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Abstract 

Let k be an algebraic number field and ( )xF  be a polynomial in [ ].xk  In this 
short paper, we shall consider the problem of the equivalence between best 
possible upper bounds for the number of non-cyclotomic factors of a polynomial 
in [ ]xk  and optimal lower bounds for the Mahler measure of an irreducible, 

non-cyclotomic polynomials in [ ].xk  

1. Introduction and the Main Results 

Mahler’s measure is a function defined on polynomials, which 
measures the extent to which their roots are distributed away from the 
unit circle. It is known to be a continuous function on polynomials with 
complex coefficients, however when restricted to polynomials with 
integer coefficients it is expected to have “gaps” in its values. This has 
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been conjectured by D. H. Lehmer in 1933, and is to this day one of the 
famous open problems in Number Theory. Mahler’s measure and 
Lehmer’s conjecture have fundamental connections and applications 
within Number Theory as well as in other areas of mathematics, for 
instance ergodic theory. Let k be an algebraic number field and ( )xF  be 

a polynomial in [ ]xk  with degree ( )F∂  and ( ) .00 ≠F  We shall consider 

here the problem of the equivalence between best possible upper bounds 
for the number of non-cyclotomic factors of a polynomial in [ ]xk  and 

optimal lower bounds for the Mahler measure (The Mahler measure 
( )Fµ  will be defined precisely in Section 2) of an irreducible, non-

cyclotomic polynomial in [ ].xk  In the special case Qk =  both question 

have been previously studied by Schinzel [14, 15] and by Dobrowolski [4]. 
Of course, we always have the trivial bound ( )F∂  for such quantities and 

in generality this is plainly all we can say. However if the “height” ( )FH  

or the number of non-zero coefficients ( )FN  of ( )xF  is “small” we should 

expect to do a bit better. Here ( )FH  is the absolute height on the vector 

of coefficients of ( ),xF  to be defined precisely in Section 2. 

In fact it will often be convenient to use the different height ( )Fν  

defined in Section 2. For a polynomial ( )xF  in [ ] ( )Fx ν,Z  is simply the 

supermom of ( )xF  on the unit circle, after again removing any common 

factors from the coefficients. In view of the inequality 

( ) ( ) ( ),log2loglog FHFFH  ν   (1.1) 

(see Lemma 2.3) these two heights will be virtually interchangeable in 
most of our results. 

Let ( )xnΦ  in [ ]xZ  denote the n-th cyclotomic polynomial and assume 

that nΦ  factors in [ ]xk  as 

( )
( )

( ).,

;

1
xx sn

n

s
n Φ=Φ ∏

δ

=

k

  (1.2) 
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Here we suppose that each factor sn,Φ  is monic and irreducible in [ ].xk  

If nζ  is a primitive n-th root of unity, then each factor sn,Φ  has degree 

( ) .: kk nζ  As noted in [10], Equation (1.2), the number of distinct 

irreducible factors of nΦ  in [ ]xk  is 

( ) ( )[ ] [ ],::; QQQ kkk ′ζ=δ nn ∩   (1.3) 

where kk ⊆′  is the maximum abelian subfield of k. Indeed, ( ) ( )nn ;; kk δ=′δ  

since each factor ( )xsn,Φ  occurs in [ ].xk′  Now suppose that ( )xF  factors 

into irreducible polynomials in [ ]xk  as 

( )
( )

( ) ( ) ( ) ( ) .
1

,
,

;

11 
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sn
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 (1.4) 

Here ( ) ( ) ,1,0,  imsne  and ( ) ,,,2,1, Iixfi …=  are distinct, 

irreducible, non-cyclotomic polynomials in [ ].xk  There will be no loss of 

generality if we assume that F is monic and hence that each if  is monic 

and has ( ) .1if∂  Of course ( ) 0, =sne  all but finitely many pairs { },, sn  

has ( ).;1 ns kδ  Thus, the total number of cyclotomic factors of F 

counted with multiplicity is ( ) ( ),,;
11 snen

sn ∑∑ δ
=

∞
=

k  and the total number of 

non-cyclotomic factors counted with multiplicity is ( ),1 imI
i∑ =

 (see [8, 9]). 

Obviously, we have the trivial bound 

( )
( ) ( ) ( ),,

1

;

11
Fimsne

I

i

n

sn
∂+ ∑∑∑

=

δ

=

∞

=


k

 (1.5) 

and in general nothing more can be said. However, if ( )F∂  is large 

compared with ( )FHlog  we may expect to obtain sharper bounds. In this 

regard, it will be convenient to set 
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( ) ( )
( ) ,3,logmax







 ∂

== F
FFrr
ν

  (1.6) 

where ( )Fν  is defined in (2.7) of Section 2. 

