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Abstract

This paper develops an extension to three dimensional study some properties of
Archimax copulas. Moreover, multivariate generalized Pareto distributions are
characterized by a pseudo-dependence function while usual multivariate
extremal models are given with the corresponding dependence function.

1. Introduction

The concept of Archimedean copula is inherently related to
Archimedean generator. So, the class of Archimedean copulas form a
parameterized by real-valued functions. An n-dimensional copula C is

one-dimensional generator functions (see [4]). Arising in the context of
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Laplace transform (Joe) Archimedean copulas form these last years an
important family that allows multivariate dependence modelling
involving one-dimensional generator functions (see [1]). An
n-dimensional copula C is an Archimedean copula if there exists a

continuous, strictly decreasing and convex function ¢ : [0, 1] = [0, + o],

completely monotone on [0; ], and which is (n — 2) times derivative and
(- 1)k(q)_1 )(k)(t) >0 for all k=1,2,...,n-2, called the Archimedean

generator function of C, such as for all (ug, ..., u,) € [0, 1],

Clug, s uy) = o[o 7 (w) + ...+ 07 ()], (1.1)
where the generalized inverse of ¢ 1(y) = inf{t € [0, 1] : ¢(t) < y} (see [6]).

Among the most usual properties of Archimedean copulas that they
present analytic form given by the generator, their exchangeability and
positivity and positive and quadrant dependence of the underlying
bivariate random vectors (see [1]). However in multivariate analysis
applied in portfolio management, for example, we need non-exchangeable
models. That is why authors use Laplace transforms to derive more
flexible extension of this family of copulas by nesting of generators
allowing different degrees of positive dependence in bivariate margins.

By denoting an m-dimensional construction defined interactively for all

(U1, o5 Uy) € [0, 11" by

Cylurs ooy ) = 005" (1) + 01 (Cpy (g, .o, )], (1.2)

This generalisation leads to the class of nested Archimedean copulas,
an asymmetric subfamily of this class of copulas. Nested Archimedean
copulas allow different levels of dependence between the components of

the underlying random vector.

The main contribution of this study is to construct a new class of
Archimax copulas in a three-dimensional study. Multivariate Pareto
models are characterized and particular distributions are given in both in
three dimension and higher cases.
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2. Three Dimensional Extension of Archimax Copulas

A bivariate member of this class with generator ¢ is given, for all
(u, v) € [0, 11 by

C u,v)= _l[min( 0), (p(u)+ v A(ﬂ)ﬂ, 2.1

0, A, V)= 0 0(0), (o(u) + o(v)) o)+ o) 2.1)

where A is a Pickands ([8]) dependence function mapping the unit

simplex (see [1])
n
S, = {x e R™, ) [lxfy =1, |l = le} of R™, (2.2)
i=1 ‘

to [%, 1} satisfying max(t; 1 —¢) < A(¢) <1 for all ¢ € [0; 1].

The class of Archimax copulas contains a special subclass of all

Archimedean copulas (when A(f) =1 see [7]) and all extreme values
copulas, then o(t)=-log(t). Particularly every extreme value model
(copula or distribution) is associated to a dependence function Ag

proposed by Pickands, subject to some convex constraint and defined on

S,, (see [8]). Then, for all (u, ..., u,) € [0, 1],

C(uy, ..., u,) = exp Zn u;Ag Y s “n-1 , (2.3)

T XL Em X
u; u;
i=1 * i=1

where &; = logu;; i =1, ..., n (see [3] and [8]).

The following lemma introduces the main result of this section:

Lemma 1. Let A be the Pickands dependence function and ¢ be a
Laplace transform. Then, the univarite function defined such as
F,(x) = ¢ L (x)A(t;, to) with x e R; t; > 0 € [0, 1], where ¢ = (¢, t3) € Sy

is the distribution function of a random variable X;.
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Proof. Since the function A is defined from the unit simplex to [0, 1]

and 0 < ¢ (x) <1 for all x € R. Therefore, for all x >0, 0 < y(x) < 1.

Furthermore, one have lim y(x) = 0 and lim p(x) = 1.
x>0t X —>+0

Moreover, for all x € R,

v(x) = (671) (®)Aln, 1) = 0.
So p 1is increasing and continuous. Finally, there exists a random
variable X such that y(x) = P(X < x).¢'(x). O
The following result gives a trivariate extension of Archimax copulas:

Proposition 2. For all bivariate Pickands dependence function A, i.e.,
satisfying (3), the parametric function defined, for all (v, u, us) € [0, 1]3
by

3 -1 -1
Clur, wu3) = ! [Zwl(ui)]A b)) g
= ST D 07 w)

is also a copula.

Proof. A sufficient condition for proving Proposition 2 is to build a

continuous random vector (X;, Xy, X3) associated to copula C. For this
end, let Y denote the univariate random with distribution with Laplace
transform p, that is, y(x) = Igwe_xtdw(t).

