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Abstract

In this paper, we have proposed and study a new five parameter generalized
inverse Weibull model that is based on the cumulative distribution function of
Kumaraswamy [14] distribution. The importance of this model lies in its ability
to model a monotone and non-monotone failure rate functions, which are quite
common to lifetime data analysis and reliability. We present a new goodness-of-fit
test proposed by Bagdonavicius and Nikulin [2] for the Kumaraswamy
generalized inverse Weibull model in the case of censored data. The method of
maximum likelihood is used to estimate the model parameters. We illustrate

the model and the proposed test by applications to two real data sets.
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1. Introduction

In the survival and reliability analysis, the observed data are
frequently incomplete (censoring times). Therefore, it’s necessary to
consider a test of the censored failure times data. In 2011, Bagdonavicius
and Nikulin developed the idea of Akritas [1] of comparing observed and
expected numbers of failures in time intervals. The choice of random

grouping intervals used are considered as data functions, introducing a
modified chi-squared test Yn2 which is well adapted to censored failure
time data. To give more objective assessments of the selected model of fit,
the Yn2 statistic is based on the maximum likelihood estimation (MLE),

and the Fisher matrix which measure the information about the
parameters contained in the model chosen. In the recent years, several
criterion statistics and their applications are considered, such as
Haghighi and Nikulin [23], Gerville-Réache et al. [17], Voinov et al. [32],
Bagdonavicius et al. [4], Nikulin and Tran [24], Goual and Seddik-Ameur
[9].

We introduce in this paper, the generalized inverse Weibull (GIW)
model based on the cumulative distribution function of Kumaraswamy
[14] and called Kumaraswamy generalized inverse Weibull (Kum-GIW)
distribution. Till now, the Kumaraswamy distribution has been finding a
different areas of applications, such as survival analysis, reliability,
biological and hydrological data, Saulo et al. [29], Pascoa et al. [26],
Cordeiro et al. [5], Nadarajah et al. [18], Cordeiro et al. [6], Shahbaz et al.
[30].

On the other hand, the generalized inverse Weibull (GIW)
distribution proposed by de Gusmao et al. [7] is a flexible model which
can describe and predict the failure times of much real systems. The
importance of the new Kum-GIW distribution lies in its ability to model

monotonicity, non-monotonicity, and [()-shape failure rate functions,

which are quite common to lifetime data analysis and reliability. The
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purpose of this paper is to construct and analyze the generalized Nikulin-
Rao-Robson goodness-of-fit statistic test Yn2 (Bagdonavicius and Nikulin

[2], Bagdonavicius and Nikulin [3]) for the Kumaraswamy generalized
inverse Weibull (Kum-GIW) distribution in both of complete and censored
data. We introduce the Kum-GIW distribution and we discuss the shapes
of the hazard rate function in Section 2. In Section 3, we calculate the
maximum likelihood estimators of the Kum-GIW parameters in the case

of censored data. We define in Section 4, the new goodness-of-fit statistic
test Yn2 , and the validation of our new model is investigated in Section 5.

Finally, the importance of the proposed model is illustrated by two real

data sets in Section 6.

2. Kumaraswamy Generalized Inverse
Weibull Distribution

The generalized inverse Weibull (GIW) distribution is proposed by
Gusmao et al. [7]. This distribution arises as a tractable lifetime model in

actuarial sciences, life testing and reliability.

The random variable T follows the generalized inverse Weibull

distribution if its cumulative distribution function is given by
o) T
FGIW(t’ 9) = expy— ’Y(?) ’ 0= ((X,, B’ Y) > O, t > 0.
Its probability density function is
By-(p+1) o)’
farw (@, ©) = yBa’t expy— v(Tj ,t>0,0>0.