We are seeking in this paper to prove the following theorem: 

Theorem 1.1. Let S  be a set of irreducible, non-cyclotomic 
polynomials ( )xf  in [ ]xk  with ( ) .00 ≠f  Then, the existence of a positive 

constant ( )k,Sθ  satisfying any one of the following statements would 

imply the truth of the other two: 

(i) For all polynomials ( )xf  in S  

( ) ( ).,log kSθµ f   (1.7) 

(ii) For all polynomials ( )xF  in [ ] ( )xFx ,k  factoring in [ ]xk  as 

shown in (1.4), the number of irreducible factors of ( )xF  in S  satisfies; 

( ) ( )
( ) .,

log

1
kS

S

θ∑
∈
=

Fim
I

i
if

ν   (1.8) 

(iii) For all polynomials ( )xF  in [ ] ( )xFx ,k  factoring in [ ]xk  as 

shown in (1.4), the maximum multiplicity of a factor of ( )xF  in S  

satisfies; 

( ) ( ){ } ( )
( ) .,

log1,:max kS
S

θ
∈

FIixfim i
ν   (1.9) 

Clearly then if such a ( ) 0, >θ kS  exists, each of (i), (ii), and (iii) 

must also hold with the plainly optimal constant 

( ) ( ).loginf, fµβ kS   (1.10) 
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When 

( ) [ ] ( ){ },reciprocal-nonis:0 xfxxf Q∈=S   (1.11) 

we have by the well-known result of Smyth [16] that ( ) 00 log, θ=β QS  

,281.0 …=  where …324.10 =θ  is the real zero of .13 −− xx  

2. Definitions and Auxiliary Lemmas 

At each place v of the number field k, we write vk  for the completion 

of k at vv k,  for an algebraic closure of ,vk  and vΩ  for the completion of 

.vk  As is well-known, the field vΩ  is then complete as a metric space 

and algebraically closed. Also, we introduce two normalized absolute 
values v  and v  on ,vΩ  which are related by 

,/ dd
vv

v=   (2.1) 

where [ ]Qk :=d  and [ ]vvvd Qk :=  is the local degree. If ,∞v  then 

v  restricted to Q is the usual Archimedean absolute value. If p is a 

prime number and ,pv  then v  restricted to Q is the usual p-adic 

absolute value. Let 

( ) ( ),
10

l

L

l
L

l
l

L

l
xaxaxF α−== ∏∑

==

  (2.2) 

be a polynomial in [ ]xvΩ  and not identically zero. We define the local 

Mahler measure of F to be ( ),Fvµ  where 

( ) .logloglog
1

vl

L

l
vLv aF α+=µ +

=
∑   (2.3) 

We define the local height of F by 

( ) ,if,max ∞= ?vaFH vllv   (2.4) 
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and 

( ) .if,
2

2

0
∞













= ∑
=

vaFH
dd

vl

L

l
v

v

  (2.5) 

There is a third local measure of F which we require and define by 

( ) { ( ) }.1and:sup =Ω∈= vvvv zzzFFv   (2.6) 

Now suppose that F is given by (2.2) but has its coefficients in k and 
hence in vΩ  for all places v of k. In this case, we define the global Mahler 

measure ( ),Fµ  the global height ( ),FH  and the global measure ( )Fv  by 

( ) ( ) ( ) ( ) ( ) ( ),and,, FFFHFHFF v
v

v
v

v
v

νν ∏∏∏ ==µ=µ   (2.7) 

respectively. It can easily be shown that in each of these products only 
finitely many factors are different from 1 (see, for example, [5], [6], and 
[7]). Because of the way we have normalized our absolute values v  and 

,v  the global quantities ,, Hµ  and ν  do not depend on the number 

field k which contains the coefficients of F. Thus, we may regard them as 
positive real valued functions defined on the not identically zero 

polynomials in [ ].xQ  For completeness we set ( ) ( ) ( ) 0===µ FHFvF  if 

F is the zero polynomial. 

If F is a monic, irreducible polynomial in [ ],xQ  then by a result of 

Kronecker we have ( ) 1=µ F  if and only if ( ) xxF =  or ( )xF  is 

cyclotomic. If F is not x and not cyclotomic, then it is known that log ( )Fµ  

can be bounded away from zero by a positive quantity which depends 
only on the degree of F. In fact, Dobrowolski [4] has shown that if F is not 
x and not cyclotomic, then 
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( ),loglog
loglog,1min

3
FL

L µ













    (2.8) 

where ( )FL ∂=  is the degree of F. Simpler proofs of (2.8) have been 

given by Cantor and Straus [3]; Rausch [13]; and Louboutin [10]. 

We now give several basic inequalities which relate the local and 
global functions we have defined on polynomials. It will be useful to 
define 

( ) ,1

0
0
∑
≠
=

=
L

l
ia

FN   (2.9) 

so that ( )FN  is the number of nonzero coefficients of F. 

