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___________________________________________________________________ 

Abstract 

In order to improve the regression accuracy of MLS-SVR presented by Xu et al. [10] with a 
fast training algorithm, this paper proposes a new regression method named as multi-
output least squares twin SVR (MLS-TSVR) for multi-output problems. The main advantage 
of the proposed method is that the relations among output weight vectors are considered as 
a whole rather than decomposed in MLS-SVR. Experimental results show that MLS-TSVR 
has a good property on regression accuracy. 

Keywords: multi-output regression problem, least-squares technique, twin 
support vector regression machine, regression accuracy. 

___________________________________________________________________ 

1. Introduction 

In many real-world applications, nonlinear black-box modelling based 
on machine learning is widely used as an effective soft-sensing technique. 
Especially, it generally needs to estimate and predict several variables or 
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targets in the fields of system identification and state estimation, such as 
large tanker motion dynamics identification [1], biophysical parameter 
evaluation from remote sensing images [2], hand movement trajectory 
decoding [3] and so on. In this scenario, systems output is a vector, which 
is called multi-output (MO) regression problem. It is of very important 
significance to improve the precision and speed of MO modelling. 

Currently, there are no much results for directly researching MO 
regression problems. Existing methods can be roughly divided into two 
categories. One is feed forward neural networks, such as ELM and some 
variants [4-7], and another is based on single-output support vector 
regression machine (S-SVR), such as M-SVR [8] and multiple S-SVR 
model (multiple S-SVR) [9]. Unfortunately, M-SVR and multiple S-SVR 
are all to ignore the cross relations among output variables and then 
decrease the accuracy of regression. In 2013, Xu et al. [10] proposed 
multi-output least squares SVR (MLS-SVR). 

We all know that single-output twin support vector regression 
machine (TSVR) presented by Peng [11] indirectly optimizes the 
regression function through the ε -insensitive down- and up-bound 
functions. This results in solving a pair of smaller sized quadratic 
programming problems (QPPs) instead of a larger QPP in SVR. Later, 

TSVR-ε  is proposed by Shao et al. [12] based on TSVR for single-output 

regression problems. Different from only empirical risk minimization 
being implemented in TSVR, the structural risk minimization is also 
implemented in TSVR-ε  by introducing the regularization term in 

primal problems. Experiment results indicate that TSVR and TSVR-ε  

are all better than S-SVR on regression accuracy. 

Motivated by works above, in this paper, we study the twin version of 
MLS-SVR by means of single-output TSVR and TSVR-ε  and propose a 

novel multi-output regression method named as multi-output least 
squares twin SVR (MLS-TSVR). In order to verify the effectiveness of 
MLS-TSVR, a series of comparative experiments with MLS-SVR are 
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performed. The rest of the paper is organized as follows. Some basic 
notions and basic results are briefly recalled in Section 2. MLS-TSVR is 
proposed in Section 3 and comparative experiments on 9 data sets are 
performed in Section 4. Some conclusions are given in Section 5. 

