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Abstract 

In this paper, we have proposed and study a new five parameter generalized 
inverse Weibull model that is based on the cumulative distribution function of 
Kumaraswamy [14] distribution. The importance of this model lies in its ability 
to model a monotone and non-monotone failure rate functions, which are quite 
common to lifetime data analysis and reliability. We present a new goodness-of-fit 
test proposed by Bagdonavicius and Nikulin [2] for the Kumaraswamy 
generalized inverse Weibull model in the case of censored data. The method of 
maximum likelihood is used to estimate the model parameters. We illustrate 
the model and the proposed test by applications to two real data sets. 
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1. Introduction 

In the survival and reliability analysis, the observed data are 
frequently incomplete (censoring times). Therefore, it’s necessary to 
consider a test of the censored failure times data. In 2011, Bagdonavicius 
and Nikulin developed the idea of Akritas [1] of comparing observed and 
expected numbers of failures in time intervals. The choice of random 
grouping intervals used are considered as data functions, introducing a 

modified chi-squared test 2
nY  which is well adapted to censored failure 

time data. To give more objective assessments of the selected model of fit, 

the 2
nY  statistic is based on the maximum likelihood estimation (MLE), 

and the Fisher matrix which measure the information about the 
parameters contained in the model chosen. In the recent years, several 
criterion statistics and their applications are considered, such as 
Haghighi and Nikulin [23], Gerville-Réache et al. [17], Voinov et al. [32], 
Bagdonavicius et al. [4], Nikulin and Tran [24], Goual and Seddik-Ameur 
[9]. 

We introduce in this paper, the generalized inverse Weibull (GIW) 
model based on the cumulative distribution function of Kumaraswamy 
[14] and called Kumaraswamy generalized inverse Weibull (Kum-GIW) 
distribution. Till now, the Kumaraswamy distribution has been finding a 
different areas of applications, such as survival analysis, reliability, 
biological and hydrological data, Saulo et al. [29], Pascoa et al. [26], 
Cordeiro et al. [5], Nadarajah et al. [18], Cordeiro et al. [6], Shahbaz et al. 
[30]. 

On the other hand, the generalized inverse Weibull (GIW) 
distribution proposed by de Gusmão et al. [7] is a flexible model which 
can describe and predict the failure times of much real systems. The 
importance of the new Kum-GIW distribution lies in its ability to model 
monotonicity, non-monotonicity, and −∩ shape failure rate functions, 

which are quite common to lifetime data analysis and reliability. The 
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purpose of this paper is to construct and analyze the generalized Nikulin-

Rao-Robson goodness-of-fit statistic test 2
nY  (Bagdonavicius and Nikulin 

[2], Bagdonavicius and Nikulin [3]) for the Kumaraswamy generalized 
inverse Weibull (Kum-GIW) distribution in both of complete and censored 
data. We introduce the Kum-GIW distribution and we discuss the shapes 
of the hazard rate function in Section 2. In Section 3, we calculate the 
maximum likelihood estimators of the Kum-GIW parameters in the case 
of censored data. We define in Section 4, the new goodness-of-fit statistic 

test ,2
nY  and the validation of our new model is investigated in Section 5. 

Finally, the importance of the proposed model is illustrated by two real 
data sets in Section 6. 

2. Kumaraswamy Generalized Inverse 
Weibull Distribution 

The generalized inverse Weibull (GIW) distribution is proposed by 
Gusmão et al. [7]. This distribution arises as a tractable lifetime model in 
actuarial sciences, life testing and reliability. 

The random variable T follows the generalized inverse Weibull 
distribution if its cumulative distribution function is given by 

( ) ( ) .0,0,,,exp, >>γβα=θ













 αγ−=θ

β
tttF T

GIW  

Its probability density function is 

( ) ( ) .0,0,exp, 1 >θ>













 αγ−γβα=θ

β
+β−β ttttfGIW  

We propose in this paper, an extension of the generalized inverse 
Weibull distribution based on the family of generalized Kumaraswamy 
distributions (denoted Kum-G), introduced by Cordeiro and de Castro [6] 
and Nadarajah et al. [18]. The Kumaraswamy (Kum) distribution is not 
very common to statisticians and has been little explored in the 
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statistical literature. Its cumulative distribution function is 

( ) ( ) ,11 baxxF −−=  for 10 << x  and where 0>a  and 0>b  are 

shape parameters, and its density function has a simple form 

( ) ( ) .1 11 −− −= baa xabxxf  

A random variable T follows a Kumaraswamy generalized inverse 
Weibull (Kum-GIW) distribution, if the cumulative distribution function 
is given as 

( ) ( ) ,0,,,,,0,exp11, >γβα=θ>
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where 0,0,0 >β>> ba  are the shape parameters, 0>α  is the scale 
parameter, and 0>γ  is the shift parameter. 