Lemma 2.1 ([11], Theorem 3). Let ( )xF  be a polynomial in [ ],xvΩ  

where .∞?v  Then 

( ) ( ) ( ).FHFF vvv ==µ ν   (2.10) 

Lemma 2.2 ([11], Theorem 4). Let ( )xF  be a polynomial in [ ],xvΩ  

where .∞v  Then 

( ) ( ) ( ) ( ) ( ) ( ) ( ) .2 22 dd
vvvv

ddF
v vv FNFHFFHFFH  νµ−∂   (2.11) 

Applying Lemma 2.1 and Lemma 2.2, we have 

Lemma 2.3 ([11], Theorem 5). Let ( )xF  be a polynomial in [ ].xk  

Then 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .2 221 FHFNFHFFHFFH F  νµ−∂   (2.12) 

3. Proof of Theorem 1.1 

Let 

( ) [ ] ( ) ( ){ }.00,cyclotomic-none,irreduciblis: ≠∈= fxfxxf QkS   (3.1) 
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Then the Lehmer conjecture amounts to the claim that there exists a 
positive ( )QQ ,Sθ  satisfying any of (i), (ii) or (iii). Now in general for any 

fields ,Lk ⊆  we have 

( )
[ ] ( ) ( ).,,:

, kLkL
k

kL
k SS
S

ββ
β

   (3.2) 

To see this, recall that if α  is an algebraic number with minimal 
polynomial ( )xF  in LS  and ( )xf  in ,kS  then 

( ) ( ) ( ) ( )
( ) ( ),logloglog ff
FxFF µ

∂
∂=α−µ∂=µ   (3.3) 

where clearly 

( )
( )

( )[ ]
( )[ ]

( ) ( )[ ]
[ ] [ ] .:

1
:
:

:
:1 kLkL

kL
kk
LL  αα=

α
α=

∂
∂

f
F  (3.4) 

So in fact Lehmer’s conjecture is equivalent to the existence of a 
( ) 0, >θ kkS  satisfying (i), (ii) or (iii) for any k. It is believed that when 

Qk =  we should have ( ) ,162.0log, 2 …=θ=β QQS  where 176.12 =θ  

…  is a real zero of .134567910 ++−−−−−+ xxxxxxxx  What the 
correct value should be for a general is less certain. 

It will be immediately apparent from the proof that the theorem 
might equally well have been stated with the ( )FH  rather than the ( )Fν  

height in (ii) or (iii). Indeed, the statement is still quite valid with ( )Fµ  

replacing the ( );Fν  though the proof in that case would be essentially a 

triviality. In fact the only real complexity in the proof of the theorem as 
stated will occur in proving that (iii) implies (i). For this we shall need 
the following result from Siegel’s lemma: 

Lemma 3.1. Let ( )xF  be a polynomial in [ ].xk  Then there exists a 

polynomial ( )xG  in [ ]xk  with ( ) ( )2FG ∂<∂  such that: 

( ) ( ) ( )( ) ( );loglogloglog kcOFOFFGH +∂+µ=   (3.5) 
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( ) ( ) ( )( ) ( ).loglogloglog kcOFOFFG +∂+µ=ν   (3.6) 

Here ( ) ,2 21 ddsc kk ∆π=  where s denotes the number of complex 
places of [ ]Qkk :, =d  the degree of k and k∆  the discriminant of k. 

As the proof is non-constructive the nature of ( )xG  is not all clear 

although since ( ) ( )( )FOG ∂=µ loglog  we can say that such a polynomial 

ought to contain relatively few non-cyclotomic factors. Now for any ( )xf  

in ,S  we can use this lemma to show the existence of a polynomial highly 

divisible by ( )xf  whose height differs little from its Mahler measure. In 

particular, applying the lemma with ( ) ( )mxxxF 13 −−=  and Qk =  

produces the set of extremal polynomials ( ) ( ) ( )xGxFxQm =  in [ ]xQ  with 

( ) ( );logloglog 0 mOmQH m +θ=   (3.7) 

( ) ( ),logloglog 0 mOmQm +θ=ν   (3.8) 

described in [11, 12]. 

