increasing 2
1σ  and/or 2

2σ  will result in complications ICC. Summarizing 

two sources of variation, ICC is not a clean-cut index to be linked to the 
bias reduction of either level-1 or level-2 matching (Abadie & Imbens [1]). 
Using a two-level SEM (Muthén [47]), this simulation study allows us to 

manipulate level-1 and level-2 ,2R  rather than the ICC index, in order to 
examine how omitted variables affect the performance of matching. 

3. Method 

3.1. Data resource and simulation goals 

This study uses the US data (Wolfe [84]) collected in the longitudinal 
Second International Mathematic Study (SIMS, International Association 
for the Evaluation of Educational Achievement [35]). The dataset 
includes 126 regular classes and 2,296 students. Average class size is 
about 27. Tables 1 and 2 list the descriptive statistics of the outcome 
variables and covariates. The selection of variables is based on previous 
studies (Schmidt & Burstein [70]). 

SIMS is a longitudinal study on the effects of 8th grade (Cohort 2) 
curriculum and classroom instruction. It includes two waves of data, the 
first of which was collected at the beginning of the school year (Time 0), 
and the second at the end of the school year (Time 1). Cohort 2 at Time 0 
(C2T0) is treated as the control group. The “treatment” is one year of 
schooling. Cohort 2 at Time 1 (C2T1) data assesses the schooling effect 
( ),C2T0C2T1−δ  which is the average of “changes in mathematics 

achievement over the time span of one school year at the particular grade 
level” (Wiley & Wolfe [83], p. 299). 
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C2T0 data cannot be collected in a study using the synthetic cohort 
design (SCD). SCD was used for cross-national comparisons of schooling 
(Wiley & Wolfe [83]) in the Third International Mathematics and Science 
Study 1995 (TIMSS 1995). In SCD, the schooling effect is determined by 
subtracting measures of two adjacent grades, 7th grade (Cohort 1) and 
8th grade (Cohort 2, the focal cohort), measured at the same time point 
(Time 1). SCD is a quasi longitudinal design, where Cohort 1 at Time 1 
(C1T1) data are treated as a control group to estimate schooling effect 

( ).ˆ C1T1C2T1−δ  The treatment effect estimation bias of SCD is 

( ) ( ) .ˆˆ C2T0C2T11C1TC2T1C1T1C2T1 −−− δ−δ=δ EBIAS  

One of the goals of simulating SCD is to generate Time 1 data for 
Cohort 1 that are non-comparable with Cohort 2 at Time 0 due to omitted 
variables, so that we can examine the extent to which matching 
decreases the estimation bias of the schooling effect. The second goal is to 
evaluate three matching approaches: level-1 matching,2 level-2 
matching,3 and dual matching (Wang [81]). Dual matching involves 
matching level-1 individuals within a matched pair of level-2 treatment 

and control units. Specifically, it examines (1) how 2R  impacts bias 
reduction rate in each of the three matching approaches and (2) whether 

increasing 2R  improves bias reduction rate more when the simulated 
selection bias is smaller in each of the three matching approaches. 

3.2. Simulation design model 

The two-level SEM (Muthén [47]) based on SIMS data is used for the 
simulation study (see Figure 1). In the level-1 model, the post-test score 
is predicted by the pre-test score, which is predicted by four student 

                                                      
2Ignoring the hierarchical structure, treated individuals are matched with control 
individuals to compute the bias reduction rate. 
3Ignoring level-1 variables, level-2 units (clusters) are matched by using level-2 propensity 
scores to compute the bias reduction rate. 
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characteristics and five latent variables. The latent constructs and their 
surrogate variables are shown in Table 1 along with descriptive 
statistics. In the level-2 model, the intercept of pre-test ( )0β  is predicted 

by four class-/school-level variables. The intercept of post-test ( )0α  is 

predicted by 0β  and three class-level variables. Level-2 predictors with 

descriptive statistics are shown in Table 2. The level-1 and level-2 
residuals are mutually independent of one another (Muthén [47]). 

 

Figure 1. Two-level structural equation model. 
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Table 1. Level-1 descriptive statistics of the final two-level structural 
equation model 

Variables Mean Label Description 

Educational 4.73 YPWANT I want to learn more math (inverse code a51 − ) 

Inspiration 4.24 YPWWELL Parents want me to do well ( )a51 −  

(EDUINSP) 4.37 YPENC Parents encourage me to do well in math 

(inverse code a51 − ) 

Family 3.72 YPINT Parents are interested in helping math (inverse 

code a51 − ) 

Support 3.53 YFLIKES Father enjoys doing math (inverse code a51 − ) 

(FMLSUPRT) 3.25 YMLIKES Mother enjoys doing math (inverse code a51 − ) 

 3.92 YFABLE Father is able to do math homework (inverse 

code a51 − ) 

 3.71 YMABLE Mother is able to do math homework (inverse 

code a51 − ) 

Math 4.60 YMIMPT Mother thinks math is important ( )a51 −  

Importance 4.55 YFIMPT Father thinks math is important ( )a51 −  

(MTHIMPT)    

Self- 4.32 YIWANT I want to do well in math ( )a51 −  

Encouragement 3.24 YMORMTH Looking for ward to taking more math ( )a51 −  

(SLFENCRG) 3.73 YNOMORE Will take no more math if possible (inverse code 
a51 − ) 