Its survival function is 

( ) ( ) .0,,,,,0,exp1, >γβα=θ>
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The probability density function, hazard and cumulative hazard 
functions of the Kum-GIW distribution are 
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respectively. 
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Where, the cumulative distribution function of a generalized 

Kumaraswamy distribution is ( ) [ ( ){ } ] ( ( )tGtGtF ba
Kum ,11, −−=θ  is the 

cumulative distribution function of the generalized inverse Weibull 
distribution). 

The graphs of hazard rate functions are shown below (Figure 1) for 
various choices of the parameters. 

The flexibility of the Kum-GIW distributions is shown in their hazard 
function plots (Figure 1) with interesting properties: 

● If 20 ≤β<  and ,41 <γ<  then its hazard rate has a cup shape 

( )shape-∩  form. 

● If 1.2>β  and ,10 ≤γ<  then its hazard rate is decreasing to 0, 

which can characterize the systems that improves (burn-in phase or 
youth, “burn in” infant mortality). 

● If ,4≥γ  then the hazard rate is increasing, this situation 

characterizes a system which deteriorates (phase obsolescence or ageing). 
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Figure 1. Different shapes of hazard rate function of the Kumaraswamy 
generalized inverse Weibull (Kum-GIW) distribution. 

3. Estimating the Parameters of the Kum-GIW  
Distribution with Censored Data 

Let T be a random variable distributed with the vector of parameters 

( ) .,,,, Tba γβα=θ  Suppose that iT  are failure times non-negative and 

independent and the probability density function of iT  belongs to a 

parametric family (Kum-GIW in our case). The censoring times iC  are 

also non-negative and assumed to be random sample. 

Suppose that the data consist of n independent observations 
( )iii CTt ,min=  for .,,2,1 ni …=  The right censoring is non 

informative ( iC  does not depend on θ ). So in this case, we obtain the 

following expressions of the likelihood functions: 
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( ) ( ) ( )θθ=θ δ−δ
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∏ ,,, 1
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The log-likelihood function for the Kum-GIW model is given by 
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where F and C are the sets of complete and censored observations, 
respectively, m is the number of failures. 

The maximum likelihood estimations (MLE’s) ( ), , , ,
T

a bθ = α β γ  of 

the parameters are the solution of the non-linear system of score 

functions ( ) ( ) ( ) ( ) ( )( ) .,,,, 50=θθθθθ γβα
T

ba iiiii  (For more details, see the 

Appendix). 

4. Goodness-of-fit Test for Right Censored Data 

For testing the goodness-of-fit of a parametric family of survival 
distribution from right censored data, Habib and Thomas [11], Hollander 
and Pena [12] considered natural modifications of the Nikulin-Rao-
Robson (NRR) statistic for data without covariates. Also, Hjort [13], 
Hollander and Pena [12] considered goodness-of-fit for parametric Cox 
models, Gray and Pierce [10], Akritas [1], and Zhang [33] for linear 
regression models. 
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Bagdonavicius and Nikulin [3] gave chi-squared type goodness-of-fit-
test for censored data with possibly time dependent covariates and 
considered random grouping intervals as data functions. These tests are 
based on maximum likelihood estimations for ungrouped data, and 
random grouping intervals are considered as data functions. We adapt 
this test for a Kumaraswamy generalized inverse Weibull model. Let us 
consider the hypothesis 

( ) { ( ) },,,,: 1
000

sRRxxFFxFH ⊂Θ∈θ∈θ=∈  

where { } sT
s R⊂Θ∈θθ=θ ,,1 …  is unknown s-dimensional vector 

parameter and 0F  is a known distribution function. Let us consider a 

finite time interval only say [ ]τ,0  and divide it into s>k  smaller 

intervals ( ],,1 jjj aaI −=  where 

.0 110 +∞=<<<=< − kk aaaa …  

In this case, the estimated ja  is given by 

( ( ( ) ) ) ( ) ( )

