ON GORENSTEIN DIAGONAL SUBALGEBRAS

YUJI KAMOI

School of Commerce
Meiji University
1-9-1 Eihuku, Suginami-ku
Tokyo, 168-8555
Japan
e-mail: kamoi@meiji.ac.jp

Abstract

Let \(R \) be a multigraded ring over a local ring. In this paper, we study the Gorenstein property of a diagonal subalgebra of \(R \). Then we give a sufficient condition for this algebra to be Gorenstein. As an application, we apply our result to multi-Rees algebra and show that the diagonal subalgebra of a Gorenstein multi-Rees algebra is Gorenstein in the bigraded case.

1. Introduction

Let \(R = \bigoplus_{\alpha \in \mathbb{Z}^n} R_\alpha \) be a Noetherian \(\mathbb{Z}^n \)-graded ring. For a subgroup \(H \) of \(\mathbb{Z}^n \), we define \(R^{(H)} = \bigoplus_{\alpha \in H} R_\alpha \) and call it the diagonal subalgebra of \(R \) (w.r.t. \(H \)). In this paper, we are interested in the relationship between the Gorenstein property of \(R \) and that of its diagonal subalgebra \(R^{(H)} \).

2010 Mathematics Subject Classification: 13A30, 13D02, 13H10.

Submitted by Kazufumi Eto.
Keywords and phrases: Gorenstein rings, multi-Rees algebra, diagonal subalgebra.
Received October 24, 2016; Revised February 6, 2017

© 2017 Scientific Advances Publishers
Many authors have been studied the Cohen-Macaulay property of a diagonal subalgebra and gave a necessary and sufficient condition of \(R^{(H)} \) to be Cohen-Macaulay in a limited extent [8, 9, 17, 21, 18]. But, in general, \(R^{(H)} \) is not Cohen-Macaulay (resp., Gorenstein), even if \(R \) is Cohen-Macaulay (resp., Gorenstein). The study of the Cohen-Macaulay property of \(R \) and \(R^{(H)} \) in general situation can be found in Hyry [13]. He have been studied the local cohomology modules of \(R \) and gave some condition for the Cohen-Macaulayness of \(R \) and \(R^{(H)} \).

Our aim of this paper is to give a sufficient condition for the Gorensteinness of \(R^{(H)} \) using some information of cosets of \(\mathbb{Z}^n/H \) similar to conic divisors of [3] and we give some applications of our result for multi-Rees algebras.

To describe our result, we give some notions as follows. Suppose that \(R = R_0[x_1, \ldots, x_m] \) for homogeneous elements \(x_1, \ldots, x_m \in R \) and \(R_0 \) is a local ring. For a \(\mathbb{Z}^n \)-graded \(R \)-module \(M \), we denote by \(\text{deg}(m) = \alpha \) for \(m \in M_\alpha \) and put \(\text{Deg}(M) = \{ \alpha \in \mathbb{Z}^n \mid M_\alpha \neq (0) \} \). Without loss of generality, we may assume that \(\mathbb{Z}^n = \mathbb{Z}\text{Deg}(R) \). Throughout this paper, we always assume that \(\text{Deg}(R) \) is positive, i.e., \(\text{Deg}(R) \cap -\text{Deg}(R) = (0) \). Under this assumption, if \(R \) is Gorenstein, then there exist unique integral vector \(\alpha \in \mathbb{Z}^n \) such that \(K_{R} \cong R(\alpha) \) ([4], [7]). We denote this vector \(\alpha \) by \(a(R) \).

Define a surjective semigroup homomorphism \(\phi : \mathbb{Z}^m \rightarrow \mathbb{Z}^n \) by \(\phi(e_i) = \text{deg}(x_i) \) for \(1 \leq i \leq m \). For a subgroup \(G' \subset \mathbb{Z}^n \) and \(\gamma \in \mathbb{Z}^n \), we put \(H(G') = \mathbb{Z}_0^m \cap \phi^{-1}(G') \) and \(H(\gamma, G') = \mathbb{Z}_0^m \cap \phi^{-1}(\gamma + G') \), where \(\mathbb{Z}_0 \) is the set of non-negative integers. Finally, we put \(\text{supp}(H(G')) = \{ i \in [m] = \{1, \ldots, m\} \mid \alpha(i) > 0 \text{ for some } \alpha \in H(G') \} \). Then our main result describe as follows.
Theorem 3.1. Let G' be a subgroup of G such that $\dim(R^{(G')}) = \dim(R) - rk(\mathbb{Z}^n/\mathbb{Z}H(G'))$. Suppose that $\text{Deg}(K_R) \subset \mathbb{Z}_0^n$ and $\mathbb{Z}[H(-\alpha, G')]$ is a Cohen-Macaulay module for $\alpha \in \mathbb{Z}_0^n$ such that $\alpha \leq \sum_{i=1}^m \text{deg}(x_i)$. Then we have the following:

(1) If R is Cohen-Macaulay, then so is $R^{(G')}$.

(2) If R is Gorenstein and $a(R) - \sum_{j \notin \text{supp}(H(G'))} \text{deg}(x_j) \in G'$, then so is $R^{(G')}$.