Socioeconomic 3.38 YFEDUC Father’s education level ( )b41 −  

Status 3.35 YMEDUC Mother’s education level ( )b41 −  

(SES) 4.26 YFOCCN Father’s occupation national code ( )c81 −  

 4.11 YMOCCN Mother’s occupation national code ( )c81 −  
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Table 1. (Continued) 

Age 0.00 XAGE Grand mean-centered age 

Parental help 1.75 YFAMILY How frequently family help ( )d31 −  

Education 2.97 EDUECPT YMOREED: Years of education parents 

expected ( )e41 −  

Expectation    

Homework 2.98 YMHWKT Typical hours of math homework per week 

Note. =1a  not at all like, 2 = somehow unlike, 3 = unsure, 4 = somehow like, 5 = exactly 

like. =1b  little schooling, 2 = primary school, 3 = secondary school, 4 = college or university 

or tertiary education. =1c  unskilled worker, 2 = semi-unskilled worker, 3 = skilled worker 
lower, 4 = skilled worker higher, 5 = clerk sales and related lower, 6 = clerk sales and 
related higher, 7 = professional and managerial lower, 8 = professional and managerial 

higher. =1d  never/hardly, 2 = occasionally, 3 = regularly. =1e  up to 2 years, 2 = 2 to 5 
years, 3 = 5 to 8 years, 4 = more than 8 years. N = 2,296. 

Level-1 model 

;postPr10Post eYY e +α+α=   (1) 

EDUINSPYMHWKTYFAMIEDUCEPTXAGE 543210ePr β+β+β+β+β+β=Y  

,SESMTHIMPTFMLSUPRTSLFENCRG ePr9876 e+β+β+β+β+  (2) 

with ( )2
post post

,0~ σσNe  and ( ).,0~ 2
pre preσσNe  

Level-2 model 

;MTHONLYCLASSSIZEOLDALGOLDARITH 0432100 β+γ+γ+γ+γ+γ=β u  

 (3) 

,TPPWEEKNEWGEOMNEWALG 076500 α+γ+γ+γ+β=α u  (4) 

with ( )2
00 ,0~

β
σβ uNu  and ( ).,0~ 2

00 α
σα uNu  
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Mplus (Muthén & Muthén [48]) is used to estimate factor loadings, 
regression coefficients, and residual variances (see Appendix for level-1 
and level-2 parameters). These parameter estimates are treated as 
known values to generate the pseudo-population longitudinal data of 
Cohort 2 at Time 0 (e.g., grade 7 in year i – 1) and Time 1 (e.g., grade 8 in 
year i). Our data-driven simulation approach has a similar metric from 
the sampling study by MacCallum et al. [44]. Their approach treated 
observed data as the “population”; ours created a pseudo-population, from 
which samples were drawn for simulation. 

Table 2. Level-2 descriptive statistics of the final two-level structural 
equation model 

Variables Mean Label Description 

Teacher/Class-level covariates 

Class Size 26.60 CLASSIZE Created from the number of students in class 

Opportunity 7.10 OLDARITH Prior OTL in Arithmetic 

to Learn 3.19 OLDGEOM Prior OTL in Geometry 

 59.61 NEWALG This year’s OTL in Algebra 

 41.37 NEWGEOM This year’s OTL in Geometry 

Instruction 5.09 TPPWEEK Number of hours of math instruction per week 

School-level covariates 

Qualified Math 
Teacher Rate 

0.14 MTHONLY Proportion of qualified match teachers: Sum of 
SSPECM and SSPECF divided by STCHS 

Note. N = 126. 

4. Simulation Study 

4.1. Simulated hierarchical selection bias 

The pseudo-population data generation of C1T1 involves 

manipulating level-1 and/or level-2 .2R  The simulated multi-level 
selection bias in C1T1 occurs in three situations. Each represents one 
source of selection bias due to omitted variables in reality. 
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(1) Non-comparability occurs only in level-1 covariates; and level-2 
are identical. This situation occurs when the two physically adjacent 7th 
grade classes are located in the same school and taught by the same 
teacher. That is, matching can only be performed on level-1. This involves 
Simulations 1 and 2 that are later discussed in more detail in this 
section. For Simulation 1, we design a baseline with a large selection bias 

but no manipulation on ;2R  however, for Simulation 2, the baseline has 

zero selection bias and a larger .2R  

(2) Level-2 covariates are not comparable; and level-1 covariates are 
identical or level-1 comparability is not a concern. For instance, in the 
cluster randomized trails design (e.g., Hedges & Hedberg [27]), clusters 
(e.g., classes or schools) are the sampling and intervention units; 
aggregated cluster means are the analysis units. Matching on clusters is 
needed to create level-2 comparability. This involves Simulations 3 and 4. 
Simulation 3’s baseline has a large selection bias but zero manipulation 

on ;2R  however, Simulation 4’s baseline has zero selection bias and a 

larger .2R  

(3) Both level-1 and level-2 covariates cause non-comparability. This 
is a concern when clusters are sampled from the population of interest, 
and intervention happens on individuals. Matching of both level-1 and 
level-2 covariates, i.e., dual matching (Wang [81]), is necessary. 
Simulations 5 and 6 examine this situation. For Simulation 5, a baseline 

is designed to have large selection bias but zero manipulation of 2R  on 
level-1 and level-2. 