1
1

1

ˆ, 1 , , , 1, , ,
i

j l nj
l

a E X n i a X j
−

−

=

 
 = Λ − Λ θ − + θ = =
 
 

∑ …k k  

where θ  is the maximum likelihood estimator of the parameter 1, −Λθ  is 

the inverse of the cumulative hazard function ( )iX,Λ  is the i-th element 

in the ordered statistics ( ( ) ( ) )nXX ,,1 …  and ( ) ( )1 ,j jE n i a= − + Λ θ +  

( ( ) )1
1 , ;i

jll X a−
=
Λ θ∑  are random data functions such as the k  intervals 

chosen have equal expected numbers of failures .je  

The test is based on the vector 

( ) ( ) ;,,2,1,1,,,1 kk …… =−== jeU
n

ZZZZ jjj
T  

jU  represent the numbers of observed failures in these intervals. 
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Under the hypothesis ,0H  for parametric models with survival 

functions and hazard rates absolutely continuous and non informative 
censoring, Bagdonavicius et al. [4] (Theorems 1 and 2) showed that the 
limit distribution of the statistic test 

( )22

1
,j jT

jj

U e
Y Z Z QU

−

=

−
= ∑ = +∑

k
 

where −∑  is a generalized inverse of the estimated covariance matrix of 

the vector Z, 

11 1 1, ,
T T
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− −− − −−∑ = + = −  
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is chi-square with ( )−∑= kranr  degrees of freedom. The hypothesis is 

rejected with approximate significance level α  if ( ),22 rYn αχ>  where 

( )r2
αχ  is the quantile of chi-square with r degrees of freedom. For more 

details, see Bagdonavicius and Nikulin [2], Bagdonavicius and Nikulin 
[3]. 
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5. Validity of the Kum-GIW Model in Censoring Case 

The choice of ; 1, 2, , ,ja j = … k  in the case of a Kum-GIW model, is 

obtained as follows: 

( ){ }( ) ( )

1
1

1
ln 1 exp ln 1 exp 1 ,

i

jj l
l

a b a E b a X n i

−−β−
−ββ β

=

         = − − − γα + − − γα − +            
∑  

( ).na X=k  

To obtain the explicit form of the modified chi-squared 2
nY  statistic 

for the Kum-GIW model, we must calculate the matrix [ ]5 5ljC c ×=  and 

the Fisher information matrix 
5 5

.lli ′ ×
 =  i  (For more details, see the 

Appendix). 

5.1. The matrix C  

The elements of the estimated matrix C  with 
:

1

j

n

i
i t I

C n
∈

= δ∑  
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( ) ( )

( )4
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1 ln ln ln ,
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n i i
i i i i
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∑  

So we can calculate the estimated matrix w  defined as 

1

1
, 1, 2, , 5, 1, 2, , .l lj j j

j
w C A Z l j

−

=

= = =∑ … …
k

k  

Then, we obtain the statistic 2
nY  for the model of Kumaraswamy 

generalized inverse Weibull as follow: 

( )2 12

1 1
, , 1, 2, , 5.

Tj j
jlj l jll

jj j

U e
W i C C A W l lU

−
−

′′
= =

 −
′ = + × − × =

  
∑ ∑ …
k k

Y  

6. Simulation Study 

6.1. Kum-GIW’s parameters estimation 

In order to evaluate the performance of the maximun likelihood 
method of estimating the Kum-GIW parameters in complete and 
censored case, we use the R statistical software and Brazilai-Bormein 
(BB) algorithms (Ravi et al. [28]). We give the mean simulated maximum 
likelihood estimators values , , , ,a b α β γ  and their mean square errors 
in Table 1. Seven sample sizes (n = 100, n = 150, n = 200, n = 250,             
n = 300, n = 350, and n = 500) are considered. The data were simulated   
N = 10, 000 with the following values of the parameters: ,5.2,5.1 == ba  

.3,5.1,2 =γ=β=α  
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Table 1. Mean simulated maximum likelihood estimators value and 
their mean square errors 