We propose in this paper, an extension of the generalized inverse
Weibull distribution based on the family of generalized Kumaraswamy
distributions (denoted Kum-G), introduced by Cordeiro and de Castro [6]
and Nadarajah et al. [18]. The Kumaraswamy (Kum) distribution is not

very common to statisticians and has been little explored in the
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statistical literature. Its cumulative distribution function is

Fx)=1-(1-x%), for 0<x <1 and where a >0 and b >0 are
shape parameters, and its density function has a simple form

f(x) = abx® (1 - x* P71,

A random variable T follows a Kumaraswamy generalized inverse
Weibull (Kum-GIW) distribution, if the cumulative distribution function
is given as

a)\P ’ T
F, 0)=1- l—exp—ay(Tj ,t>0,0=(a, b, a,pB,y) >0,

where a > 0,b > 0, B > 0 are the shape parameters, o > 0 is the scale

parameter, and y > O is the shift parameter.

Its survival function is

B b
S(t, 0) = {1 - exp{— ay(%) H ,t>0,0=(ab,aB 7y >o0.

The probability density function, hazard and cumulative hazard
functions of the Kum-GIW distribution are

) i B17°
£(t, 0) = abypalt (B+1) exp{— ay(%) } {1 - exp{— ay(%j H ,

0=(ab 0By >0,

0.0 = )

B BT
= abyBaBt_(B+1) exp{— ay(%) } {1 - exp{— ay(%j H ,t>0,0>0,

(XB b T
A(t, 0) = —1In| 1 — exp —ay(?j ,t>0,0=(a,b,a,fB,y) >0,

respectively.
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Where, the cumulative distribution function of a generalized
Kumaraswamy distribution is Fg,,, (¢, 0) = 1 - [1 - {G)}*T?, (G(t) is the
cumulative distribution function of the generalized inverse Weibull

distribution).

The graphs of hazard rate functions are shown below (Figure 1) for

various choices of the parameters.

The flexibility of the Kum-GIW distributions is shown in their hazard
function plots (Figure 1) with interesting properties:

e If 0 <P <2 and 1< y < 4, then its hazard rate has a cup shape
(N-shape) form.

o If B> 2.1 and 0 <y <1, then its hazard rate is decreasing to O,
which can characterize the systems that improves (burn-in phase or
youth, “burn in” infant mortality).

e If y >4, then the hazard rate is increasing, this situation

characterizes a system which deteriorates (phase obsolescence or ageing).
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Figure 1. Different shapes of hazard rate function of the Kumaraswamy

generalized inverse Weibull (Kum-GIW) distribution.

3. Estimating the Parameters of the Kum-GIW
Distribution with Censored Data

Let T be a random variable distributed with the vector of parameters
0 =(a, b, a, B, y)T. Suppose that T; are failure times non-negative and
independent and the probability density function of 7; belongs to a
parametric family (Kum-GIW in our case). The censoring times C; are
also non-negative and assumed to be random sample.

Suppose that the data consist of n independent observations
t; =min(7}, C;) for i=1,2,...,n The right censoring is non
informative (C; does not depend on 6). So in this case, we obtain the

following expressions of the likelihood functions:
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L(t’ 6) = Hfsi (ti’ e)Sl_Si (ti’ 6)
=1

n
= Hkai (t;, 0)S(;, 0), 8 =1ir<c;)-
=1
The log-likelihood function for the Kum-GIW model is given by

n B
It, 0) = ZSi[lna+1nb+lny+1n[3+[31noc—(B+1)1n(ti)—ay(%j
i=1 i

wlemfole Bl -l ()

I(¢,0) =mIna+minb+mlny+mInB+mBlna-B +1)Zln(ti)— mayocBZti_B
el ieF

+b-1)) 1n[1 - exp{— ay(%)B}J +by ln[l ~ exp {— ay[%)ﬁ}],

ieF ieC
where F and C are the sets of complete and censored observations,

respectively, m 1s the number of failures.