Direct consequence of this result, we have the following corollary.

Corollary 4.2. Let A be a Noetherian local ring. Let I_1, I_2 be ideals of positive height. If $R(I_1, I_2)$ is Cohen-Macaulay (resp., Gorenstein), then so is $R(I_1 I_2)$.

By the same argument of Corollary 2.10 of Hyry [13], we have the following general statement.

Corollary 4.3 (Corollary 2.10 of Hyry [13]). Let A be a Noetherian local ring. Let I_1, \ldots, I_n be ideals of positive height. If $R(I_1, \ldots, I_n)$ is Cohen-Macaulay (resp., Gorenstein), then so is $R(I_1 \cdots I_n)$.

As another application, we give an expected statement for some special case of polynomial ideals.

Proposition 5.3. Let $S_i = k[x_{i1}, \ldots, x_{in_i}]$ be a polynomial ring over a field k for $1 \leq i \leq r$ and put $S = S_1 \otimes_k \cdots \otimes_k S_r$. Let $I_i \subset S_i$ be an ideal of $\text{ht}(I_i) \geq 2$ contained in $(x_{i1}, \ldots, x_{in_i})$ and $I = I_1 \cdots I_n S$. The following conditions are equivalent:
(1) \(R(I) \) is Cohen-Macaulay (resp., Gorenstein).

(2) \(R(I_i) \) is Cohen-Macaulay (resp., Gorenstein) for \(1 \leq i \leq r \).

(3) \(R(I_1, \ldots, I_r) \) is Cohen-Macaulay (resp., Gorenstein).

2. Preliminary

In this section, we give some terminology and basic facts of \(G \)-graded rings from [4, 6, 7, 16] while will be used in this paper. Let \(G = \mathbb{Z}^n \) and \(R = \oplus_{a \in G} R_a \) be a Noether \(G \)-graded ring such that \(R_0 \) is local. For \(G' \) be a subgroup of \(G \), we define a diagonal subalgebra \(R^{(G')} \) of \(G' \) by \(R^{(G')} = \oplus_{a \in G'} R_a \) and put \(R^{(\gamma, G')} = \oplus_{\beta \in G'} R_{\gamma + \beta} \) for \(\gamma \in G \). Then \(R^{(G')} \) is a \(G' \)-graded ring and \(R^{(\gamma, G')} \) is a \(G' \)-graded \(R^{(G')} \)-module for \(\gamma \in G \). Furthermore, if \(\{ \gamma_i \}_{i} \) is a system of representatives of \(G / G' \), then \(R = \oplus_i R^{(\gamma_i, G')} \) and this decomposition gives a \(G/G' \)-graded structure of \(R \).

For \(\gamma \in G \) and \(M \) a \(G \)-graded \(R \)-module, we define a \(G \)-graded \(R \)-module \(M(\gamma) \) by \(M = M(\gamma) \) as the underlying \(R \)-module and is graded by \([M(\gamma)]_\delta = M_{\gamma + \delta} \) for all \(\delta \in G \). The following formula is frequently used in this paper.

Remark 2.1. (1) If \(\gamma = \gamma_i + \delta \) for \(\delta \in G' \), then \(R^{(\gamma, G')} = R^{(\gamma_i, G')} R^{(\delta)} \).

(2) If \(\gamma + \gamma' = \gamma_i + \delta \) for \(\delta \in G' \), then

\[
R^{(\gamma, G')} = \bigoplus_{\delta \in G'} R_{\gamma + \gamma' + \delta} = R^{(\gamma_i, G')} (\delta).
\]
Suppose that $R = R_0[x_1, \ldots, x_m]$ for homogeneous elements $x_1, \ldots, x_m \in R$. Let S_0 be a regular local ring and $S = S_0[t_1, \ldots, t_m]$ be a polynomial ring over S_0 with m variables. We set $\deg(t_i) = e_i' \in \mathbb{Z}^m$ for $1 \leq i \leq m$ and regards S as a \mathbb{Z}^m-graded ring where e_1', \ldots, e_m' are standard basis of \mathbb{Z}^m. We define $\varphi : \mathbb{Z}^m \to \mathbb{Z}^n$ by $\varphi(e_i') = \deg(x_i)$ for $1 \leq i \leq m$. Then S is also regarded as a G-graded ring via φ.

For a subgroup $G' \subset G$, we put $L = \varphi^{-1}(G')$ and denote by $\{a_i\}_i$ a system of representatives of $\mathbb{Z}^m/L(\cong G/G')$. Clearly, we have $S^{(L)} = S_0[H(G')]$ and $S^{(a_i,L)} = S_0[H(\varphi(a_i), G')]$ for $a \in \mathbb{Z}^m$. A decomposition of a \mathbb{Z}^m/L-grading of S is given by $S = \bigoplus_i S^{(a_i,L)} = \bigoplus_i S_0[H(\varphi(a_i), G')]$.

Proposition 2.2. $S_0[H(G')]$ is normal Cohen-Macaulay and if $H(-\varphi(a_i), G') \neq 0$, then $S_0[H(\varphi(a_i), G')]$ is divisorial for all i.