N = 10,000 n = 100 n = 150 n = 200 n = 250 n = 300 n = 350 n = 500 

a  1.6123 1.5745 1.5709 1.5217 1.5326 1.5109 1.5023 

SME 0.0042 0.0036 0.0034 0.0029 0.0031 0.0018 0.0006 

b  2.7013 2.6398 2.6182 2.6187 2.6011 2.5434 2.5117 

SME 0.0053 0.0047 0.0044 0.0046 0.0028 0.0022 0.0007 

α  2.1662 2.1219 2.1067 2.1104 2.0971 2.0783 2.0122 

SME 0.0036 0.0028 0.0022 0.0017 0.0011 0.0009 0.0003 

β  1.7005 1.6308 1.6017 1.5806 1.5472 1.5508 1.5051 

SME 0.0056 0.0048 0.0042 0.0031 0.0025 0.0028 0.0006 

γ  2.9574 2.9525 2.9765 2.9963 2.9904 3.0819 3.0057 

SME 0.0041 0.0038 0.0026 0.0018 0.0021 0.0013 0.0004 

From Table 1, we can note that the maximum likelihood method of 
estimating the Kum-GIW parameters is well perform. 

The simulated average absolute errors of MLE ( ), , , , Ta bθ = α β γ  

versus their true value can be find in Table 2. For each simulated sample 
n, we compute the average absolute of errors as the total of absolute 
different of the MLE’s against the true value of the number of runs          
N = 10,000 times. 

 

 

 

 

 

 

 



 

 

 

Table 2. Simulate average absolute errors of MLE θ  versus their true value 

( )Tba 3,5.1,2,5.2,5.1 =γ=β=α===θ  when data is completed ( )0=p  and the right 
censoring probability p = 20% 

n 0.5n  a  a  b  b  α  α  β  β  γ  γ  

  p = 0%  p = 20% p = 0%   p = 20% p = 0%   p = 20% p = 0%  p = 20% p = 0%  p = 20% 

100 0.1210 0.0542 0.0627 0.0471 0.0515 0.0584 0.0603 0.0551 0.0610 0.0522 0.0592 

150 0.0946 0.0412 0.0587 0.0462 0.0494 0.0478 0.0593 0.0444 0.0562 0.0411 0.0475 

200 0.0865 0.0405 0.0418 0.0385 0.0478 0.0402 0.0482 0.0391 0.0439 0.0365 0.0391 

250 0.0753 0.0361 0.0382 0.0326 0.0466 0.0376 0.0377 0.0302 0.0386 0.0284 0.0274 

300 0.6078 0.0300 0.0354 0.0298 0.0385 0.0312 0.0304 0.0290 0.0304 0.0205 0.0209 

350 0.4526 0.0265 0.0330 0.0284 0.0307 0.0209 0.0276 0.0281 0.0295 0.0193 0.0168 

500 0.4281 0.0244 0.0328 0.0279 0.0284 0.0154 0.0248 0.0273 0.0284 0.0169 0.0168 
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Table 2 show that all simulated MLE converge faster than 5.0n  and, 
hence confirm the theorem established by Fisher [8], so we demonstrate 
that the MLE of Kum-GIW distribution is -n consistent in the cases of 

complete and censored data. 

6.2. Simulated distribution of 2
nY  statistic for Kum-GIW model 

We test the hypothesis 0H  that the statistic 2
nY  follows a chi-

squared distribution with 12=k  degrees of freedom. For that, we run 
10,000 simulations of samples data (sample sizes n = 50, n = 100, n = 300, 
and n = 500) from a Kum-GIW distribution. We group in Table 3 the 

number of rejection’s cases of the hypothesis ,0H  when ( )k22
αχ>nY  with 

( )%10%,5%,1 =α=α=αα  significance levels. 

Table 3. Simulated levels of significance for ( )2
nY θ  test against their 

theoretical values ( )1,0,05,0,01,0=α  

N = 10,000 01.0=α  05.0=α  1.0=α          
n = 50 0.0079 0.0478 0.0913        
n = 100 0.0093 0.0485 0.0971        
n = 300 0.0138 0.0526 0.1208        
n = 500 0.0109 0.0507 0.1152        

One can observe that theoretical levels of the chi-squared 
distributions with 12=k  degrees of freedom matches with the simulated 

levels of significance for 2
nY  test. Hence, we can say that the test 

proposed can adjust data from a Kumaraswamy generalized inverse 
Weibull distributions in acceptable manner. 