A~ A A A A

the parameters are the solution of the non-linear system of score
functions (ia(e), (), i, (6), i3(6), iy(e))T = 05. (For more details, see the

Appendix).
4. Goodness-of-fit Test for Right Censored Data

For testing the goodness-of-fit of a parametric family of survival
distribution from right censored data, Habib and Thomas [11], Hollander
and Pena [12] considered natural modifications of the Nikulin-Rao-
Robson (NRR) statistic for data without covariates. Also, Hjort [13],
Hollander and Pena [12] considered goodness-of-fit for parametric Cox
models, Gray and Pierce [10], Akritas [1], and Zhang [33] for linear

regression models.
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Bagdonavicius and Nikulin [3] gave chi-squared type goodness-of-fit-
test for censored data with possibly time dependent covariates and
considered random grouping intervals as data functions. These tests are
based on maximum likelihood estimations for ungrouped data, and
random grouping intervals are considered as data functions. We adapt
this test for a Kumaraswamy generalized inverse Weibull model. Let us
consider the hypothesis

Hy : F(x)e Fy = {Fy(x,0), x € R', 6 € ® ¢ R®},

where 0 = {0, ..., 0,7 € ® c R® is unknown s-dimensional vector
parameter and F; is a known distribution function. Let us consider a
finite time interval only say [0, T] and divide it into k > s smaller

intervals I; = (aj_, a;], where
0=<apg <0ay..<Qq_1] <a = +o.

In this case, the estimated a i is given by

~

1—1
a;=AT(Ej =Y A(Xp,0))/(n=i+1), 8|, @y =Xp,i=1 .k
=1

where 0 is the maximum likelihood estimator of the parameter 0, Alis

the inverse of the cumulative hazard function A, X(;) is the i-th element
in the ordered statistics (X(;), ..., X(,)) and E; =(n-i+1)A( 8]., 0)+

;:A (Xq), ) ); a; are random data functions such as the % intervals
chosen have equal expected numbers of failures e;.

The test 1s based on the vector

Z=Z,...2)", z; = i=12 ... k

%(Uj—ej),

U ;j represent the numbers of observed failures in these intervals.



284 HAFIDA GOUAL and NACIRA SEDDIK-AMEUR

Under the hypothesis H,, for parametric models with survival

functions and hazard rates absolutely continuous and non informative
censoring, Bagdonavicius et al. [4] (Theorems 1 and 2) showed that the

limit distribution of the statistic test

k 2

~ U:-e:

Y2 777 _ E%JFQ
j=1 J

where Y.~ is a generalized inverse of the estimated covariance matrix of

the vector Z,

k
S ST A s -~ = A Al
W=(Wi, ... W), G=[enles &u=in-), CuCuA;',

Jj=1
n ~ ~
o1 ? - -1 olna(t, 6)ana(t, 0)
Cl]—;lz Si%h’l}\.(ti, 9), Lll,_;z i 6el 69[ ,
1X;el; i=1
~ k ~ ~
Wi=> CyA;'z;,  LI=1,..s
Jj=1

is chi-square with r = rank( X" ) degrees of freedom. The hypothesis is
rejected with approximate significance level o if Yn2 > x(zl(r), where

xi(r) is the quantile of chi-square with r degrees of freedom. For more

details, see Bagdonavicius and Nikulin [2], Bagdonavicius and Nikulin

[3].
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5. Validity of the Kum-GIW Model in Censoring Case

The choice of &j; j=1,2, ..., k, in the case of a Kum-GIW model, is

obtained as follows:

-1

i1 B
a;=|-bln|1-exp —ayoP E; +bZln(1—exp{—ayaBX(;)B}) (n-i+1)|| ,
=1

To obtain the explicit form of the modified chi-squared Yn2 statistic

for the Kum-GIW model, we must calculate the matrix C :[C/Z;]5><5 and

the Fisher information matrix ;:[L/ll\],é 5 (For more details, see the
X

Appendix).