Proof. For $b \in \mathbb{Z}H(G')$, if $kb \in H(G')$, then $\varphi(b) \in G'$ and $kb \geq 0$. Thus $b \geq 0$ and $b \in H(G')$. Namely, $H(G')$ is a normal semigroup and $S_0[H(G')]$ is normal Cohen-Macaulay since S_0 is a regular domain.

Let $a = -a_i + b \in H(-\varphi(a_i), G')$ for some $b \in \mathbb{Z}H(G')$. Then the monomial $m := t^a$ is in S and we have the exact sequence $0 \to S(-a^m) \to S$. Taking a degree G'-part of this sequence, we have $0 \to S_0 \to S_0[H(\varphi(a_i), G')](-b) \to S_0[H(G')]$. Thus $S_0[H(\varphi(a_i), G')]$ is a fractional ideal. Also, if we denote by H^1 the set of all height 1 graded prime ideals of $S_0[H(G')]$, then $S = \bigcap_{p \in H^1} S_{(p)} = \bigoplus_{p \in H^1} S_0[H(\varphi(a_i), G')]_{(p)}$. This implies that $S_0[H(G')]$ is divisorial. □

Next, let us recall some facts of normal semigroups and its semigroup rings from Goto and Watanabe [7], Stanley [22], and Isida [15].
Let a be a \mathbb{Z}^m-graded ideal of $S_0[H(G')]$. We consider $aS = Q_1 \cap \cdots \cap Q_l$ the \mathbb{Z}^m-graded primary decomposition of a in S and put $\sqrt{Q_i} = P_i$ for $1 \leq i \leq l$. Then Q_i, P_i are \mathbb{Z}^m-graded ideals, namely, monomial ideals of S. Since $H(G')$ is normal (i.e., full in sense of [11]), $a = aS \cap S_0[H(G')]$ and $a = \bigcap_{i=1}^l Q_i^{(G')} = \bigcap_{i=1}^l Q_i \cap S_0[H(G')]$ is a primary decomposition of a in $S_0[H(G')]$ (not necessarily minimal). Also, we have $\sqrt{Q_i} \cap S_0[H(G')] = P_i \cap S_0[H(G')]$. In particular, if a is prime, then $a = P_i \cap S_0[H(G')]$ for some i.

For $F \subset [m] = \{1, \ldots, m\}$, we set $P_F = (t_i \mid i \in F) \subset S$ a prime ideal of S generated by variables. Then $\text{Spec}_{\mathbb{Z}^m}(S_0[H(G')])$ the set of all \mathbb{Z}^m-graded prime ideals of $S_0[H(G')]$ is given by $\text{Spec}_{\mathbb{Z}^m}(S_0[H(G')]) = \{p + P_F \cap S_0[H(G')] \mid p \in \text{Spec}(S_0) \text{ and } F \subset [m]\}$.

Put $p_F = P_F \cap S_0[H(G')]$ for $F \subset [m]$ and call it monomial prime of $S_0[H(G')]$. We define a equivalence relation \sim on $\{F \subset [m]\}$ by $F \sim F'$ iff $p_F = p_{F'}$ and denote the equivalent class by $F(p) = \{F \subset [m] \mid p_F = p\}$ for a monomial prime $p \subset S_0[H(G')]$.

For $t^a \in S_0[H(G')]$, $t^a \in p_F$ if and only if $a(i) > 0$ for some $i \in F$ by definition. Here we denote i-th coordinate of a by $a(i)$. Therefore, for all F, $F' \in F(p)$, $p_{F \cup F'} = (t^a \in S_0[H(G')] \mid a(i) > 0 \text{ for some } i \in F \cap F') = p_F + p_{F'} = p$. Thus $F(p)$ has the maximal element $F(p) := \bigcup_{F \in F(p)} F$. Note that if $p_F = (0)$, then $F \cap \text{supp}(H(G')) = \emptyset$ for $F \subset F(p)$.

Finally, with this notation, we can explain the difference between conic divisors in sense of [3] and $S_0[H(\varphi(a), G')]$. Let $H^1(H(G'))$ be a set of all \mathbb{Z}^m-graded prime ideal of $S_0[H(G')]$ of height 1 and $\text{Div}(H(G')) = \{...\}$.
\(\oplus_{p \in H^1(G')} \mathbb{Z}[p] \). We put \(e(p) = \sum_{i \in F(p) \cap \text{supp}(H(G'))} e'_i \in \mathbb{Z}^m \) for \(p \in H^1(H(G')) \).

Then we have the following commutative diagram:

\[
\begin{array}{c}
0 \rightarrow ZH(G') \xrightarrow{\text{div}} D(H(G')) \rightarrow Cl(S_0[H(G')]) \rightarrow 0 \\
0 \rightarrow \mathbb{Z}H(G') \rightarrow \mathbb{Z}^m \rightarrow G/\mathbb{Z}H(G') \rightarrow 0
\end{array}
\]

It follows that we have the exact sequence

\[
0 \rightarrow Cl(S_0[H(G')]) \rightarrow G/\mathbb{Z}H(G') \rightarrow \mathbb{Z}^m / \bigoplus_{p \in H^1(H(G'))} \mathbb{Z}e(p) \rightarrow 0.
\]

In the following, we describe the classical result of Gorenstein normal semigroup rings due to Stanley [22] in terms of \(H(\alpha, G') \).