Simulation 1: C1T1’s level-1 covariates means differ from C2T0’s, 

with level-1 variance 2
preσσ  reduced by half 

In the level-1 SEM Equation (1), there are four covariates: age 
(XAGE), education expectation (EDUCEPT), homework time 
(YMHWKT), and frequency of family help on homework (YFAMILY). 

Their mean vector [ ]984.2,745.1,968.2,000.00T2C
1 =µ  is manipulated 
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by adding a constant vector ( ).1,1,1,11 −−−=c  The manipulated mean 

vector is denoted as [ ]984.1,745.0,968.3,000.11C1T
1 −=µ  and used to 

generate data of Cohort 1 at Time 1. Varying entry values of 1c  will 

cause the overlap between the distribution of C2T0
1X  and C1T1

1X  to vary 

as well. Smaller values will create a bigger overlap between C2T0
1X  and 

C1T1
1X  and make it more likely to achieve successfully matched units 

given a specific sample size. 

Because of the manipulation on the four covariates in Equation (1), 
the simulated bias on pre-test score is 2.8052. Thus, the manipulated 
population pre-test mean of C1T1 is increased from 13.711 to 16.576. 
Therefore, using SCD will underestimate the learning effect by 2.805. 

That is ( ) .805.2ˆ C1T1C2T1 =δ −BIAS  After matching the level-1 

covariates, ( )C1T1C2T1ˆ
−δBIAS  will be reduced. Thus, a bias reduction 

rate can be computed to evaluate the performance of the matching. The 
rationale for using matching is the same for other simulations of this 

study. The residual variance 2
preeσ  in both cohorts is set as 12.819, which 

is reduced by 50% of the value (25.638). The baseline simulation data 

have no manipulation on 2R  but the exact same selection bias as in 
Simulation 1. Compared with Simulation 1, the baseline represents a 
situation where more variables are omitted from the level-1 regression 
equation. 

Simulation 2: C1T1’s level-1 covariates means differ from C2T0’s, 

with level-1 variance 2
epre

σ  reduced by half, and initial difference 

reduced 

In this simulation, the residual variance 2
preeσ  in both cohorts is set 

as 12.819, which is a 50% reduction and increases level-1 .2R  The 

manipulated selection bias ( )C1T1C2T1ˆ
−δBIAS  on C1T1 pre-test score is 
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1.1995, which is about 43% of the bias in Simulation 1. This selection 
bias is generated by deducting/adding half of the standard deviation to 
each covariate mean of C2T0. In C2T0 data, the standard deviation 

vector of the four level-1 covariates is [ ];875.6,595.0,768.0,005.6C2T0
1 =σ  

thus, half of C2T0
1σ  is [3.002, 0.384, 0.297, 3.437]. The mean vector of the 

four level-1 covariates [ ]984.2,745.1,968.2,000.0C2T0
1 =µ  is deducted 

by or added to a half of C2T0
1σ  to generate .C1T1

1µ  The operation of 

deducting (adding) is determined by the negative (positive) sign of the 
covariate’s regression coefficient. The regression coefficients of the four 
covariates are – 0.057, + 1.277, – 1.439, and – 0.032; thus, a vector [– 3.002,     

+ 0.384, – 0.297, – 3.437] is added to C2T0
1µ  to generate C1T1’s covariate-

mean vector ,C1T1
1µ  denoted as [– 3.002, 3.352, 1.448, – 0.453]. Because of 

the manipulation on the four covariates in Equation (1), the simulated 

( )C1T1C2T1ˆ
−δBIAS  on C1T1 pre-test score is 1.1995, which is reduced by 

57% from that in Simulation 1. 

The same manipulation on 2R  is used for Simulation 2’s baseline 
simulation, which has zero selection bias. This baseline represents a 
situation where fewer variables are omitted from the level-1 regression; 
and the two cohorts are comparable on the available level-1 covariates. 

Simulation 3: C1T1’s level-2 covariates means differ from C2T0’s, 

with level-2 variance 2
u 0α

σ  reduced by half 

The level-2 covariates include previous opportunities to learn 
arithmetic (OLDARITH), algebra (OLDALG), class-size (CLASSSIZE), 
and qualified mathematics teacher rate (MTHONLY). The mean vector, 

[ ],139.0,600.26,319.0,710.0C2T0
2 =µ  is manipulated by multiplying 

another constant vector ( ).5.1,5.0,5.1,5.12 −=p  After manipulation, 

the mean vector [ ]209.0,300.13,479.0,065.1C1T1
2 =µ  is used to generate 

the data of C1T1. Note that the average class-size (13.3) in C1T1 is half 
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the time as large as in C2T0. The regression coefficients of the four      
level-2 covariates are 0.65, 0.79, – 0.2, and 4.51, respectively. This 
manipulation of level-2 covariates of Equation (3) leads to a total bias of 

3.33 on .0β  Meanwhile, C1T1’s level-2 2R  is manipulated through the 

residual variance 2
0α

σu  in both cohorts by setting it as 5.599, which is 

reduced by 50% of the value (11.198) in C2T0. 

The baseline simulation involves no manipulation on ;2R  however, it 

has the exact same selection bias as Simulation 3. This baseline 
represents a situation where more variables are omitted from the level-2 
regression equation than they are in Simulation 3. 