Then, conditionally to Y let X = (X;, Xg, X3) be three independent

random variables. It follows that

P(X) < x, Xy < x9, X3 < x3) = E[P(X; <21, Xy < xp, X3 <a3/Y))

ﬁe—mxn}.

i=1

=FK




ON ARCHIMAX COPULAS AND MULTIVARIATE ... 93
Then, we obtain
P(Xy < x9, X9 < x9, X3 < x3) = 0(¥(x1) + v(xg) + v(x3)),

or

-1 -1
PIX <) = 0| Y0 44| o)l o tu)
D 0w D 07 )
Furthermore, by definition,
Cylur, u, uz) = P(X; < Hi'(w), X; < Hi'(w), X7 < Hy'(w)).

Then, the H; being the marginal distributions of H, by setting H(x) = ¢(x),

it comes that, for all (i, u, u3) [0, 1]°;

3 -1 -1
_ u u

Cyluy, u, ug) = ¢ Zd) Yu;)| A b () , ¢ (us)

= Dot w) Y o7 w)

i=1 ! i=1 !
So the relation (2.5) is obtained as asserted. O

The following result is a consequence of direct consequence.
Corollary 3. For all Archimax triavariate copula CA,(p given by (2.3)

with generator ¢. Then, there exists a convex function Dy 9 such as
3
Clur, u, ug) = 4’_1[[24’_1(“1' )JDA,Q(drl (). $ M) (2.5)
=1
3. A Characterization of Multivariate

Generalized Pareto Models

Let recall some properties on multivariate generalized Pareto

distributions (GPD) via the corresponding multivariate extreme values

(MEV).
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Definition 1 (see [5] and [10]). The multivariate generalized
distribution of Pareto associated to a sample of random variables
X = (X]_, ey Xn)

_ G(x) \ _ -1 Glxg + x)) . .
H(x)=1- log(G(xjc\O)) = Tog G(xo)log(G(xOA xo)j if x>0, (3.1)

with x A0 = min(x, 0) and x, € support(G), where G is the MEV

distribution of the same.

The following result allows us to characterize MGP distributions.

. . -1 . .
Consider Fréchet margin Y; = ——————— of random variable X;, that is,
ST ToglF (X)) l

Y:

;, le.,

-1

l
3.1. The pseudo-dependence function of multivariate GPD

Like the Pickands dependence function for the MEV distributions we

propose convexe function which can characterize the family of GPD.

Proposition 2. Let G be the multivariate generalized Pareto

distribution associated to a sample of observations X = (X, ..., X,;)

then

H(x):1+{—iyi(xi)}3 ) dmaltna) | g

= D) 2%)

where B is the pseudo-Pickands’ dependence function of H, defined on the

unit simplex S,,_; = R™7L.
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Proof. For a given n >1, suppose X, = (X,;, ..., X,,,,) are ii.d

random vectors with m-dimensional distribution F. Let
M, =My, ... Myy,) = (f??;i(Xﬂ)’ gieg;(Xim))

be the compentwise maxima of the set {X,, n >1}. A multivariate
extreme value (MEV) distributions is a continuous and non degenerated

function G, for which there exists normalising constants vectors:

6y = (Op1s ors Opyy) With 6,5 > 0 and p, = (Hp1, -5 i)

with p,; € R for j =1, ..., m such that for all x = (xy, ..., x,,) in R™

n—>+00

lim P(M < xj = lim F™(c,x +u,) = G(x).
n—+ow (e

Furthermore, the y; are defined, for all i=1,..., m by the

transformations

1
yi(x;) = [1 + e‘;i(%ﬂ S | where x, = max(x, 0), (3.3)
+

1

{u; € R}, {¢; € R}, and {o; > 0} being respectively location, shape, and
scale parameters of the univariate margins G; of G. The generalized

form of these margins G; is given by:

1
exp{— [1 + g{%ﬂ ‘il} if & =0,
Gi(x;) = oo
exp{— exp{— (%) H if & =0.

If (3.5) holds, F'is said to belong to the max-domain of attraction of G.
This is equivalent to say that there exists an MEV distribution G such as:

F(y1, 2, s Ym) = Ga(1, Y2, -5 Im)-
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Forall £ € S,,_1; p being the angular measure on S,,_; (see [8])

-1 — 49 —9m
G(y1, Yo, ..., ¥ =exp{—J. max( , D, j dq},
(1. 920 ) o max S, S )
with y; > r; i =1, 2, ..., m, where r; are thresholds. Then,

F(xq, ..., x,,) = exp {— -[Sm max (_ql(lmg[l_ﬁl(xl)]jl’ e —qm[mj_l}ud(@},

Flx) = exp {— [ max(ar loglAi () . 4, 1og[Fi<xm)]>ud<q>}. (3.4)

Furthermore, suppose that F; is a GPD.