Proposition 2.3 (Stanley [22]).

(1) \(\text{rel.int}(H(G')) = \{ \beta \in H(G') \mid b(i) > 0 \text{ for } i \in \text{supp}(H(G')) \} \).

(2) \(K_{S_0[H(G')]} \cong S_0[H(- \sum_{i \in \text{supp}(H(G'))} \varphi(e'_i), G')] \) as underlying modules.

(3) \(S_0[H(G')] \) is Gorenstein if and only if \(\sum_{i \in \text{supp}(H(G'))} \varphi(e'_i) \in G' \).

Proof. Since \(S_0[H(G')] \subset S_0[t_i \mid i \in \text{supp}(H(G'))] \), we may assume that \(\text{supp}(H(G')) = [m] \). Then the face of \(H(G') \) is given by \(\{ b \in H(G') \mid b(i) = 0 \text{ for } i \in F \} \) for some \(F \subset [m] \) (Ishida [15]). The assumption \(\text{supp}(H(G')) = [m] \) implies that \(\text{rel.int}(H(G')) = H(G') \cap \mathbb{Z}^m_+ = \{ a \in H(G') \mid a(i) > 0 \text{ for all } i \in [m] \} \).

For \(a \in \text{rel.int}(H(G')) \), since \(a - \sum_{i=1}^{m} e'_i \in \mathbb{Z}_0^m \) and \(\varphi(a - \sum_{i=1}^{m} e'_i) \) is contained in \(-\sum_{i=1}^{m} \varphi(e'_i) + G' \), we have \(a - \sum_{i=1}^{m} e'_i \in H(- \sum_{i=1}^{m} \varphi(e'_i), G') \) and

\[
\text{rel.int}(H(G')) = H(- \sum_{i=1}^{m} \varphi(e'_i), G') + \sum_{i=1}^{m} e'_i.
\]
This conclude that \(K_{S_0[H(G^')] \cong S_0[rel.int(H(G^))]} \cong S_0[H(-\sum_{i=1}^m \varphi(e_i), G^')] \)
as underlying \(S_0[H(G^')] \)-modules. The assertion (3) is immediate consequence of this isomorphism.

3. Proof of Main Result

Theorem 3.1. Let \(G' \) be a subgroup of \(G \) such that \(\dim(R^{(G^')}) = \dim(R) - \rk(\mathbb{Z}^m / \mathbb{Z}H(G')) \). Suppose that \(R = R_0[x_1, \ldots, x_m] \) and \(\deg(x_1), \ldots, \deg(x_m) \in \mathbb{Z}^n_0 \). Moreover, we assume that \(\text{Deg}(K_R) \subset \mathbb{Z}^n_0 \) and \(\mathbb{Z}[H(-\alpha, G')] \) is a Cohen-Macaulay module over \(\mathbb{Z}[H(G')] \) for \(\alpha \in \mathbb{Z}^n_0 \) such that \(\alpha \leq \sum_{i=1}^m \deg(x_i) \). Then we have the following:

1. If \(R \) is Cohen-Macaulay, then so is \(R^{(G^')} \).
2. If \(R \) is Gorenstein and \(a(R) - \sum_{j \in \text{supp}(H(G'))} \deg(x_j) \in G' \), then so is \(R^{(G^')} \).

Proof of Theorem 3.1. We put \(\alpha_i = \deg(x_i) \) for \(1 \leq i \leq m \) and \(\alpha = \sum_{i=1}^m \alpha_i \).

(1) Through the completion of \(R_0 \) at the maximal ideal, we may assume that \(R = S / I \) for some \(G \)-graded ideal \(I \subset S \). Let \(0 \to F_p \to \cdots \to F_1 \to F_0 \) be a minimal \(G \)-graded \(S \)-free resolution of \(R \) and we put \(F_i = \oplus_j S(-\alpha_{ij}) \) for \(0 \leq i \leq p \).

Assume that \(R \) is Cohen-Macaulay. Then \(\text{Hom}(\mathbb{F}, S(-\alpha)) \) gives the minimal \(G \)-graded \(S \)-free resolution of \(K_R \). Note that the i-th component of this resolution is described as \(F^*(-\alpha) = \oplus_j S(-\alpha + \alpha_{P-i}) \). On the other hand, since \(\text{Deg}(K_R) \subset \mathbb{Z}^n_0 \) and is Cohen-Macaulay, all betti degrees of this resolution are contained in \(\mathbb{Z}^n_0 \). Thus \(\sum_{i=1}^m \alpha_i - \alpha_{ij} \geq 0 \).
and $\alpha_{ij} \leq \sum_{i=1}^{m} a_i$. This implies that $F^{(G)}_i$ is the direct sum of
\{ $S_0[H(- \alpha_{ij}, G')]$ \} for all i and $S_0[H(- \alpha_{ij}, G')]$ is Cohen-Macaulay by
our assumption. Hence we have the resolution

\[0 \to F^{(G)}_p \to \cdots \to F^{(G)}_1 \to F^{(G)}_0 \]

of $R^{(G)}$ consisting of maximal Cohen-Macaulay $S^{(G)}$-modules.