2. Preliminaries 

This section briefly recalls TSVR, TSVR-ε  and MLS-SVR, for details, 

see [10-12]. Given a single-output data set ( ){ } RRyxT dl
iiiS ×∈= =1,  

and an MO data set ( ){ } ,, 1
mdl

iiiM RRyxT ×∈= =  where d
i Rx ∈  is the 

i-th input sample and Ryi ∈  and m
i Ry ∈  are the outputs corresponding 

to .ix  Let [ ] ld
l RxxX ×∈= ,,1  and RRR dd →×:k  be a kernel 

function with reproducing kernel Hilbert space (RKHS) H and nonlinear 

feature mapping .: HRd →ϕ  According to the properties of kernel 

function, it has { ( ) ( )}lxxH ϕϕ= ,,span 1  and the kernel matrix 

[ ( )] ., ll
ji RxxK ×∈= k  

For a matrix qpRA ×∈  with ( ) ,rank rA =  its condensed singular 

value decomposition (SVD) is defined as ,T
AAA VUA ∑=  where  

rp
A RU ×∈  and rq

A RV ×∈  are column orthogonal matrices, 

( ) ( )( )AA rA σσ=∑ ,,diag 1  and ( ) ( ) 01 >σ≥≥σ AA r  are all nonzero 

singular values of the matrix A. The Frobenius norm of the matrix A is 

defined by ( ) .2
1 AA i

r
iF σ= ∑ =

 The inner product of two same order 

matrices qpRBA ×∈,  is defined by ( ),, BATrBA T>=<  where ( )⋅Tr  

denotes the trace of a matrix. It is evident that 

( ) .,2 >=<= AAAATrA T
F  



Min Hou and Liya Fan / IJAMML 6:1 (2017) 1-14 4

For data set ,ST  let ( ) .,,1
lT

l Ryyy ∈=  Let ( ) ,1,,1 lT
l Re ∈=  

[ ( ) ( )]lx xxxxK ,,,, 1 kk=  for lRx ∈  and lI  denotes the l order 

identity matrix. For data set ,MT  let [ ( ) ( )]lxxZ ϕϕ= ,,1  and  

[ ] ,,,1
mlT

l RyyY ×∈=  then the kernel matrix .ZZK T=  Let    

( )nmA ,,repmat  denote a large block matrix consisting of an nm ×  

tiling of copies of A. 

2.1. TSVR 

For data set ,ST  TSVR seeks a pair of nonparallel nonlinear up- and 

down-bound functions ( ) 111 bwKxf x +=  and ( ) ,222 bwKxf x +=  where 
lRww ∈21,  are coefficient vectors and Rbb ∈21,  are thresholds, by 

considering the following two QPPs: 

( )

( )

( )
( )

( ) ,0,..

1

2
1min

,0,..

2
1min

222

2
2

222,,

111

1
2

111,,

22

11

≥ηη−ε≥−+

η++−ε+

≥ξξ−ε≥+−

ξ++−ε−

η

ξ

ll

T
lllbw

ll

T
lllbw

eybeKwts

ecbeKwey

ebeKwyts

ecbeKwey

 

where 0,,, 2121 >εεcc  are the users’ parameters and lR∈ηξ,  are 

slack vectors. By solving respectively the Wolfe dual forms of the 

problems in (1), we can get [( ) ] ( ) ( )∗−∗∗ α−= fHHHbw TTTT 1
11  and 

[( ) ] ( ) ( ),1
22

∗−∗∗ β+= hHHHbw TTTT  where [ ] ( ) ,, 1
1 ε−=∈= +×

l
ll eyfRKeH  

2ε+= leyh  and ∗α  and ∗β  are respectively optimal solutions of the 

dual forms. Consequently, the regression function can be gotten by 

( ) ( ) ( )( ) ( ) ( ).2
1

2
1

2
1

212121
∗∗∗∗ +++=+= bbwwKxfxfxf x  
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2.2. TSVR-ε  

Different from TSVR, TSVR-ε  seeks a pair of nonparallel nonlinear 

up-and down-bound functions ( ) 111 bwKxf x +=  and ( ) 222 bwKxf x +=  

by considering the following two QPPs: 

( ) ( )

( )

( ) ( )

( )

( )2

.0,..

2
1

2
1min

,0,..

2
1

2
1min

222

2
2

22
2
2

2
24,,

111

1
2

11
2
1

2
13,,

22

11

≥ηη−ε−≥−+

η+−+++

≥ξξ−ε−≥+−

ξ++−++

η

ξ

ll

T
llbw

ll

T
llbw

eybeKwts

ecybeKwbwc

ebeKwyts

ecbeKwybwc

 

Similar to TSVR, by solving the Wolfe dual forms of the problems in (2), we 

can get the regression function ( ) ( ) ( )( ) ( )∗∗ +=+= 2121 2
1

2
1 wwKxfxfxf x  

( ),2
1

21
∗∗ ++ bb  where [( ) ] ( ) ( ),1

1311
∗−

+
∗∗ α−+= yHIcHHbw T

l
TTT  

[( ) ] ( ) ( )∗−
+

∗∗ β++= yHIcHHbw T
l

TTT 1
1422  and ∗α  and ∗β  are 

respectively optimal solutions of the dual forms. 

2.3. MLS-SVR 

For data set ,MT  MLS-SVR seeks the regression function  

( ) ( ) ,bxWxf T +ϕ=  where [ ]mwwW ,,1=  with Hwi ∈  and 

( ) mT
m Rbbb ∈= ,,1  are respectively unknown weighted matrix and 

bias vector, by considering the following optimization problem: 

( )
( )3

,1,,repmat..