Simulation 4: C1T1’s level-2 covariates means differ from C2T0’s, 

with level-2 variance 2
u 0α

σ  reduced by half, and initial difference 

reduced 

In this simulation, C1T1’s level-2 2R  is manipulated by setting the 

residual variance 2
0α

σu  in both cohorts as 5.599, which is 50% less than 

the value (11.198) of C2T0. The manipulation of selection bias in C1T1 is 
similar to that in Simulation 1; however, it occurs on level-2 covariates. 

C1T1’s level-2 covariate-mean vector C1T1
2µ  is generated by adding half 

of a standard deviation to or deducting the same from each level-2 
covariate mean of C2T0. In C2T0 data, the standard deviation vector of 

the four level-2 covariates is C2T0
2σ  denoted as [1.016, 0.620, 5.386, 

0.134]; a half of C2T0
2σ  is [0.508, 0.310, 2.693, 0.067]. The mean vector of 

the four level-2 covariates C2T0
2µ  is [0.710, 0.319, 26.600, 0.139], which is 

deducted/added by a half of .C2T0
2σ  The operation is determined by the 

sign of a covariate’s regression coefficient. If the sign is positive, then the 
covariate’s mean will be added by half of its standard deviation; 
otherwise, it will be deducted. The regression coefficients of the four 
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covariates are + 0.65, + 0.79, – 0.2, and + 4.51; then, a vector [+ 0.508,      

+ 0.310, – 2.693, + 0.067] is added to 0C2T
2µ  to generate ,C1T1

2µ  denoted 

as [1.218, 0.629, 23.90, 0.206]. Because of this manipulation of the 
covariates in Equation (3), the simulated level-2 selection bias on 0β  is 

1.4166, about 43% of that in Simulation 3. The baseline simulation has 

zero selection bias but the exact same value of level-2 2R  as that in 
Simulation 4. The baseline indicates that the two cohorts are comparable 
on the available level-2 covariates and fewer variables are omitted from 
the level-2 regression. 

Simulation 5: C1T1’s level-1 & level-2 covariates means differ 
from C2T0’s, with both level-1 & level-2 variance reduced by half 

Simulation 5 combines the manipulations of Simulations 1 and 3 to 
generate C1T1 data. The total selection bias due to both levels is inflated 

to 6.135. C1T1 data have both increased level-1 and level-2 .2R  The 

baseline has no manipulation on either level-1 or level-2 ;2R  however, it 

has the exact same level-1 and level-2 selection biases as in Simulation 5. 
This baseline represents a situation where both level-1 and level-2 have 
omitted variables; and there are both level-1 and level-2 selection biases 
on the covariates in the regression equations. 

Simulation 6: C1T1’s level-1 & level-2 covariates means differ 
from C2T0’s, with both level-1 & level-2 variance reduced by half 
and initial difference reduced 

This simulation combines manipulations of Simulations 2 and 4 to 
generate C1T1 data. In turn, the initial difference is 2.615, which is 

about 43% of 6.135 of Simulation 5. Both level-1 and level-2 2R  are 
increased in the same ways as those in Simulation 5. 

 

 



QIU WANG et al. 62

4.2. Bias reduction rate calculation 

MatchIt (Ho et al. [30]) and Matching (Sekhon [71]) carry out two 
types of matching – propensity score matching and Mahanalobis distance 
matching – for each manipulation. Each matching is conducted without 
replacement. The caliper (Stuart & Rubin [77]) is set to 0.2 and 0.01. The 
simulation design is 6 (manipulations) × 2 (types of matching) × 2 
(calipers). Each condition is simulated with 200 replications. Each 
replication randomly draws 100 treatment and 100 control classes from 
the pseudo-population. The sample size mean of each replication is 5,400. 

The R (R Development Core Team [52]) was used to run the 
simulations and calculate bias reduction rate as: 100 (1– schooling effect  
estimation bias in SCD after matching / schooling effect estimation bias  in 
SCD without matching)%. (Cochran & Rubin [21]; Stuart & Rubin [77]). 
A higher value bias reduction rate serves as an indication of better 
matching performance.  

For each of the 200 replications, we examined the comparability of 
the two random samples – if their initial bias was less than 0.5 standard 
deviations of the 200 initial biases, then the two cohorts were comparable 
and that replication’s matching results would not be used to calculate the 
bias reduction rate. Results of all manipulation studies are summarized 
in Table 3. 
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Table 3. Bias reduction rates of the three types of matching 

Simulation Propensity  
score 

Mahalanobis  
distance 

 
Matching methods and conditions 

Larger  
caliper 

Smaller 
caliper 

Larger  
caliper 

Smaller 
caliper 

Level-1 matching 

*Large Level-1 selection bias 72.03 78.44 16.56 24.03 
1 

Large Level-1 selection bias higher 2R  71.77 78.34 16.99 12.74 

#Zero Level-1 selection bias higher 2R  1.79 1.35 – 7.51 – 9.48 
2 

Small Level-1 selection bias higher 2R  62.96 64.60 7.80 12.74 

Level-2 matching 

*Large Level-2 selection bias 63.55 68.81 0.00 5.26 
3 

Large Level-2 selection bias higher 2R  70.22 71.15 0.00 5.49 

#Zero Level-2 selection bias higher 2R  – 8.20 – 167.8 5.34 – 21.18 
4 

Small Level-2 selection bias higher 2R  52.26 66.84 0.00 24.48 

Dual matching 

**Large Level-2 selection bias 37.21 NA NA NA 
NA 

**Large Level-1 selection bias 78.19 NA NA NA 

Large Level-2 selection bias higher 2R  36.74 NA NA NA 
5 

Large Level-1 selection bias higher 2R  77.13 NA NA NA 

Small Level-2 selection bias higher 2R  36.39 NA NA NA 
6 

Small Level-1 selection bias higher 2R  78.19 NA NA NA 

Note: *, #, ** : results are derived from simulation studies in baseline simulations. * or # is 
treated as the baseline within Simulation 1, 2, 3, or 4. ** is treated as the base-line of 
Simulation 5. 
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5. Results 