We put $B_i = \text{Im}(F_i \to F_{i-1})^{(G)}$ for $0 \leq i \leq p$ and $m' = \dim(S^{(G)})$. Then we have isomorphisms $H^i_m(R^{(G)}) \cong H^{i+1}_m(B_1) \cong H^{i+2}_m(B_2) \cong \cdots \cong H^{m'-1}_m(B_{m'-1-i})$ and, thus, $H^i_m(R^{(G)}) = 0$, if $p \leq m' - 1 - i$. Since $m' = \dim(S^{(G)}) = \dim(S_0) + rk(\mathbb{Z}H(G'))$, we have equalities

\[m' - 1 - p = \dim(S^{(G)}) - \text{pd}_R(R) - 1 \]

\[= \dim(S_0) + rk(\mathbb{Z}H(L)) - (\dim(S_0) + m - \text{depth}(R)) - 1 \]

\[= \text{depth}(R) - rk(\mathbb{Z}^m / \mathbb{Z}H(L)) - 1 \]

\[= \dim(R) - rk(\mathbb{Z}^m / \mathbb{Z}H(L)) - 1 \]

\[< \dim(R^{(G)}). \]

Hence $H^i_m(R^{(G)}) = 0$ for $i < \dim(R^{(G)})$ and $R^{(G)}$ is Cohen-Macaulay.

(2) We put $\alpha' = \sum_{i \in \text{supp}(H(G'))} a_i$ and $\alpha'' = \sum_{j \in \text{supp}(H(G'))} a_j$. Suppose that R is Gorenstein and $\alpha(R) - \alpha'' \in G'$. Since R is Gorenstein, we have $F_p = S(- \sum_{i=1}^{m} a_i + \alpha(R)) = S(- \alpha' - \alpha'' + \alpha(R))$. Then, by Remark 2.1 (2) and Proposition 2.3 (2), $F^{(G)}_p \cong S_0[H(- \alpha', G')](\alpha(R) - \alpha'') \cong K_{S_0[H(G')]}. \]

Note that $p = \dim(S) - \dim(R) = \dim(S_0) + m - (\dim(R^{(G)}) - rk(\mathbb{Z}^m / \mathbb{Z}H(G'))) = \dim(S_0[H(G')]) - \dim(R^{(G)}) = \text{codim}(R^{(G)})$. Then, by the local duality theorem for maximal Cohen-Macaulay modules, we have
\[K_{R(G')} \cong \Ext_{S_0[H(G')]}^p(R^{(G')}, K_{S_0[H(G')]}(B_1, K_{S_0[H(G')]})) \]
\[\cong \cdots \]
\[\cong \Ext_{S_0[H(G')]}^1(B_{p-1}, K_{S_0[H(G')]}). \]

It follows that we have the exact sequence
\[\Hom_{S_0[H(G')]}(F^{(G')}_p, K_{S_0[H(G')]}(F^{(G')}_p, K_{S_0[H(G')]}(F^{(G')}_p, K_{S_0[H(G')]})), K_{R(G')} \to 0. \]

Since \(F^{(G')}_p \cong K_{S_0[H(G')]} \) as above, we have
\[\Hom_{S_0[H(G')]}(F^{(G')}_p, K_{S_0[H(G')]}(K_{S_0[H(G')]}), K_{S_0[H(G')]}), \]
and is isomorphic to \(S_0[H(G')] \) as underling \(S_0[H(G')] \)-modules. This implies that \(K_{R(G')} \) is a cyclic module and \(R^{(G')} \) is Gorenstein. \(\square \)

The proof of Theorem 3.1 based on the following general statement.

Lemma 3.2. Let \((A, \mathfrak{m})\) be a \(d\)-dimensional Cohen-Macaulay ring with a canonical module \(K_A \) and \(M \) be a finitely generated \(A \)-module of \(\text{codim}(M) = s \). Suppose that there is a resolution
\[0 \to F_s \to F_{s-1} \to \cdots \to F_0 \to M \to 0 \]
of \(M \) such that \(F_i \) is a maximal Cohen-Macaulay \(A \)-module for \(0 \leq i \leq s \). Then \(M \) is a \((d-s)\)-dimensional Cohen-Macaulay module and has the exact sequence \(K_{F_{s-1}} \to K_{F_s} \to K_M \to 0 \).

Proof. The proof is similar to the above. Let \(B_i = \text{Im}[F_i \to F_{i-1}] \) for \(0 \leq i \leq s \). We have isomorphisms \(H^i_m(M) \cong H^i_m(B_1) \cong \cdots \cong H^i_m(B_k) \) for \(i + k < d \). Thus, for \(i < d - s \), \(H^i_m(M) \cong H^{d-1}_{m-s}(B_{d-i-1}) = 0 \), since \(d - i - 1 \geq s \). Hence \(M \) is a \((d-s)\)-dimensional Cohen-Macaulay module.