5.1. The matrix C

n
The elements of the estimated matrix C with C=l E d;
n
itel;
j

olni(t, 0 ,_,

0, ,..,mand j=1,2,...,k

B B
n 1-ay (gj ¥ (ﬁ) M (t;, 6)
. 5 t L

Clj:Zi -

itel < 1-M @, 0)

i:telj

—~ l—ayaBaB_lt;B ayBaB_lt;ﬁM @, 0)
Csj = Z 5; " - ;

itel 1-M (4, 0)
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B p
- n 1-Bln(t;)—-Pay (tg) In (tgj ay (tg) In (tgj M (;, 6)
Caj = ZSL’ B - 1-M (t;, 0) :

i:telj

B B
n l1—ay| 2 alLl M, 0)
Csj= D §; ki ki
5J ‘ y 1-M(t;, 0)

iItEIj

So we can calculate the estimated matrix w defined as

k

—~ o~ ~—1

w; = E CIJA] Z], l=1, 2,...,5, j=1, 2,...,k'.
=

Then, we obtain the statistic Yn2 for the model of Kumaraswamy

generalized inverse Weibull as follow:

k 2 2 _
2 (Uj-e)” &7 |3 & 0w AT i :
Y :Z‘ JU].J +W X[lzz'—;ClJCwA]} xW, 1,I'=1,2,...,5.

6. Simulation Study

6.1. Kum-GIW’s parameters estimation

In order to evaluate the performance of the maximun likelihood
method of estimating the Kum-GIW parameters in complete and
censored case, we use the R statistical software and Brazilai-Bormein
(BB) algorithms (Ravi et al. [28]). We give the mean simulated maximum

~N A A A A

likelihood estimators values a, b, o, B,y and their mean square errors

in Table 1. Seven sample sizes (n = 100, n = 150, n = 200, n = 250,
n = 300, n = 350, and n = 500) are considered. The data were simulated
N =10, 000 with the following values of the parameters: a = 1.5, b = 2.5,

a=2p=157y=3
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Table 1. Mean simulated maximum likelihood estimators value and

their mean square errors

N=10,000 | n=100 n =150 n =200 n =250 n =300 n =350 n =500

a 1.6123 1.5745 1.5709 1.5217 1.5326 1.5109 1.5023
SME 0.0042 0.0036 0.0034 0.0029 0.0031 0.0018 0.0006
b 2.7013 2.6398 2.6182 2.6187 2.6011 2.5434 2.5117
SME 0.0053 0.0047 0.0044 0.0046 0.0028 0.0022 0.0007
a 2.1662 2.1219 2.1067 2.1104 2.0971 2.0783 2.0122
SME 0.0036 0.0028 0.0022 0.0017 0.0011 0.0009 0.0003
ﬁ 1.7005 1.6308 1.6017 1.5806 1.5472 1.5508 1.5051
SME 0.0056 0.0048 0.0042 0.0031 0.0025 0.0028 0.0006
? 2.9574 2.9525 2.9765 2.9963 2.9904 3.0819 3.0057
SME 0.0041 0.0038 0.0026 0.0018 0.0021 0.0013 0.0004

From Table 1, we can note that the maximum likelihood method of

estimating the Kum-GIW parameters is well perform.

The simulated average absolute errors of MLE 0 =( 5, 3, &, ﬁ, ? )T

versus their true value can be find in Table 2. For each simulated sample
n, we compute the average absolute of errors as the total of absolute
different of the MLE’s against the true value of the number of runs
N =10,000 times.