Simulation 1 

In Simulation 1, C1T1’s level-1 covariates means differ from C2T0’s, 

with level-1 variance 2
preeσ  reduced by half. When the two cohorts are 

hierarchically different at only level-1 covariates and level-1 2R  is high, 
matching on propensity scores estimated from the level-1 covariates 
reduces the schooling effect estimation bias by 78.34% using a smaller 
caliper (0.01) and 71.77% using a larger caliper (0.2). Mahalanobis 
distance matching only reduces estimation bias by 12.74% using a 
smaller caliper and 16.99% using a larger caliper. In the baseline 

simulation, 2R  is not manipulated. Propensity score matching reduces 
the bias by 78.44% using a smaller caliper and by 72.03% using a larger 
caliper. Mahalanobis distance matching reduces bias by 24.03% using a 
smaller caliper and by 16.56% using a larger caliper. 

Simulation 2 

In Simulation 2, C1T1’s s level-1 covariates means differ from C2T0’s, 

with level-1 variance 2
preeσ  reduced by half, and initial difference 

reduced. When the two cohorts are hierarchically less different at level-1 
covariates – that is, the initial difference is smaller – matching with a 
smaller caliper on propensity scores estimated from level-1 covariates 
reduces estimation bias by 64.06%, and with a larger caliper by 62.96%. 
Mahalanobis distance matching with a smaller caliper reduces 
estimation bias by 12.74%, and with a larger caliper only by 7.8%. When 

the baseline simulation involves no selection bias and only 2R  is 
manipulated, propensity score matching reduces the bias by 1.35% using 
a smaller caliper, and by 1.79% using a larger caliper. Mahalanobis 
distance matching even increases bias by 9.48% using a smaller caliper, 
and by 7.51% using a larger caliper. 
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Simulation 3 

In Simulation 3, C1T1’s level-2 covariates means differ from C2T0’s, 

with level-2 variance 2
0α

σu  reduced by half. When the two cohorts are 

hierarchically less different at level-1 covariates – i.e., the initial 
difference is smaller – matching with a smaller caliper on propensity 
scores estimated from level-1 covariates reduces estimation bias by 
71.15%, and with a larger caliper by 70.22%. Mahalanobis distance 
matching with a smaller caliper reduces estimation bias by 5.49%, and 

with a larger caliper 0.00%. When the baseline simulation’s 2R  is not 
manipulated, propensity score matching reduces the bias by 68.81% 
using a smaller caliper and by 63.55% using a larger caliper. 
Mahalanobis distance matching reduces the bias by 5.26% using a 
smaller caliper and shows no gains on bias reduction using a larger 
caliper. 

Simulation 4 

In Simulation 4, C1T1’s level-2 covariates means differ from C2T0’s, 

with level-2 variance 2
0α

σu  reduced by half, and initial difference 

reduced. When the two cohorts are hierarchically less different at only 
level-2 covariates and the initial difference is smaller, matching with a 
smaller caliper on propensity scores estimated from level-2 covariates 
reduces estimation bias by 66.84%, and with a larger caliper by 52.26%. 
Mahalanobis distance matching does not reduce estimation bias using a 
larger caliper but with a smaller caliper reduces estimation bias by 

24.48%. When the baseline simulation has no selection bias and only 2R  
is manipulated, propensity score matching even increase the bias by 
167.8% using a smaller caliper and by 8.2% using a larger caliper. 
Mahalanobis distance matching also increases bias by 21.18% using a 
smaller caliper and reduces the bias by 5.34% using a larger caliper. 
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Simulation 5 

In Simulation 5, C1T1’s level-1 and level-2 covariates means differ 
from C2T0’s, with both level-1 and level-2 variance reduced by half. 
When the two cohorts’ hierarchically structured data are different at both 

level-1 and level-2 covariates, and both level-1 2R  and level-2 2R  are 
high, then dual matching with a larger caliper reduces estimation bias by 
a total of 77.13%. That is, matching on only level-2 propensity scores 
reduces estimation bias by 36.74%. After level-2 matching, matching on 
propensity scores estimated from level-1 covariates further reduces 
estimation bias by 40.39% using a larger caliper. 

When the baseline simulation involves no manipulation on level-1 

and level-2 ,2R  dual matching reduces the bias by 78.19% using a larger 

caliper. Matching on only level-2 covariates reduces estimation bias by 
37.12% using a larger caliper. After level-2 matching, using propensity 
scores estimated from level-1 covariates further reduces bias by 40.98% 
using a larger caliper. 