In particular, since \(H^{d-s}_m(M) \cong H^{d-1}_{m-s}(B_{s-1}), K_M \cong \Ext^s_A(M, K_A) \cong H^{d-s}_m \)
As $K_B^\ast \cong \text{Ext}_A^1(B_{s-1}, K_A)$. Taking the canonical dual of the sequence $0 \to F_s \to F_{s-1} \to B_{s-1} \to 0$, we have the exact sequence $0 \to K_{B_{s-1}} \to K_{F_{s-1}} \to K_{F_s} \to K_M \to 0$.

Remark 3.3. (1) In general, $H(\alpha, G')$ is not Cohen-Macaulay, if R is Cohen-Macaulay.

(2) The proof of Theorem 3.1 tells us some information about depth($R^{(\gamma, G')}$), even if R is not CM. Namely, if all components $F^{(\gamma, G')}$ is Cohen-Macaulay, then depth($R^{(\gamma, G')}$) \geq depth(R) $-$ rank($\mathbb{Z}^m / \mathbb{Z}H(L)$) for $\gamma \in G$.

In the following, we give two statements which satisfy the condition of Theorem 3.1.

Corollary 3.4 ([16]). For a subgroup $G' \subset G$ such that G / G' is torsion

(1) If R is Cohen-Macaulay, then so is $R^{(G')}$.

(2) If R is Gorenstein and $a(R) \in G'$ then so is $R^{(G')}$.

Corollary 3.5 (Bruns and Guerrieri [2]; Bruns and Gubeladze [3]).

Let $S = S_0[x_1, \cdots, x_n, y_1, \cdots, y_m]$ be a \mathbb{Z}^2-graded polynomial ring of deg(x_i) = $(1, 0)$, deg(y_j) = $(0, 1)$ for all i, j and $L = \mathbb{Z}(1, 1)$. Then $S_0[H(i, 0), L]$ and $S_0[H(0, j), L]$ are maximal Cohen-Macaulay modules for $0 \leq i < n$ and $0 \leq j < m$.

4. Diagonal Subalgebras of Multi-Rees Algebras

In this section, we apply Theorem 3.1 to multi-Rees algebras. Let (A, m) be a Noetherian local ring and I_1, \cdots, I_n ideals of A. We assume
that \(\text{grade}(I_i) > 0 \) for \(1 \leq i \leq n \). The multi-Rees algebra of \(I_1, \ldots, I_n \) is
defined to be the subalgebra \(R(I_1, \ldots, I_n) = A[I_1s_1, \ldots, I_ns_n] \) of a
polynomial ring \(A[s_1, \ldots, s_n] \), where \(s_1, \ldots, s_n \) are in determinates. We
regards \(R(I_1, \ldots, I_n) \) as a \(\mathbb{Z}^n \)-graded ring by \(\deg(s_i) = e_i \in \mathbb{Z}^n \). We
denote by \(I_i = (x_{i1}, \ldots, x_{im_i}) \) for \(1 \leq i \leq n \).

Define \(\varphi_i : \mathbb{Z}^{m_i} \to \mathbb{Z}^n \) by \(\varphi_i(e_{ij}) = \deg(x_{ij}s_i) = e_i \) for \(1 \leq i \leq n \) and
\(1 \leq j \leq m_i \) and \(\varphi = \sum_i \varphi_i : \mathbb{Z}^{m_1 + \cdots + m_n} \to \mathbb{Z}^n \). Let \(L = \mathbb{Z}(1, \ldots, 1) \subset \mathbb{Z}^n \).

Then the diagonal subalgebra of \(R(I_1, \ldots, I_n) \) of \(L \) coincides with the
usual Rees algebra \(R(I_1 \cdots I_n) \) and we are able to replace the statement
of Theorem 3.1 as follows.

Proposition 4.1. For \(0 \leq \alpha \leq (m_1, \ldots, m_n) \), we suppose that \(\mathbb{Z}[H(-\alpha, L)] \) is Cohen-Macaulay. Then we have the following:

1. If \(R(I_1, \ldots, I_n) \) is Cohen-Macaulay, then so is \(R(I_1 \cdots I_n) \).
2. If \(R(I_1, \ldots, I_n) \) is Gorenstein, then so is \(R(I_1 \cdots I_n) \).