22
1min 22

,,

Ξ++=

Ξγ+
Ξ

lbWZYts

W

TT

FFbW  

where mlR ×∈Ξ  is a slack matrix, 0>γ  is a user’ parameter and 

( ) .1,,repmat T
l

T belb =  By decomposing each weight vector iw  into 

,0 iw ν+  the model (3) can be equivalently translated into 
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( )4
,..

22
1min

0

22
0,,,0

Ξ+++=

Ξγ++
Ξ

T
l

TT

FFbVW

beVZWZYts

VW
 

where [ ] ( ) [ ]mVmwwwW νν=== ,,,,1,repmat,, 10000  and 

.0 VWW +=  Due to ( ) ,, 00
2

0
2

0 wVeWVTrwmW TT
m

T
F ==  and 

2
0 FVW + ,,2 2

0
2

0 F
T
m VewVwm +><+=  the model (4) can be 

simplified as 

( )5
...

222
1min

0

222
0,,,0

Ξ+++=

Ξγ+λ+
Ξ

T
l

TT

FbVw

beVZWZYts

Vmw
 

In model (5), there is a potential assumption that 00 =νi
Tw  for all  

,,,1 mi =  that is, 0w  is vertical to all .iν  In fact, this is not true in 

general. So, the model (5) is only an approximate model of the model (4) and 
may lead to a decline in the accuracy of regression. Let [ ]mA αα= ,,1  

mlR ×∈  be a Lagrange multipliers matrix of the model (5) and 

( ) .lmRAec ∈ν=α  By using KKT conditions, we can get ( ) 11Tb P M P −∗ −=  

1 1 1, ,TP M y M y M Pb− ∗ − − ∗α = −  where ( ) ,,,blockdiag mml
ll ReeP ×∈=  

( ) ( ) ,,,blockdiag,,,repmat mlmlmlml RKKRmmK ×× ∈=∈=Ω Q  

mlml
ml RImM ×− ∈γ+

λ
+Ω= 1Q  and ( ) .lmy ec Y R= ν ∈  Consequently, the 

regression function can be obtained by using the following procedure: 

Algorithm 1. MLS-SVR 

Step 1. Given an MO data set mT  and a proper kernel function 

.: RRR dd →×k  

Step 2. Select suitable model parameters and kernel parameters. 

Step 3. Calculate vector 1s M y−=  and matrix .1PMB −=  
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Step 4. Calculate matrix ( ) .1−= BPC T  

Step 5. Calculate Tb CB y∗ =  and .∗∗ −=α Bbs  

Step 6. Calculate ∗A  by willing ∗α  matrix. 

Step 7. Construct regression function ( ) ( )meAKxf mx
T ,1,repmat~ ~ ∗=  

( )Tx bAKm ∗∗ +
λ

+ ~  for .~ dRx ∈  

3. MLS-TSVR 

In this section, we discuss the twin version of MLS-SVR by means of 
single-output TSVR and TSVR-ε  and propose a novel multi-output 

regression method MLS-TSVR. 

The idea of MLS-TSVR is to seek a pair of nonparallel nonlinear up- 

and down-bound functions ( ) ( ) 111 bxWxf T +ϕ=  and ( ) ( ) ,222 bxWxf T +ϕ=  

where [ ]j
m

j
j wwW ,,1=  with Hw j

i ∈  and ( ) mTj
m

j Rbbbj ∈= ,,1  

are respectively unknown weighted matrix and bias vector for ,2,1=j  

by considering the following two optimization problems: 

( ) ( )

( ) ( )

( )6

,..

22
1min

,..

22
1min

2222

2
2

22
2,,

1111

2
1

12
1,,

222

111

BWZEYts

W

EYBWZts

W

T

FFBW

T

FFBW

+−ε+=Ξ

Ξ
γ

+

ε−−+=Ξ

Ξ
γ

+

Ξ

Ξ

 

where ( ) ml
l RmeE ×∈= 1,,repmat  and ( )1,,repmat lbB T

jj =  for .2,1=j  

It is evident that the models in (6) can be translated into two 
unconstraint optimization problems: 
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( ) ( ) ( )

( ) ( ) ( )
( )7
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+−ε−
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Since ( ) ( ){ },,,span 1 lxxH ϕϕ=  we can assume that ,jj ZW Λ=  where 

ml
j R ×∈Λ  is coefficient matrix. Consequently, ( ),2

j
T
jFj KTrW ΛΛ=  

jj
T KWZ Λ=  for 2,1=  and the up- and down-bound functions and the 

models in (7) can be respectively rewritten as ( ) ,111
T

x
T bKxf +Λ=  

( ) T
x

T bKxf 222 +Λ=  and 

( ) ( ) ( )