Simulation 6 

In Simulation 6 C1T1’s level-1 and level-2 covariates means differ 
from C2T0’s, with both level-1 and level-2 variance reduced by half and 
initial difference reduced. When the two cohorts’ hierarchically 
structured data are less different at both level-1 and level-2 covariate 
means (than those of Simulation 5), that is, the initial difference is 
smaller, a total of 78.19% of estimation bias is reduced in the dual 
matching. Matching through a larger caliper on propensity scores 
estimated from level-2 covariates reduces estimation bias by 36.39%. 
Furthermore, after level-2 matching, matching on propensity scores 
estimated from level-1 covariates reduces estimation bias by 41.80%. 
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6. Discussion and Future Research 

6.1. Omitted variables impact level-1 and level-2 propensity score 
matching differently 

Level-1 matching is more sensitive to the initial magnitude of 

selection bias than to the change of level-1 .2R  When level-1 2R  is high, 
the results are almost identical to those of the baseline simulation where 

level-1 2R  is not manipulated. This suggests that increasing (decreasing) 

level-1 2R  does not improve (deteriorate) level-1 matching. In other 
words, level-1 matching is robust to the effect of omitted variables when 
the selection bias occurs on level-1 covariates of hierarchical data. 
However, besides omitted variable problems, measurement errors (e.g., 
Televantou et al. [78]) on the included covariates can also increase the 

level-1 variance and reduce .2R  This is a limitation of the study and can 
serve as a topic for future research. 

When simulated level-1 selection bias is smaller, regardless of 

whether level-1 2R  is high or low, level-1 matching works less effectively 
than when the initial difference is larger. The simulated zero-bias case, 
where the two cohorts are comparable, represents the true experimental 
design with randomization. For the zero-bias case, omitted variables are 
not a problem because their potential effects are balanced in the 
treatment and control groups (Shadish et al. [74]). Level-1 matching on 
well-balanced data is not necessary; however, it may even result in a 
negative bias reduction rate due to the post-matching trivial gain 
problem. In the simulated zero-bias case, for instance, the initial 
treatment-control group bias can be very small but positive (e.g.,              
+ 0.00001), and the post-matching bias may be very small (e.g., 0.004). 
This, in turn, causes a very large negative bias reduction rate, – 399%. 

However, when level-2 2R  is high, the results of propensity score 
matching are not identical to those in the baseline simulation where 

level-2 2R  is not manipulated. Specifically, even when a larger caliper is 
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used, increasing level-2 2R  still improves level-2 matching performance. 
Thus, level-2 matching is sensitive to omitted variables and the change of 

.2R  The practical importance of this result is that researchers may need 
to use as many important level-2 variables as possible to ensure level-2 
balance in studies involving clusters randomized trials (e.g., Martin et al. 
[45]). 

When level-2 2R  is high, decreasing (increasing) the simulated level-2 
selection bias will weaken (improve) the performance of level-2 cluster 
matching. The accuracy of level-2 propensity score matching is sensitive 

to the increase of level-2 2R  only when the magnitude of the initial 
difference is large. This implies that, in practice, the balance of level-2 
clusters should be evaluated in terms of level-2 covariates to find the 
important covariates that reveal differences between treatment and 
control groups. All of those important level-2 covariates need to be 
included in order for matching to achieve level-2 balance. Multi-level 
modelling literature suggests that nonnegative random effect, i.e., level-2 
variance, is needed to account for the potential effect of the level-2 
omitted variables (Chung et al. [14]). Commonly omitted level-2 variables 
are the group-means (e.g., Fairbrother [23]), including the integrated 
SES mean (Leckie et al. [42]) and a measure of mean college goals (Berg 
et al. [10]), should be used in level-2 matching to improve the bias 
reduction rate. Similarly, often-omitted level-1 covariates, such as 
parental IQ score and examinee’s motivation measure (Ebbes et al. [22]), 
can be aggregated into level-2 covariates for matching. Although our 
simulation assumed that including more relevant level-2 variables will 

reduce the second-level variance and increase ,2R  in reality omitted 

level-2 variables may not consequentially inflate the level-2 variance 
(Raudenbush [55]). Literature review and sensitivity analysis is needed 
to select relevant variables for matching (for more discussion, see 
Subsection 6.5 below). 
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6.2. Caveat regarding the use of less-efficient distance-based 
matching 

Comparatively, Mahalanobis distance matching at either in level-1 or 
level-2 is less efficient than propensity score matching. This is because 
simulations use a large sample size (N = 5,400) that favors propensity 
score matching (Sekhon & Diamond [72]). Most recent simulation studies 
using non-hierarchical data (Austin [6]) have also indicated that distance 
based matching was one of the least efficient methods (see p. 1062-1065). 
Because of the low efficiency of Mahalanobis distance matching in level-1 
and level-2 matching, it was not conducted in dual matching in order to 
save computational resources and simulation time. 

6.3. Mixed effects of caliper matching motivate future research 

A tighter caliper has been recommend to achieve better matching 
results in propensity score analysis (Lunt [43]). The best bias reduction 
rates are achieved using a caliper ranging from 0 to 0.4 (p. 153, Austin [5]) 
in the propensity score matching on non-hierarchical data; and bias 
reduction performance decreases when the caliper becomes larger. Our 
caliper matching results in level-1 revealed the same trend – namely, 
that smaller calipers achieve a better bias reduction rate. Smaller 
calipers are sensitive to the magnitude of selection bias. When selection 
bias is large, using a smaller caliper outperforms a larger one in bias 
reduction; however, if the selection bias is small or zero, using smaller or 
larger caliper matching will not make much difference. Overall, level-2 
caliper match also shows better results when a smaller caliper is used; 
however, inconsistency with level-1 matching indicates an interaction 
between caliper size and bias magnitude. When selection bias is small, 
using a smaller caliper outperforms a larger; however, in the zero-bias 
case, using a smaller caliper will exacerbate reduction rate (see the 
second paragraph in the Discussion Subsection 6.1). The results imply 
that caliper matching may depend on the data structure; and different 
sizes of caliper should be used for level-1 and level-2 matching. Following 



QIU WANG et al. 70

the simulation design of Austin [5], future studies should explore optimal 
caliper widths when multi-level data are used in propensity score 
matching. How level-2 omitted variables impact the matching 
performances of optimal-calipers and alternative calipers (e.g., Lunt [43]) 
is also worthy of examination in future research. 