Proof. By results of [13], we have that \(\dim(R(I_1 \cdots I_n)) = \dim(A) + 1 \) and
\(\dim(R(I_1, \ldots, I_n)) = \dim(A) + n \). Thus \(\dim(R(I_1 \cdots I_n)) = \dim\)
\((R(I_1, \ldots, I_n)) - (n-1) = \dim(R(I_1, \ldots, I_n)) - r(k(\mathbb{Z}^n)/L) \), where \(\mathbb{Z}^{m_1 + \cdots + m_n}
/ \mathbb{Z}H(L) \cong \mathbb{Z}^n/L \) via \(\varphi \). Also, we have \(\alpha(R(I_1, \ldots, I_n)) = (-1, \ldots, -1) \in L \) by [13] and \(\text{supp}(H(L)) = [m_1 + \cdots + m_n] \). This shows that a part of
condition of Theorem 3.1(2) is always satisfied. Moreover,
\(\text{Deg}(K_{R(I_1, \ldots, I_n)}) \subset \mathbb{Z}_0^n \), since \(\alpha(R(I_1, \ldots, I_n)) = (-1, \ldots, -1) \). Finally,
\(\sum_{i=1}^n \sum_{j=1}^{m_i} \deg(a_{ij}s_i) = (m_1, \ldots, m_n) \) and this conclude that conditions of
Theorem 3.1 are satisfied except for the Cohen-Macaulayness of
\(H(-\alpha, L) \). \(\square \)
Now, we assume that \(n = 2 \). Then it is easy to see that the representatives of \(\mathbb{Z}^2 / L \) is given by \(\{(i, 0), (0, j) | 1 \leq i \leq m_1, 1 \leq j \leq m_2\} \).

As a direct consequence of the above theorem and Corollary 3.5, the Cohen-Macaulay property and the Gorenstein property of \(R(I_1I_2) \) follows from these of \(R(I_1, I_2) \) without any other conditions.

Corollary 4.2. If \(R(I_1, I_2) \) is Cohen-Macaulay (resp., Gorenstein), then so is \(R(I_1I_2) \).

\(\square \)

Corollary 4.3. If \(R(I_1, \ldots, I_n) \) is Cohen-Macaulay (resp., Gorenstein), then so is \(R(I_1 \cdots I_n) \).

Proof. The proof is the same as the proof of Corollary 2.10 of Hyry [13] and use induction on \(n \).

We put \(B = R(I_1, \ldots, I_{n-2}) \) and denote \(\mathfrak{N} \) a graded maximal ideal of \(B \). Then \(R_{\mathfrak{N}}(I_{n-1}B, I_nB) = \mathcal{R}_{\mathfrak{N}}(I_1, \ldots, I_n) \) is Cohen-Macaulay (resp., Gorenstein). By Corollary 4.2, this implies that \(R(I_1, \ldots, I_{n-2}, I_{n-1}I_n) \) is also Cohen-Macaulay (resp., Gorenstein) and so is \(R(I_1, \ldots, I_{n-2}, I_{n-1}I_n) \). Hence, by induction hypothesis, \(R(I_1 \cdots I_n) \) is Cohen-Macaulay (resp., Gorenstein).

\(\square \)

As another application of Proposition 4.1, we have the following.

Proposition 4.4. If \(R(I_1, \ldots, I_n) \) is Cohen-Macaulay, then so is \(R(I_1i_1, \ldots, I_p) \) for \(0 < p \) and \(1 \leq i_1 < \cdots < i_p \leq n \).

Proof. Suppose that \(R(I_1, \ldots, I_n) \) is Cohen-Macaulay. To prove this proposition, it is enough to show that \(R(I_1, \ldots, I_{n-1}) \) is Cohen-Macaulay. Let \(M = \{(a, 0) | a \in \mathbb{Z}^{n-1}\} \) be the subgroup of \(\mathbb{Z}^n \). Then \(H(M) = \mathbb{Z}^m_{0, \ldots, 0} \supset \mathbb{Z}^m_{0, \ldots, 0} \) and \(H((0, \ldots, 0, p), G') = \{(a, b) | \)}
In the previous section, the converse of statements of Corollary 4.2 (or Theorem 3.1) is not true in general. Namely, the Cohen-Macaulayness of \(R(I_1 \cdots I_n) \) does not imply the Cohen-Macaulayness of \(R(I_1, \cdots, I_n) \), even if \(R(I_i) \) are assumed to be Cohen-Macaulay for \(1 \leq i \leq n \). In this section, we discuss the expected implications of the Cohen-Macaulay and the Gorenstein property among the multi-Rees algebras.

Let \(S = k[x_1, \cdots, x_n] \) be a polynomial ring over the field \(k \). For \(F \subset [n] := \{1, \cdots, n\} \), we denote by \(p_F = (x_i \mid i \in F) \) and by \(x_F = \prod_{i \in F} x_i \). For \(F \subset 2^{[n]} \), we define \(I_F = \bigcap_{F \subset p F} p_F \). In particular, for a simplicial complex \(\Delta \) on \([n]\), if we denote by \(F(\Delta)^c = \{ F^c \mid F \in F(\Delta) \} \), then the Stanley-Reisner ring \(k[\Delta] = S / I(\Delta) \) is described as \(I(\Delta) = I_{F(\Delta)^c} \). In this section, we consider the Rees algebra \(R(I_F) \) and by the argument of multi-Rees algebras, we have the following.

Theorem 5.1. If \(F = \bigsqcup_i F_i \) decompose into connected components, then \(R(I_F) \) is Cohen-Macaulay iff so is \(R(I_{F_i}) \) for all i.
Using this theorem, we produce a lot of examples of Gorenstein Rees algebras.