For demonstrating that the 2
nY  statistic follows in the limit; a chi-

squared distribution with k  degrees of freedom; we compute N = 10,000 

times, the simulated distribution of ( )2
nY θ  under the null hypothesis 0H  



HAFIDA GOUAL and NACIRA SEDDIK-AMEUR 290

with different values of parameters ( );,,,,- γβαbaGIWKum  for example, 

( ) (1.5, 2.5, 2, 1.5, 3 , 2.5, 2.5, 2,a b a bθ = = = α = β = γ = θ = = = α =  

) ( ) (1.5, 3 , 1.5, 2.5, 1.5, 1.5, 3 , 1.5,a b aβ = γ = θ = = = α = β = γ = θ = =  

) ( )1.5, 2, 1.5, 3 , 1.5, 2.5, 2, 0.5, 3 ,b a b= α = β = γ = θ = = = α = β = γ =  

( )1.5, 2.5, 2, 1.5, 2.5a bθ = = = α = β = γ =  and r = 13 intervals, versus 

the chi-squared distribution with 121 =−= rk  degree of freedom. Their 
histograms are represented in Figure 2 versus the chi-squared 
distribution with k  degree of freedom. 

As can see from Figure 2, one can observe that the statistical 

distribution of 2
nY  with different values of parameters and different 

numbers k  of grouping cells; in the limit follows a chi-squared with 
k=r  degrees of freedom within the statistical errors of simulation. We 

obtain the same results for different value of parameters and different 
number of equiprobable grouping intervals. It is means that the limiting 

distribution of the generalized chi-squared 2
nY  statistic is distribution 

free. This result also established the theorem of Nikulin [17, 18, 19]. 

 

 



A MODIFIED CHI-SQUARED GOODNESS-OF-FIT … 291

 

 

 



HAFIDA GOUAL and NACIRA SEDDIK-AMEUR 292

 

 

 



A MODIFIED CHI-SQUARED GOODNESS-OF-FIT … 293

 
 

 

Figure 2. Simulated distribution of the 2
nY  statistic under the null 

hypothesis ,0H  with different parameters of θ  versus the chi-squared 
distribution with 12 degrees of freedom, with n = 150, N = 10,000. 

6.3. Application to real data 

To show the application of the Kumaraswamy generalized inverse 
Weibull model to survival and reliability data in the case of censored 
data, we use two real life data sets by using 2

nY  statistic. 
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6.4. Survival analysis data case 

Pike [27] gave some data from a laboratory investigation in which the 
vaginas of rats were painted with the carcinogen DMBA, and the number 
of days T until a carcinoma appeared was recorded. The data below are 
for a group of 19 rats (Group 1 in Pike’s paper); the two observations with 
asterisks are censoring times. 

143, 164, 188, 188, 190, 192, 206, 209, 213, 216, 220, 227, 230, 234, 246, 
265, 304, 216*, 244*. 

These data are analyzed by Nikulin and Tran [25]; where they 
suggested that the probability plots for two parameters Weibull 
distributions, then the data are best fitting with generalized Birnbaum-
Saunders, logistic and the generalized Birnbaum-Saunders cauchy 
distributions. 

We consider the hypothese that these data follow a Kum-GIW 
distribution. Choosing ,6=k  grouping intervals, we find the values of 
the maximum likelihood estimators parameters: 

0.5712, 2.3884, 4.0187, 0.1287, 3.8854.a b= = α = β = γ =  

The values of ,ja  the frequency vector Z are given in the following table: 

j 1 2 3 4 5 6 

ja  188.51 194.38 214.76 219.85 240.77 304 

JU  4 2 3 2 4 4 

je  35.268 35.268 35.268 35.268 35.268 35.268 

jZ  – 7.1734 – 7.6322 – 7.6325 – 7.632202 – 7.1734 – 7.1734 

The result of the elements of the 2
nY  statistic are 

[ ]0.9815 1214.0208 64.8294 0.0038 ,W = − −  

and the estimated Fisher’s information matrix 5 5I ×  is 



 

 

 

 

5 2 3 4 3

2 3 4 4

3 2 2

4 4

3.2806 10 2.5512 10 5.0102 10 1.8726 10 2.0043 10
2.5512 10 1.2296 10 12.4398 3.3356 10 5.1083 10
5.0102 10 12.4398 5.3286 10 243.85 1.2096 10

1.8726 10 3.3356 10 243.85 1.2388 10

I

− − − − −

− − − −

− − −

− −

× × − × × − ×

× × − × ×

= − × − × − − ×

× × − − × 1

3 4 2

,

0
2.0043 10 5.1083 10 1.2096 10 0 0

−

− − −

 
 