1 1

Then, F;(x;)=1- xi[1 + gi(%ﬂ_a if £, (x;) = [1 N gi(Xi ; B ﬂi_z

+ l
Then it follows that: log( F;(x;) = log(1 — A;t;(x;)) = A;¢;(x; ).
Then, F(x) = exp {_J‘S max(q At (x1), ..., qumtm(xm))ud(q)} +o0
( max(%;) if B(x) = -[S max(qiAt (1), -ovs @uAmtm (X)) pd(q), which is

equivalent to

iem i:m—lt.(x.)
t . i\Xg
Bx)=2Y ti(xi).[s max| A 1——2—.1 ud(q),
=1 m

Z:nti(xi) Z:nti(xi)

where B =AY T iAG@), s G, Taen)) o
i) = i)

>t
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For the particular case of marginal distributions de Pareto standard
parameter & (i.e., u; =0;0; =1 and §;=&, & > 0;i =1,2,...,m)

B(x) = By g5 (x) = X[m + &Zx{ﬂfl(t?(xl), ooy B 1 (1), T (20).
io1

(3.5)
O
3.2. Applications to usual some MEV distributions

Using the relation (3.5), it is easy to establish that to propose the
pseudo-dependence function for MEV consiste simply in giving its
corresponding Pickands functions. So, we recall here some usual models
of MEV distributions with the corresponding Pickands dependence

function (see [2] and [9]).

o Negative extension of logistic model of MEV distributions

This model is given for all x = (x;, ..., x,,,) € R™ and 6 = (6, ..., 0,,)
by:
m 'Y Y -1 m k
Go(x) = exp{— in + Z(xl iy x; ij jeu + Z(— l)kHZBl...k(xixk’ 9)}
i-1 i< k=3 i-1
The corresponding Pickands function is given, for ¢ = (¢1, ..., t,,_1) € S,
by

1
1 1o

m-1 m=1 \"%m \&im
—-0;
+ tl o1 - tl +R(t1,...,tm_1,812,...,81m);

where R(t1, ..., tp,_1, 812, ..., O1,,) 1s an integral rest.
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e Logistic Gaussian model of MEV distribution

This model is given for all x = (x;, ..., x,,) € R™ and 0 = (0, ..., 0,,)
by:

S 0;: .
Ge(x)= eXp{_ in + {xi +Xxj —xi(D(&+%log(%\D
J 1<i<j<m

Xi
+ (- 1)‘8‘”". Y@, 4| log (1) -2 i rldxl
0 xi) 82

S:[S[=3 ij. iy

where ®@,_;(, ) is the survival function of the Gaussian model

(k —1)-multivariate with variance-covariance matrix [ such as

r=r (eij,ik ), a (k —1)-squared matrix where the elements (i, j') are all

equal to 2(9;-2ik + 6;2 6_2 3 ) with 1 < j, j'<k-1 and 9[1, =0 (see
i

J Ljsty
[7D).
The corresponding Pickands function is given, for ¢ = (¢, ..., 1) € Sp,
by
m-1
Agt) =1~ Ztl —[ - tlj
i=1 i=1
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m-1
m-1 1- Z 2
1= Ztk ) i+%10g k=l
5 | 2 t;
k=1 J
+ R(tl, ceey tm—l’ 612, ceey 81m),
where R(ty, ..., t,;_1, 812, -.-» 01, ) 1s an integral rest.
e Logistic mixed model of MEV distribution
This model is given for all x = (x;, ..., x,,,) € R™ and 6 = (0, ..., 0,,)
by:
1
0 i AR 0|
Go(x) = exps - Z ((pixi ) + (p]-xj) ) Vo4 Zvipixi .
1<i<j<m i—1
The corresponding Pickands function is given, for ¢ = (¢, ..., t,,_1) € Sp,

by

1

Ap(t) = Z ((pit? )eij +(pjt?)eij )e_ij +priti@

1<i<j=m-1 i=1

3

05 |0y

o 0 m

6 \Vij 0

(Piti) + p{l— tk] + E v;pit;
1<k<m-1

i=1

D=
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e Logistic asymmetric model of MEV distribution

This model is given for all x = (x;, ..., x,,,) € R™ and 6 = (0, ..., 0,,)
by:
~ m-1 m s
Go(3f) = expl- D 5+ > (-1) ”[Z o
=1 SIS1 ies

-1

=1 |6
> [p-%'yw+pfifxmeif] |

i<jii,jeS

The corresponding Pickands function is given, for ¢ = (¢, ...

Aglt) =1~ ( 1)S+1{Zt Z [Pi l]teelj

ieS i<j;i,jeS

LGV I D S

1<i<m-1

o 00;,, 0im
-0;,, ,00; -0y
I LR (B

i<m

4. Conclusion

’ tm—l) € Sm

1
+p; ”teeff}eij]

The results of the study provides important characterizations of

parametric max-stable processes. Especially, they show that the concept

of Archimax copulas can also be extended to three-dimensional case.

Moreover, multivariate generalized Pareto distributions are characterized

by a pseudo-dependence function while usual multivariate extremal

models are given with the corresponding dependence function.
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