UNIQUE, FOUNDATIONAL PROPERTIES OF COMPLETELY REGULAR, NORMAL, AND RELATED PROPERTIES

CHARLES DORSETT

Department of Mathematics Texas A&M University-Commerce Texas 75429 USA e-mail: charles.dorsett@tamuc.edu

Abstract

In this paper, additional unique, foundational roles for each of completely regular, $T_{3\frac{1}{2}}$, normal, normal T_0 , normal R_0 , and T_4 are established.

1. Introduction and Preliminaries

The normal separation axiom was introduced in 1923 [9].

Definition 1.1. A space (X, T) is normal iff for disjoint closed sets C and D, there exist disjoint open sets U and V such that $C \subseteq U$ and $D \subseteq V$. A normal T_1 space is denoted by T_4 .

In the 1925 paper [10], completely regular and $T_{3\frac{1}{2}}$ were introduced.

Received March 14, 2017

© 2017 Scientific Advances Publishers

²⁰¹⁰ Mathematics Subject Classification: 54A05, 54A10, 54D10, 54D15.

Keywords and phrases: weakly Po spaces and properties, completely regular, $T_{3\frac{1}{\alpha}}$, normal, T_4 .

Definition 1.2. A space (X, T) is completely regular iff for each closed set C and each $x \notin C$, there exists a continuous function $f:(X, T) \rightarrow ([0, 1], U)$, where U is the usual relative metric on [0, 1], such that f(x) = 0 and f(C) = 1. A completely regular T_1 space is denoted by $T_{3\frac{1}{2}}$.

The further investigation of $T_{3\frac{1}{2}}$ revealed that the requirement of T_1 in the definition of $T_{3\frac{1}{2}}$ can be replaced by the weaker requirement of T_0 [1], but, not so, for T_4 . Thus a space is $T_{3\frac{1}{2}}$ iff it is (completely regular and T_0) giving each of completely regular and T_0 an important role in defining $T_{3\frac{1}{2}}$, but, at the same time raising additional questions about their roles: (1) Are there topological properties other than completely regular and $T_{3\frac{1}{2}}$, which together with T_0 , equals $T_{3\frac{1}{2}}$? (2) If there are others, what are they? (3) If there are others, is there a least one? (4) If there are others, is there a strongest one? Completely regular and $T_{3\frac{1}{2}}$ are long-defined, long-investigated, and long-used topological properties, but, as given above, there continues to be unanswered questions concerning each of them.

As stated above, T_1 in the definition of T_4 can not be replaced by the weaker condition T_0 . Thus, the question of what property P, if any, can be added to T_0 in order for a space to be T_4 iff it is (normal and P and T_0)? The answer was revealed in the paper [2], where it was proven that the separation axiom R_0 is such a property.

The R_0 separation axiom was introduced in the 1943 paper [7].

Definition 1.3. A space (X, T) is R_0 iff for each closed set C and $x \notin C, C \cap Cl(\{x\}) = \phi$.

Theorem 1.1. A space is T_4 iff it is (normal R_0) and T_0 [2].

Hence, normal, R_0 , and T_0 have an important role in T_4 , but precisely what are their roles?

The continued investigation of completely regular and $T_{3\frac{1}{2}}$ revealed that $T_{3\frac{1}{2}}$ is a weakly *Po* property with completely regular = weakly (completely regular)o = weakly $T_{3\frac{1}{2}}$ [1]. The continued investigation of normal, normal R_0 , and T_4 revealed that normal T_0 and T_4 are a weakly *Po* properties with normal = (weakly (normal)o = weakly (normal and T_0) and normal R_0 = weakly (normal R_0)o = weakly T_4 [3]. Thus, weakly *Po* spaces and properties and their established properties provided a vehicle for use in addressing the many questions above.

Weakly Po spaces and properties were introduced in 2015 [4].

Definition 1.4. Let *P* be a topological property for which $Po = (P \text{ and } T_0)$ exists. Then a space is weakly *Po* iff its T_0 -identification space has property *P*. A topological property *Po* for which weakly *Po* exists is called a weakly *Po* property.

 T_0 -identification spaces were introduced in the 1936 paper [8].

Definition 1.5. Let (X, T) be a space, let R be the equivalence relation on X defined by xRy iff $Cl(\{x\}) = Cl(\{y\})$, let X_0 be the set of Requivalence classes of X, let $N : X \to X_0$ be the natural map, and let Q(X, T) be the decomposition topology on X_0 determined by (X, T) and the natural map N. Then $(X_0, Q(X, T))$ is the T_0 -identification space of (X, T).

Below recent discoveries for weakly Po spaces and properties are applied to resolve the questions above about completely regular, normal, normal R_0 , $T_{3\frac{1}{2}}$, and T_4 .

2. Applications of Weakly *Po* Properties for Completely Regular and T_{31}

Within the paper [5], it was proven that for a weakly Po property Qo, the least topological property, which together with T_0 , equals Qo is ((weakly Qo) or "not- T_0 "). Applying this result to the weakly Po property $T_{3\frac{1}{2}}$ gives the following result.

Corollary 2.1. (Completely regular or "not- T_0 ") is the least topological property, which together with T_0 , equals $T_{3\frac{1}{2}}$.