Table 2. Simulate average absolute errors of MLE 0 versus their true value

0=(a=150b=250=2p=15v=3) when data is completed (p = 0) and the right
censoring probability p = 20%

n =n05 a a b b o o B B

-
=

pP=0% p=20% | p=0% |p=20%| p=0% |p=20%| p=0% [p=20% | p=0% |p=20%

100 | 0.1210 | 0.0542 | 0.0627 | 0.0471 | 0.0515 | 0.0584 | 0.0603 | 0.0551 | 0.0610 | 0.0522 | 0.0592

150 | 0.0946 | 0.0412 | 0.0587 | 0.0462 | 0.0494 | 0.0478 | 0.0593 | 0.0444 | 0.0562 | 0.0411 | 0.0475

200 | 0.0865 | 0.0405 | 0.0418 | 0.0385 | 0.0478 | 0.0402 | 0.0482 | 0.0391 | 0.0439 | 0.0365 | 0.0391

250 | 0.0753 | 0.0361 | 0.0382 | 0.0326 | 0.0466 | 0.0376 | 0.0377 | 0.0302 | 0.0386 | 0.0284 | 0.0274

300 | 0.6078 | 0.0300 | 0.0354 | 0.0298 | 0.0385 | 0.0312 | 0.0304 | 0.0290 | 0.0304 | 0.0205 | 0.0209

350 | 0.4526 | 0.0265 | 0.0330 | 0.0284 | 0.0307 | 0.0209 | 0.0276 | 0.0281 | 0.0295 | 0.0193 | 0.0168

500 | 0.4281 | 0.0244 | 0.0328 | 0.0279 | 0.0284 | 0.0154 | 0.0248 | 0.0273 | 0.0284 | 0.0169 | 0.0168
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Table 2 show that all simulated MLE converge faster than n05 and,
hence confirm the theorem established by Fisher [8], so we demonstrate

that the MLE of Kum-GIW distribution is v7- consistent in the cases of

complete and censored data.

6.2. Simulated distribution of Y,% statistic for Kum-GIW model

We test the hypothesis H, that the statistic Yn2 follows a chi-

squared distribution with k& =12 degrees of freedom. For that, we run
10,000 simulations of samples data (sample sizes n = 50, n = 100, n = 300,
and n = 500) from a Kum-GIW distribution. We group in Table 3 the

number of rejection’s cases of the hypothesis H, when Y,‘;Z > xi(k) with

a(o =1%, a = 5%, a = 10%) significance levels.

Table 3. Simulated levels of significance for Yn2 (6) test against their

theoretical values (o = 0, 01, 0, 05, 0, 1)

N =10,000 a=001 | a =005 | a=01
n =50 0.0079 0.0478 0.0913
n =100 0.0093 0.0485 0.0971
n =300 0.0138 0.0526 0.1208
n =500 0.0109 0.0507 0.1152

One can observe that theoretical levels of the chi-squared

distributions with & = 12 degrees of freedom matches with the simulated
levels of significance for Yn2 test. Hence, we can say that the test

proposed can adjust data from a Kumaraswamy generalized inverse

Weibull distributions in acceptable manner.

For demonstrating that the Ynz statistic follows in the limit; a chi-
squared distribution with k£ degrees of freedom; we compute N = 10,000

times, the simulated distribution of Y,? (6) under the null hypothesis H,
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with different values of parameters Kum-GIW(a, b, a, B, y); for example,

0=(a=15 b=25 a=2 P=157y=3),0=(a=25>b=25 a=2

the chi-squared distribution with & = r — 1 = 12 degree of freedom. Their
histograms are represented in Figure 2 versus the chi-squared

distribution with %k degree of freedom.
As can see from Figure 2, one can observe that the statistical

distribution of Yn2 with different values of parameters and different

numbers k of grouping cells; in the limit follows a chi-squared with
r = k degrees of freedom within the statistical errors of simulation. We
obtain the same results for different value of parameters and different

number of equiprobable grouping intervals. It is means that the limiting
distribution of the generalized chi-squared Yn2 statistic is distribution

free. This result also established the theorem of Nikulin [17, 18, 19].
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Figure 2. Simulated distribution of the Y,% statistic under the null

hypothesis H,, with different parameters of § versus the chi-squared
distribution with 12 degrees of freedom, with n = 150, N = 10,000.