6.4. Dual matching is optimal for hierarchical data 

The dual propensity score matching is more robust than either level-1 
or level-2 matching because dual matching achieves a large bias 
reduction rate even when the initial difference is small. In practice, it is 
worth conducting dual matching to achieve better bias reduction results 
at both level-1 and level-2 when hierarchically structured data are used 
(Wang [81]). 

Our dual matching only used a caliper of 0.2. This value is the 
midpoint of the optimal caliper range found by Austin [5]. The same 
caliper of 0.2 is used in the most recent comparative study on 12 
matching algorithms conducted by Austin [6]. A recent survey (Wu et al. 
[86]) found that the caliper of 0.2 is the most frequently value used in 
matching non-hierarchical data. Our dual propensity score matching 
with a caliper of 0.2 generated a conservative value of bias reduction due 
to its inconsistent performances in level-1 and level-2 matching. As what 
we have discussed above, future simulation research can use different 
values of level-1 and level-2 optimal calipers (e.g., Austin [5]) to achieve 
even better reduction rates than what was found in this study. 

The current study only matches treated units to the control units 
without replacement. Austin [6] found that matching non-hierarchical 
data with replacement performed as well as caliper matching without 
replacement. Future studies may examine the performance of matching 
with replacement (e.g., Austin [6]) when hierarchical data are used. 

6.5. Approaches identifying and testing omitted variables 

The omitted variable problem can happen both in quasi-experimental 
and observational studies. It also occurs in multi-wave longitudinal 
surveys and within-subject experimental design (Preacher [51]) due to 
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such issues as attritions. Identifying omitted variables is critical in both 
modelling and matching hierarchical data. Based on an in-depth review 
on previous research, Schlueter et al. [73] used cross-validation on multi-
sources of multi-wave large-scale data to identify relevant covariates and 
handle the omitted variable problem. Rubin [68] suggested that omitted 
variables should be identified for “future sensitivity analysis” in the early 
stage of designing an observational study (p. 461). For example, omitted 
variables that are correlated with outcome and not related to treatment 
of the regression model will not cause estimation problems on the 
treatment effect (Shadish et al. [74]); however, they should be included 
for sensitivity analysis in matching hierarchical data. It has suggested 

using a sequence of residual-correlations (from –1 to 1) and 2R -based 
coefficients of determination in the robustness examination and 
sensitivity analysis (Imai et al. [33]; Imai [34]). Kim and Frees [39] 
proposed the 1-degree-of-freedom Chi-square test to identify significantly 
important omitted variables. These procedures should be paid attention 
to in the practice of selecting covariates to match hierarchical data. 

6.6. Future challenges of matching hierarchical data with 
omitted variables 

In educational and behavioural research, it is impossible to collect all 
relevant variables to avoid omitted variable problems (Kim & Frees [39]), 
especially in studies on educational attainment and school effectiveness 
using multi-wave, multi-settings and multi-level data (Fairbrother [23]; 
Berg et al. [10]). Optimistically, with more rigorous studies in education 
and other fields of social science, more and more relevant variables will 
be identified to ease the omitted variable problem. That is why we 
simulated a situation where level-1 and level-2 residual variances will be 
reduced as a result of the increasing availability of relevant covariates in 
statistical modelling and propensity score analysis. The recent 
development of omitted variable problems in multi-level models 
challenges and motivates future research on matching hierarchical data. 
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6.7. Exogeneity assumption violation due to level-2 variance and 
variables 

Omitted variable problems occur in multi-level modelling when the 
random effect of a level-1 regression coefficient is mis-modelled as a fixed 
effect (Bafumi & Gelman [7]). This is also the case due to the omitted 
level-2 effect (Bell & Jones [9]); thus, the unexplained variation will 
inflate both level-1 and level-2 residual variances. Ignoring level-2 intake 
difference (cluster level variance) will cause omitted variable bias. For 
example, neglecting the aggregated SES mean variable from the level-2 
model, even when student SES has been included in the level-1 equation, 
may bias the level-1 variance regression coefficient estimation (Leckie et 
al. [42]). A more severe problem is that the variance-inflated residuals 
will be correlated with the covariate in the model, which in turn will 
break the covariate residual-independence assumption (i.e., “exogeneity 
assumption”, p. 136). Previous studies (Austin et al. [4]) have 
manipulated the correlation between the omitted variables and outcome. 
In this study, we only manipulate level-1 and level-2 residual variances, 
future research should consider the correlation between residuals and 
the covariate in the level-1 and level-2 models. More complicated and 
heterogeneous structures of variance-covariance (Leckie et al. [42]) 
should be considered in future research. 