 
 
 
 
 
  − × × − × 

 

and 

5 3 4 5

3 5 2 4 5

4 2 1 2

5 4 1

1.8743 10 2.0287 10 3.7619 10 5.7611 10 0
2.0287 10 4.4381 10 34.8754 10 1.8753 10 2.0598 10
3.7619 10 34.8754 10 204.37 561.712 10 14.784 10
5.7611 10 1.8753 10 561.712 10

G

− − − −

− − − − −

− − − −

− − −

× × − × − ×

× × − × × ×

= − × − × − − × − ×

− × × − × − 3

5 2

.

8.281 10 0
0 2.0598 10 14.784 10 0 0

−

− −

 
 
 
 
 
 

× 
  × − × 
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By using the NRR statistic for five parameters Kumaraswamy 

generalized inverse Weibull distribution, we obtain the value .9589.112 =nY  

Since ( ) 5916.1269589.11 2
05.0

2 =χ<=nY  (the critical value), we can 

conclude that the Kumaraswamy generalized inverse Weibull (Kum-GIW) 
model is in concordance with the appeared time of the carcinoma of Pike. 

6.5. Reliability data (cycles-to-failure of cylindrical steel specimens) 

Cycles-to-failure of cylindrical steel specimens of 41% C anneal for 30 
min at 870°C; after surface finish with coarse emery, tested by Ono’s 

Rotary Uniform Bending Tester at 2000rpm with .35.6kg/mm2±  This 

data is obtained from Lawless [16] 

.4212.73694.03643.52580.72505.9

2272.22187.81691.71379.31315.71286.61190.8967.9834.7
819.5815.6748.7740.7671.1548.2481.2443.6423.3
423.0406.6394.1392.0385.8380.5354.5350.1330.3
324.7298.8287.2284.4244.4243.8240.2223.6213.2
202.0192.1188.1185.3180.5172.8163.2157.2151.8
147.8145.3143.1142.8141.0138.9123.7122.8119.9
104.691.382.171.567.758.353.050.544.9

 

The MLE’s of the parameters , , , ,a b α β γ  of the Kumaraswamy 

generalized inverse Weibull (Kum-GIW) model are 

0.7643, 0.1287, 4.5342, 1.7643, 2.0983.a b= = α = β = γ =  

If we choose 8=k  intervals, the following table gives the results 

j 1 2 3 4 5 6 7 8 

ja  69.06 130.94 146.72 183.64 286.13 423.1 1264.93 4212.7 

JU  5 7 5 6 10 12 12 11 

je  56.48 56.48 56.48 56.48 56.48 56.48 56.48 56.48 

jZ  – 6.242866 – 6.000331 – 6.242866 – 6.121599 – 5.636527 – 5.393992 – 5.393992 – 5.515260 
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The statistical inferences for testing the null hypotheses that acute 
cycles-to-failure of cylindrical steel specimens belong the Kum-GIW 
model, are given as follows: 

[ ]1.5781 6.8714 123.6598 12.9377 ,W = − −  

and the estimated Fisher's information matrix is 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 
3 4 5 2 3

4 5 2 4 4

5 2 3 5

2 4

3.2806 10 3.1893 10 123.7601 10 14.3387 10 1.9802 10
3.1893 10 4.0942 10 6.8631 10 1298 10 5.1083 10

123.7601 10 6.8631 10 .2153 10 402.89 3.0029 10
14.3387 10 1298 10

I

− − − − −

− − − − −

− − − −

− −

× − × − × − × ×

− × × − × − × − ×

= − × − × − × − − ×

− × − × − 1

3 4 5

.

402.89 1.9267 10 201.3871
1.9802 10 5.1083 10 3.0029 10 201.3871 0

−

− − −

 
 
 
 
 
 

− × 
  × − × − × 
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We obtain 6574.102 =X  and Q = 4.55348, so the value of the statistic 

test is .2109.152 =nY  Since ( ) 50731.1582109.15 2
05.0

2 =χ<=nY (the 

critical value), the hypothesis 0H  of the Kumaraswamy generalized 

inverse Weibull (Kum-GIW) distribution is well accepted at the 
significance level .05.0=α  
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Appendix 

The score functions are 
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Fisher information matrix i  

The elements of the Fisher information matrix 
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