6.3. Application to real data

To show the application of the Kumaraswamy generalized inverse
Weibull model to survival and reliability data in the case of censored

data, we use two real life data sets by using Yn2 statistic.
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6.4. Survival analysis data case

Pike [27] gave some data from a laboratory investigation in which the
vaginas of rats were painted with the carcinogen DMBA, and the number
of days T until a carcinoma appeared was recorded. The data below are
for a group of 19 rats (Group 1 in Pike’s paper); the two observations with

asterisks are censoring times.

143, 164, 188, 188, 190, 192, 206, 209, 213, 216, 220, 227, 230, 234, 246,
265, 304, 216*, 244*,

These data are analyzed by Nikulin and Tran [25]; where they
suggested that the probability plots for two parameters Weibull
distributions, then the data are best fitting with generalized Birnbaum-
Saunders, logistic and the generalized Birnbaum-Saunders cauchy

distributions.

We consider the hypothese that these data follow a Kum-GIW

distribution. Choosing &k = 6, grouping intervals, we find the values of

the maximum likelihood estimators parameters:

a =0.5712, b =2.3884, o =4.0187, p =0.1287, y = 3.8854.

The values of a i the frequency vector Z are given in the following table:

j 1 2 3 4 5 6

a 188.51 194.38 214.76 219.85 240.77 304
Uy 4 2 3 2 4 4

e 35.268 35.268 35.268 35.268 35.268 35.268
Zj | —71734 | -7.6322 | -7.6325 | —7.632202 | —7.1734 | —7.1734

The result of the elements of the Y,‘;Z statistic are

~

W =[0.9815 1214.0208 -64.8294 -0.0038|,

~

and the estimated Fisher’s information matrix I, is



3.2806x107° 2.5512x1072 ~5.0102x1073 1.8726x1074 ~2.0043x107°
2.5512x1072 1.2296x1073 ~12.4398 3.3356 %1074 5.1083x1074
I=-50102x1073 ~12.4398 5.3286x 102 ~243.85 ~1.2096x1072
1.8726x1074 3.3356x1074 -243.85 -1.2388x107! 0
~2.0043x1073 5.1083x1074 ~1.2096x1072 0 0
and
1.8743x107° 2.0287x1073 ~3.7619x107* ~5.7611x107° 0
2.0287x1073 4.4381x107° ~34.8754x1072 1.8753x107% 2.0598x107°
G=-37619x107* ~34.8754x1072 —204.37 ~561.712x1071 ~14.784x1072 |
~5.7611x107° 1.8753x107% ~561.712x107" ~8.281x1073 0

0 2.0598x107° ~14.784x1072 0 0
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By using the NRR statistic for five parameters Kumaraswamy

generalized inverse Weibull distribution, we obtain the value Yn2 =11.9589.

Since Y,‘;Z =11.9589 < X%.05 (6) = 12.5916 (the critical value), we can
conclude that the Kumaraswamy generalized inverse Weibull (Kum-GIW)
model is in concordance with the appeared time of the carcinoma of Pike.
6.5. Reliability data (cycles-to-failure of cylindrical steel specimens)
Cycles-to-failure of cylindrical steel specimens of 41% C anneal for 30
min at 870°C; after surface finish with coarse emery, tested by Ono’s
Rotary Uniform Bending Tester at 2000rpm with i35.6kg/rnrn2 This

data is obtained from Lawless [16]

44.9 50.5 53.0 58.3 67.7 71.5 82.1 91.3 104.6
119.9 122.8 123.7 1389 141.0 142.8 143.1 1453 147.8
151.8 157.2 163.2 172.8 180.5 1853 1881 192.1 202.0
213.2 223.6 240.2 243.8 2444 2844 287.2 298.8 324.7
330.3 350.1 354.5 380.5 385.8 392.0 394.1 406.6 423.0
423.3 443.6 481.2 548.2 671.1 740.7 748.7 815.6 819.5
834.7 967.9 1190.8 1286.6 1315.7 1379.3 1691.7 2187.8 2272.2

2505.9 2580.7 3643.5 3694.0 4212.7

A A A A

generalized inverse Weibull (Kum-GIW) model are
@ =0.7643, b =0.1287, o = 4.5342, B =1.7643, y = 2.0983.