( ) ( ) ( )
( )8
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that 
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where [ ] ll
l RIKG ×∈= 2,  and without loss of generality, the symmetric 

nonnegative definite matrices TGG
K

+











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1

 and TGG
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are assumed as nonsingular; otherwise, they can be regularized. By using 
(9) and (10), the regression function can be gotten. The specific procedure 
is as follows: 
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Algorithm 2. MLS-TSVR 

Step 1. Given an MO data set mT  and a proper kernel function 

.: RRR dd →×k  

Step 2. Select suitable model parameters, regularization parameter 
and kernel parameters. 

Step 3. Calculate matrices ∗∗ ΛΛ 21,  and vectors ∗∗
21 , bb  by using (9) 

and (10). 

Step 4. Calculate the up- and down-bound functions ( ) ∗Λ= 11 x
T Kxf  

( )Tb∗+ 1  and ( ) ( ) .222
T

x
T bKxf ∗∗ +Λ=  

Step 5. Construct the regression function ( ) ( ( ) ( ))xfxfxf 212
1 +=  for 

.dRx ∈  

Compared with MLS-SVR, MLS-TSVR does not need to assume 

ii ww ν+= 0  with 00 =νi
Tw  for all ,,,1 mi =  which makes the 

models in (6) being exact models rather than approximate models. 

4. Experiments 

To verify the effectiveness of the proposed MLS-TSVR, in this section, 
a series of comparative experiments with MLS-SVR are performed on 
Corn (m5, mp5, and mp6) [10], synthetic [10] with parameter c = 0.01, 
0.02, 0.03, 0.04 and Wind (Wind 1 and Wind 2) [13] nine MO data sets. 
The detailed characters of these data sets are listed in Table 1, where l, 
d, and m denote the number of data, the dimension of the input samples, 
and the dimension of the outputs, respectively. 

Corn data set contains 700 data, each one contains 80 attributes 
measured by 3 different near-infrared spectrometers (m5, mp5, and 
mp6). All spectra are used respectively. Moisture, oil, protein, and starch 
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represent four dependent output variables, where the first three 
variables are used by m5 and all of them by mp5 and mp6. 500 data are 
chosen randomly as training samples and the rest as testing samples in 
each experiment. Synthetic data set contains 1000 noisy data, which are 
generated by using a simulated two-output time series process as follows: 

( ) ( )( ) ( ( ( ))) ( )

( ( ( ))) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )











ε+−+−−+−=

ε+−−−+−

−−−−+−π=

,2tanh2.1212.016.0

,21exp9.03.0

11exp5.08.01sin1.0

212222

11
2
1

1
2
121

kkkkkk

kkk

kkkk

yyyyy

yy

yyyy

 

with the initial conditions ( ) ( ) ( ) ( ) ,01010 2211 =−==−= yyyy  where the 

zero-mean Gaussian noise vector ( ) ( ) ( )( )Tkkk 21 , εε=ε  has a covariance 

matrix .2Iµ  The data set ( ) ( ){ }1000
1, =kkk yx  are generated by  

( ) ( ( ) ( ) ( ) ( ))Tyyyyx 2,1,2,1 2211 −−−−= kkkkk  and ( ) ( ) ( )( ) ., 21
Tyyy kkk =  

In each experiment, 500 data are selected randomly as training samples 
and the rest as testing samples, and consider the cases with c = 0.01, 
0.02, 0.03, and 0.04, respectively. Wind data set consists of 452 data, in 
which 300 data are selected randomly as training samples and the rest as 
testing samples in each experiment. 