6.7.1. Simultaneity 

More generally, the violation of the exogeneity assumption, 
indicating “a correlation between the disturbance term and the 
explanatory variables” (Kim & Frees [39], p. 661), can be attributed to 
two cases: measurement errors in the explanatory variables and/ or 
simultaneity (i.e., the outcome and independent variables are mutually 
determined). Either case can be treated as a problem of omitted variables 
(Wooldridge [85]; Ebbes et al. [22]). Recently, measurement error 
analysis through structural equation modelling has been applied in an 
educational effectiveness study on student mathematical proficiency and 
development data (Televantou et al. [78]). Pokropek [50] simulated multi-
level data to justify a reliability correction approach for dealing with 
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measurement error in multi-level modelling; then TIMSS data were 
analyzed to demonstrate the severe bias of neglecting the reliability 
problem. Wang [82] studied how measurement error on covariates 
impacts bias reduction in propensity score matching through a multi-
level SEM. To date, no study has examined simultaneity in matching 
hierarchical data. Systematic literature reviews on simultaneity, along 
with a simulation study, are much needed in the field. 

6.7.2. Omitted variable problem in multi-level mediation analysis 

In a more complicated multi-level mediation model, the indirect effect 
of the independent variable X through the mediator M to the outcome Y 
can be an omitted variable problem (Preacher [51]). There is a level-2 
covariance between the two regression coefficients: one from X to M and 
the other from M to Y (Kenny et al. [38]). This level-2 covariance has 
been identified as the impact of an omitted variable (Tofighi et al. [80]). 
In future matching research, it is necessary to examine this level-2 
covariance due to omitted variables in the complicated mediation 
analysis. We believe that our multi-level SEM can be extended to include 
mediators to simulated data in order to examine how the level-2 
covariance impact bias reduction contributes to the field. 

6.8. Going beyond two levels 

From a SEM perspective, the omitted variable problem is a specific 
case of intermediate omitted levels (Raykov et al. [54]) in hierarchical 
models. For example, in a three-level model, suppose the second level is 
completely omitted. This is an omitted variable problem because all 
variables in the neglected level are missing from the model. It is also a 
model misspecification problem, because a wrong two-level model rather 
than a correct three-level model is fitted to the hierarchical data. 

Although parsimonious models are recommended and preferred in 
practice, future simulation studies are needed to examine how the model 
misspecification, due to omitted intermediate level, impacts multi-level 
matching and bias reduction. Our simulated two-level SEM can be 
extended to a three-level model to answer questions raised by this as well 
as the other challenge discussed above. 
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Appendix 

Two-level structural equation model variables and parameter values 

Level-1 Parameters 

Factor Regression Coefficient Residual 

Loading 

  

PRETEST as DV POSTTEST as DV Variance 

Observed / 
LatentVa Name 

Coef. SE p Coef. SE p Coef. SE p Est. SE p 

Pre-Test Score PRETEST – – – – – – .72 .03 .00 31.87 1.94 .00 

Post-Test 
Score 

POSTTEST – – – – – – – – – 25.64 1.27 .00 

Educational YPWANTY 1.00 – – .87 1.56 .58 – – – .21 .01 .00 

Inspiration PWWELL 1.05 .08 .00       .37 .03 .00 

(EDUINSP) YPENC 1.82 .11 .00       .66 .05 .00 

Self- YIWANTY 1.00 – – 1.97 .56 .00 – – – .58 .04 .00 

encouragement MORMTH 1.98 .18 .00       .67 .05 .00 

(SLFENCRG) YNOMORE 1.67 .13 .00       .77 .05 .00 

 YPINTYF 1.00 – – –.04 .25 .88 – – – .62 .04 .00 

Family LIKESYM .77 .05 .00       .73 .03 .00 

Support LIKESYF .46 .04 .00       1.05 .04 .00 

(FMLSUPRT) ABLE 1.00 .06 .00       .85 .05 .00 

 YMABLE .60 .05 .00       1.27 .05 .00 

Math YMIMPT 1.00 – – –.89 .76 .25 – – – .17 .02 .00 

Importance YFIMPT 1.06 .05 .00       .24 .03 .00 

(MTHIMPT)              

 



Appendix. (Continued) 

Socioeconomic YFEDUC 1.00 – – 1.55 .30 .00 – – – .17 .01 .00 

Status YMEDUC .72 .04 .00       .24 .01 .00 

YFOCCN 1.94 .13 .00       3.24 .13 .00 
SES 

YMOCCN 1.54 .14 .00       3.18 .13 .00 

Age XAGE – – – –.06 .02 .00 – – – – – – 

Parental help YFAMILY – – – –
1.44 

.16 .00 – – – – – – 

Ed. expectation EDUECPT – – – 1.28 .17 .00 – – – – – – 

Homework YMHWKT – – – –.03 .01 .01 – – – – – – 

Level-2 Parameters 

Class size CLASSIZE – – – –.20 .06 .00 – – – – – – 

 OLDARITH – – – .65 .36 .07 – – – – – – 

Opportunity OLDGEOM – – – .79 .94 .41 – – – – – – 

NEWALG – – – – – – –.27 .13 .03 – – – 
to Learn 

NEWGEOM    – – – .37 .14 .01 – – – 

Instruction TPPWEEK – – – – – – .08 .02 .00 – – – 

Qualified math MTHONLY – – – 4.51 2.11 .03 – – – – – – 

Teacher rate              

 