If we choose k& = 8 intervals, the following table gives the results

J 1 2 3 4 5 6 7 8

5,‘ 69.06 130.94 146.72 183.64 286.13 423.1 1264.93 4212.7
Uy 5 7 5 6 10 12 12 11

ej 56.48 56.48 56.48 56.48 56.48 56.48 56.48 56.48
Zj —6.242866 |—6.000331|— 6.242866|— 6.121599(— 5.636527 - 5.393992| — 5.393992 | — 5.515260
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The statistical inferences for testing the null hypotheses that acute
cycles-to-failure of cylindrical steel specimens belong the Kum-GIW

model, are given as follows:
W= [1.5781 -6.8714 123.6598 -12.9377],

and the estimated Fisher's information matrix is



3.2806x1073 -3.1893x1074 ~123.7601x107° ~14.3387x1072 1.9802x1073

-3.1893x1074 4.0942x107° ~6.8631x1072 ~1298x107% ~5.1083x1074
I=|-123.7601x107° - 6.8631x1072 ~.2153x1072 —402.89 ~3.0029x107% |.
~14.3387x1072 ~1298x107* —402.89 ~1.9267x107" 201.3871

1.9802x1073 ~5.1083x1074 -3.0029x107° 201.3871 0
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We obtain X2 =10.6574 and @ = 4.55348, so the value of the statistic

test is Y72 =15.2109. Since Y72 =15.2109 < x2,5(8) = 15.50731 (the

critical value), the hypothesis H of the Kumaraswamy generalized

inverse Weibull (Kum-GIW) distribution 1s well accepted at the

significance level o = 0.05.
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Appendix

The score functions are

M(t;, ©
l(e)_al(t 0) _ S+ (- 1)2( ) (4, 0)

et 1- M, 0)
p
(&) M. 0
i bz 1- M@, 0)
i, (0) = al(; 0 _ =7 Y In - MG, 0) + Il - MG, 0),
ieF 1eC

p-1,-B
R e B YR Y )
ieF v

_1,-
. bz ayBolf t; Py, o)

~ 1- M(t;, 0)

i5(0) = M -z- Z In(t) - raye® 3" 6P (in(or) - Ins;)
eF

ieF

GQB._ﬁ n(o) — In(z; .
+(b_1)z il tl [1 ( ) 1(tl)]M(tue)

e 1- M(;, 0)

Y ayaPsPIn(a) - In(; 1M (5, 6)

= 1- M(ti, 6) ’
al(t 0) _ ( jBM(tu@) a(:jBM(ti,e)
I,(6)= aaﬁzt Py - l)z - M. 0) +bz ll—M(t- IR
ieF v ieC i

a )P
where M(t;, 0) = expi— ay(t—J .
l
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Fisher information matrix i

The elements of the Fisher information matrix

n
P Lo~ 1 Oln(t, 6) 0lnA(t, 6)
1= |:Lllr:|, Wlth Llll :;ZI:SL' ael ael' are
L:
p B 2
n |l-ay (ﬁj Y(gj M (t;, 6)
S 1N, L) __\4
Ut a 1-M(t,0) |°

i lzn:a o (Z) _ Y[Ej (O 1 gyapate® ~apal P M, 6)
hs3 n 4 a 1_M(tl’e) o 1—M(tl,6) ’

o ] ] (e o

* B 1-M(, )

b

l
)

B B B B

Lo (el (2 M| i-alE] ol meo
= — . —_ 13

15 nzsl a 1-M (¢, 0) y

4 i i
1-M, 0)
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