The continued investigation of weakly Po spaces and properties revealed that for a weakly Po property Qo, Qo is the only topological property stronger than weakly Qo, which together with T_0 , equals Qo; the only topological property weaker than ((weakly Qo) and "not- T_0 "), which together with T_0 , equals Qo, and implies weakly Qo is weakly Qo; there are exactly two topological properties, Qo and weakly Qo, stronger than or equal to weakly Qo, which together with T_0 , equals Qo; and the only topological properties weaker than weakly Qo, which together with T_0 , equals Qo are (weakly Qo or "not- T_0 ") or (weakly Qo or F), where Fis a topological property that implies "not- T_0 " [6]. Applying these results to completely regular and $T_{3\frac{1}{2}}$ gives the following unique, foundational properties for completely regular and $T_{3\frac{1}{2}}$.

Corollary 2.2. $T_{3\frac{1}{2}}$ is the only topological property stronger than completely regular, which together with T_0 , equals $T_{3\frac{1}{2}}$.

Corollary 2.3. Completely regular is the only topological property weaker than (completely regular and "not- T_0 "), which together with T_0 , equals $T_{3\frac{1}{2}}$ and implies completely regular.

115

Corollary 2.4. $T_{3\frac{1}{2}}$ and completely regular are the only two topological properties stronger than or equal to completely regular, which together with T_0 , equals $T_{3\frac{1}{2}}$.

Corollary 2.5. (Completely regular or "not- T_0 ") and (completely regular or F), where F is a topological property that implies "not- T_0 ", are the only topological properties weaker than completely regular, which together with T_0 , equals $T_{3\frac{1}{2}}$.

3. Applications for Normal, Normal R_0 , Normal T_0 , and T_4

Corollary 3.1. (Normal or "not- T_0 ") is the least topological property, which together with T_0 , equals normal T_0 .

Corollary 3.2. Normal T_0 is the only topological property stronger than normal, which together with T_0 , equals normal T_0 .

Corollary 3.3. Normal is the only topological property weaker than (normal and "not- T_0 "), which together with T_0 , equals normal T_0 and implies normal.

Corollary 3.4. Normal T_0 and normal are the only two topological properties stronger than or equal to normal, which together with T_0 , equals normal T_0 .

Corollary 3.5. (Normal or "not- T_0 ") and (normal or F), where F is a topological property that implies "not- T_0 ", are the only topological properties weaker than normal, which together with T_0 , equals normal T_0 .

Corollary 3.6. ((Normal R_0) or "not- T_0 ") is the least topological property, which together with T_0 , equals T_4 .

Corollary 3.7. T_4 is the only topological property stronger than normal R_0 , which together with T_0 , equals T_4 .

Corollary 3.8. Normal R_0 is the only topological property weaker than ((normal R_0) and "not- T_0 "), which together with T_0 , equals T_4 and implies normal R_0 .

Corollary 3.9. T_4 and (normal R_0) are the only two topological properties stronger than or equal to (normal R_0), which together with T_0 , equals T_4 .

Corollary 3.10. ((Normal R_0) or "not- T_0 ") and ((normal R_0) or F), where F is a topological property that implies "not- T_0 ", are the only topological properties weaker than normal R_0 , which together with T_0 , equals T_4 .

Thus, as established above, the study of weakly *Po* spaces and properties has been a productive study not only raising questions not asked before, but, also providing a vehicle for resolution of those questions.

References

- [1] C. Dorsett, Infinitely many topological properties in which T_0 , T_1 , T_2 , Urysohn, T_3 , and $T_{3\frac{1}{2}}$ are equivalent and infinitely many new characterizations of the $T_{3\frac{1}{2}}$ property, Journal of Mathematical Sciences: Advances and Applications 44 (2017), 73-89.
- [2] C. Dorsett, A necessary and sufficient condition for normal T_0 to be equivalent to T_4 , submitted.
- [3] C. Dorsett, Infinitely many new characterizations of weakly Po, normal, normal R_0 , and T_4 , accepted by Universal Journal of Mathematics and Mathematical Sciences.
- [4] C. Dorsett, Weakly P properties, Fundamental J. Math. Math. Sci. 3(1) (2015), 83-90.

117

- [5] C. Dorsett, Weakly P corrections and new, fundamental topological properties and facts, Fundamental Journal of Mathematics and Mathematical Sciences 5(1) (2016), 11-20.
- [6] C. Dorsett, Unique, Foundational properties of weakly Po spaces and properties, T_0 , and not- T_0 used to give unique, foundational properties of R_0 , R_1 , pseudometrizable, T_0 , T_1 , T_2 , and metrizable, Pioneer Journal of Mathematics and Mathematical Sciences 19(1) (2017), 1-9.
- [7] N. Shanin, On separations in topological spaces, Akademiia Nauk SSSR Comptes Rendus (Doklady) 38 (1943), 110-113.
- [8] M. Stone, Application of Boolean algebras to topology, Mat. Sb. 1 (1936), 765-771.
- [9] H. Tietze, Beitrage zur Allgemeinen Topology I, Math. Ann. 88 (1923), 290-312.
- [10] P. Urysohn, Uber die Machtigkeit der Zusammenhangen Mangen, Math. Ann. 94 (1925), 265-295.