Proof of Lemma 3.1. We shall need to briefly introduce yet another 

height ( )Fh  on polynomials in [ ].xQ  For 

( ) [ ],
0

xxaxF i
i

L

i
k∈= ∑

=

  (3.9) 

( )Fh  is defined by 

( ) ( ),FhFh v
Vv
∏
∈

=
k

  (3.10) 

where 

( ) .max
0 viLiv aFh


=   (3.11) 
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Now plainly at the finite places 

( ) ( ),FHFh vv =   (3.12) 

while at the infinite places the two local heights are related by 

( ) ( ) dd
viLiv vaFh 22

0
max


=  

( ) ( )FHa v
dd

vi

L

i

v =∑
=

22

0
  

( ( ) ) ( ) ( ).max 222
0

FhFNaFN v
dddd

viLi
vv =


  (3.13) 

Hence summing over all the places we obtain at once the global 
inequality: 

( ) ( ) ( ) ( ) ( ) ( )( ).1log2
1loglog2

1logloglog +∂++ FFhFNFhFHFh   

(3.14) 

Now if ( )xF  is a polynomial in [ ]xk  and N is a positive integer with 

( ) ,0>∂−= FNM   (3.15) 

we can define a set 

( ) [ ] ( ) ( ) ( ){ }.and:, xfxFNfxxfFN <∂∈= kS   (3.16) 

Then by a result of Bombieri-Vaaler ([2], Theorem 1) (derived from their 
form of Siegel’s lemma ([1], Theorem 14)), there exist polynomials 

( ) ( )xPxP M,,1 …  in [ ]xk  forming a basis for FN ,S  which satisfy 

( ) ( ) ( ) ( ) .logloglog 2

1






 ∂++µ∑

=
N
FuNcMFMPh i

M

i
k  (3.17) 
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The function ( )θu  has a fairly complicated definition but possesses the 

simple upper bound for 10 <θ<  

( ) ( ) ( ),2log4
3

4
1log2

1 222
θ

θθ+
θ

θ<θ u  (3.18) 

which is all that we shall use here. In particular then there is a 
polynomial ( )xP  in FN ,S  with 

( ) ( ) ( )
( ) .2loglogloglog

2


















∂

∂
++µ F

N
M
FOcFPh k   (3.19) 

So by (3.14), we are guaranteed the existence of a polynomial  
( ) ( ) ( )xFxPxG =  in [ ]xk  with ( ) ( )FNMG −=<∂  and 

( ) ( ) ( )
( ) .log2

12loglogloglog
2

NF
N

M
FOcFFGH +

















∂

∂++µ k   (3.20) 

Choosing ( )2FM ∂=  gives us the required upper bound 

( ) ( ) ( )( ).loglogloglog FOcFFGH ∂++µ k   (3.21) 

Now from inequality (2.12) and the non-negativity and additivity of 
,log µ  we always have the lower bound  

( ) ( ) ( ),logloglog FFGFGH µµ    (3.22) 

so that (3.5) holds as claimed. 

The second expression follows at once on observing that by inequality 
(2.12) 

( ) ( ) ( ) ( )FGNFGHFGFGH log2
1logloglog + ν  

( ) ( ( ) ( )).log2
1log 2 FFNFGH ∂+∂+  (3.23) 
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Proof of Theorem 1.1. The proof of (i) ⇒  (ii) will follow closely that 
of Schinzel ([14], Theorem 1). Suppose that all the polynomials ( ) S∈xf  
satisfy (1.7) 

( )
( ) ,,

log1 kSθ
µ f   (3.24) 

and suppose that ( ) [ ]xxF k∈  factors in [ ]xk  as shown in (1.4). Then by 
the non-negativity and additivity of log µ  and the height inequality 
(2.12) discussed in Lemma 2.3, we have 

( ) ( ) ( )
( ) ( ) ( ( ) )im

i

I

i

i
I

i

I

i
ffimim

ifif

µ
θθ

µ ∑∑∑
===

∈∈

log,
1

,
log

111
kk SS

SS

  

( )
( )

( )
( )

( )
( ) .,

log
,

log
,

log
kkk SSS θθθ

µ
=

FFHF ν  (3.25) 

(ii) ⇒  (i) is immediate. Finally, we use the above lemma to show that    
(iii) ⇒  (i). Let ( ) [ ]xxf k∈  be a polynomial in .S  Then for each positive 

integer m, there must be a polynomial ( ) ( ) ( ) [ ]xxGxfxF m
m

m k∈=  with 
the comparatively low height 

( ) ( ) ( ( )( ) ( );loglogloglog kcOfmOfFH m
m +∂+µ=   (3.26) 

( ) ( ) ( ( )( ) ( ).loglogloglog kcOfmOfF m
m +∂+µ=ν   (3.27) 

Since by construction ( )xFm  is divisible by ( )xf  with multiplicity at least 
m applying condition (iii) to ( )xFm  gives 

( )
( )

( )
( )

( )( ) .loglog
,

log
,

log














+






 ∂+

θ
µ=

θ m
cOm

fmOfmFm m k
kk SS

ν
  (3.28) 

In the other words, for any ,0>ε  we can, by taking ( ( ) )kcfmm ,,0 ∂ε>  
suitably large, ensure that 

( )
( ) ε+
θ

µ
k,

log1
S

f   (3.29) 

-condition (i) is therefore plainly assured. 
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