Example 5.2 (Villareal et al. [5]; Herzog et al. [10]). Let F be a bipartite graph, i.e., $|F| \leq 2$ for $F \in \mathcal{F}$. Then $R(I_F)$ is normal Gorenstein.

For $1 \leq i \leq r$, we put $S_i = k[x_{i1}, \ldots, x_{in_i}]$ a polynomial ring and $F_i \subset 2^{[n_i]}$. Let $S = S_1 \otimes_k \cdots \otimes_k S_r = k[[x_{ij} \mid 1 \leq i \leq r, 1 \leq j \leq n_i]]$ and $F = \bigcup_{i=1}^{r} F_i$. Then $I_F = \bigcap_{i=1}^{r} I_{F_i} S = (I_{F_1} \cdots I_{F_r}) S$ and the diagonal subalgebra of the multi-Rees algebra $R(I_{F_1} \cdots I_{F_r})$ coincides with $R(I_F)$. Hence Theorem 5.1 is a direct consequence of the following.

Proposition 5.3. Let $I_i \subset S_i$ be an ideal of $ht(I_i) \geq 2$ contained in $(x_{i1}, \ldots, x_{in_i})$ and $I = I_1 \cdots I_n S$. The following conditions are equivalent:

1. $R(I)$ is Cohen-Macaulay (resp., Gorenstein).
2. $R(I_r)$ is Cohen-Macaulay (resp., Gorenstein) for $1 \leq i \leq r$.
3. $R(I_1, \ldots, I_r)$ is Cohen-Macaulay (resp., Gorenstein).

Proof. Localizing $R(I)$ at $\{x_{ij} \mid 1 \leq i \neq k \leq r, 1 \leq j \leq n_i\}$, we have $R(I)[\{x_{ij}^{-1} \mid 1 \leq i \neq k \leq r, 1 \leq j \leq n_i\}] \cong R(I_k S_k)[\{x_{ij}^{-1} \mid 1 \leq i \neq k \leq r, 1 \leq j \leq n_i\}]$. Thus if $R(I)$ is Cohen-Macaulay (resp., Gorenstein), then so is $R(I_i)$ for $1 \leq i \leq r$. This prove the implication (1) \Rightarrow (2). Also, since $R(I_1, \ldots, I_r) \cong R(I_1 S_1) \otimes_k \cdots \otimes_k R(I_r S_r)$, $R(I_1, \ldots, I_r)$ is Cohen-Macaulay (resp., Gorenstein) if and only if so is $R(I_i)$ for $1 \leq i \leq r$. This shows the equivalence of (2) and (3). When this the case, $R(I_{i_1}, \ldots, I_{i_p})$ is also Cohen-Macaulay (resp., Gorenstein) for $1 \leq i_1 < \cdots < i_p \leq r$.

Finally, we prove the implication (3) ⇒ (1) by induction on \(r \). Suppose that \(R(I_1, \ldots, I_r) \) is Cohen-Macaulay (resp., Gorenstein). Then \(R(I_1 \cdots I_{r-1}) \) and \(R(I_r) \) are Cohen-Macaulay (resp., Gorenstein) by induction hypothesis and (2). We apply the condition (3) for \(I_1 \cdots I_{r-1} \) and \(I_r \). Then the multi-Rees algebra \(R(I_1 \cdots I_{r-1}, I_r) \) is Cohen-Macaulay (resp., Gorenstein). This complete the proof of (3) ⇒ (1) by Corollary 3.5.

\(\square \)

Example 5.4. It is well known that if \(R(I) \) is Gorenstein and \(I \) is generically a complete intersection ideal of a Gorenstein local ring, then \(\text{ht}(I) = 2 \).

Let \(X_i \) be a generic \(k_i \times (k_i + 1) \) matrix over \(S_i \) for \(1 \leq i \leq r \). Then, for \(1 \leq i \leq r \), the ideal \(I_{k_i}(X_i) \) of maximal minor is generated by \(d \)-sequences and \(R(I_{k_i}(X_i)) \cong \text{Sym}(I_{k_i}(X_i)) \) is complete intersection by [1], [12]. Hence, we have \(R(I_{k_1}(X_1) \cdots I_{k_r}(X_r)) \) is Gorenstein by Proposition 5.3.

\(\square \)

Example 5.5. Without the condition on \(\text{ht}(I) \) of the above example, the Gorensteinness of \(R(I) \) is very complicated (see, for example, [14]). But, using Proposition 5.3, we are able to give Gorenstein Rees algebras of such ideals.

Let \(m_i = (x_{i1}, \ldots, x_{in_i}) \subset S_i \) for \(1 \leq i \leq r \). By the result of [19], \(R(m_i^{n_i-1}S_i) \) is Gorenstein for \(1 \leq i \leq r \). It is easy to see that the height of \(m_1^{n_1-1} \cdots m_r^{n_r-1} \subset S \) is \(\min\{n_1, \ldots, n_r\} \), and by Proposition 5.3, \(R(m_1^{n_1-1} \cdots m_r^{n_r-1}) \) is Gorenstein.

\(\square \)
References