All the predictive error involved is testing error, that is, the 
predictive error on testing sets. All the experiments are implemented in 
MATLAB (R2010a) running on a PC with system configuration Intel (R) 
Core(TM) i3 (2.53GHz) with 2GB of RAM, and each of the results is the 
average result of ten times repeat experiments with different training 
samples and testing samples. In addition, Gaussian radial basis function 

(RBF) kernel ( ) ( )2

2

2
exp,

σ

−
−= ji

ji
xx

xxk  with kernel parameter 0>σ  

is used in all experiments. 
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The three indices are used for measuring the predictive error: root 

mean square error ( ) 1
1RMSE ,l

i ii y yl =
= −∑  mean absolute error 

( ) 1
1MAE ,l i i

i
i i

y y
l y y=

−
=

+
∑  and mean relative error ( ) 1

1MRE l
il =

= ∑  

,i i
i

y y
y
−  where iy  and iy  denote the true output and predicted output 

corresponding to the input ,ix  respectively. We know that the selection 

of parameters affects the performance of the algorithms. In order to 
facilitate comparison, the model parameters 21,, γγγ  and kernel 

parameter σ  are all selected by grid search method from 310−  to .103  
The selected results are listed in Table 1. 
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Table 1. Optimal selection of parameters 

Data set Algorithm γ  σ  1γ  2γ  1ξ  2ξ  

Corn MLS-SVR 210  110−  – – – – 

(m5) MLS-TSVR – 210−  210  010  210−  210−  

Corn MLS-SVR 310  310−  – – – – 

(mp5) MLS-TSVR – 210−  210  210  210−  210−  

Corn MLS-SVR 110  210−  – – – – 

(mp6) MLS-TSVR – 210−  210  210  110−  210−  

Wind 1 MLS-SVR 210  210−  – – – – 

 MLS-TSVR – 110−  210−  110  210  210  

Wind 2 MLS-SVR 210−  210−  – – – – 

 MLS-TSVR – 110−  010  110  210−  210−  

Synthetic MLS-SVR 210  310−  – – – – 

(c = 0.01) MLS-TSVR – 010  110−  210−  210−  010  

Synthetic MLS-SVR 210  310−  – – – – 

(c = 0.02) MLS-TSVR – 010  210−  210−  210−  110  

Synthetic MLS-SVR 210  110−  – – – – 

(c = 0.03) MLS-TSVR – 010  210−  210−  110  110  

Synthetic MLS-SVR 210  210−  – – – – 

(c = 0.04) MLS-TSVR – 010  210−  210−  110  210  

The experiment results with selected parameters are listed in Table 2, 
from which we can see that MLS-TSVR is significantly better than MLS-
SVR on the regression accuracy, especially for Wind 1 and Wind 2 on 
RMSE and MRE two indices and for synthetic with c = 0.02, 0.03, and 
0.04 on MAE index. So, we can conclude that MLS-TSVR is an more 
effective and efficient regressor for multi-output regression problems. 
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Table 2. Comparison results on 9 data sets 

Data set Algorithm RMSE MAE MRE 

Corn MLS-SVR 3.6804E-04 6.8021E-05 2.3801E-05 

(m5) MLS-TSVR 2.4021E-04 1.2543E-05 1.1086E-05 

Corn MLS-SVR 6.5366E-04 0.0012 0.0063 

(mp5) MLS-TSVR 4.9198E-04 4.5230E-04 0.0027 

Corn MLS-SVR 4.1710E-04 0.0021 0.3678 

(mp6) MLS-TSVR 1.0730E-04 9.5166E-04 0.0022 

Wind 1 MLS-SVR 2.5507E+04 0.0025 3.5515E+05 

 MLS-TSVR 1.0113 0.0013 0.0023 

Wind 2 MLS-SVR 2.5507E+04 0.0025 6.5656E+06 

 MLS-TSVR 0.6181 0.0020 0.0038 

Synthetic F-MLS-SVR 0.0152 0.0015 0.0042 

(c = 0.01) M-TLS-SVR 0.0123 0.0014 0.0027 

Synthetic MLS-SVR 0.0400 0.0019 0.0050 

(c = 0.02) MLS-TSVR 0.0298 8.7039E-04 0.0012 

Synthetic MLS-SVR 0.0321 0.0013 0.0019 

(c = 0.03) MLS-TSVR 0.0160 3.0239E-04 3.4617E-04 

Synthetic MLS-SVR 0.0075 0.0015 0.0049 

(c = 0.04) MLS-TSVR 0.0011 2.4299E-05 8.3030E-06 

5. Conclusion 

This paper presents a new multi-output regression method MLS-TSVR, 
which improves the regression accuracy of MLS-SVR by considering the 
relations among output weight vectors as a whole rather than 
decomposition forms. We know that there are many single-output TSVR-
type regressors, which are invalid for directly processing MO regression 
problems. By means of the discussion method used in this paper, whether 
we can extend part of them to deal with MO problems will be our next work. 
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