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Abstract 

In this paper, we present two different quantum teleportation schemes of an 
arbitrary single-particle, one is perfect teleportation and the other is 
probabilistic teleportation. In the first scheme, a four-particle maximally 
entangled state is used as the quantum channel. Besides, Bob needs to apply 
appropriate unitary transformations according to Alice’s measurement results 
to recover the unknown state and the success probability is 1. In the latter 
scheme, the quantum channel is a four-particle non-maximally entangled state, 
which is a more general state. Furthermore, Bob needs to introduce an auxiliary 
qubit so that he can reconstruct the unknown state with the success probability 

of ( ).2 22 ml +  
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1. Introduction 

Quantum entanglement, one of the most remarkable features of 
quantum mechanics, has been used as the fundamental resource of 
quantum information processing such as quantum teleportation [1], 
quantum secret sharing [2], quantum computation [3], and quantum 
secure direct communication [4] and so on. Quantum teleportation, firstly 
proposed by Bennett et al. [1] in 1993, is the process that a sender (Alice) 
transmits an unknown quantum state to a distant receiver (Bob) via a 
quantum channel with the help of some classical information. In 1998, 
Karlsson and Bourennane [5] presented the first controlled teleportation 
via GHZ state. In 2009, Nie et al. [6] proposed the non-maximally 
entangled controlled teleportation using four particles cluster state. 
Many various teleportation schemes [7-10] of an arbitrary single-particle 
or a two-particle state have been proposed over the past decades. 
Moreover, teleportation has been demonstrated with the polarization 
photon [11] and a single coherent mode of field [12] in optical experiment. 

In standard teleportation protocol, Alice performs a Bell-state 
measurement on the unknown state and one-half of the maximally 
entangled pair and Bob applies a local unitary operation to recover the 
unknown state depending on the measurement outcome of Alice. 
Meanwhile, maximally entangled states, such as Bell state, GHZ state, W 
state or other multi-particle entangled state, are used as the quantum 
channel for faithful teleportation. Recently, many teleportation protocols 
basing on the multi-particle have been proposed [13-15]. 

Actually, Alice and Bob may not have shared maximally entangled 
state but some form of non-maximally entangled state (due to some 
imperfection at the source). If the entangled state used as quantum 
channel is not maximally entangled, perfect teleportation will not be 
realized and a finite probability (between 0 to 1) will be succeeded 
instead, which is probabilistic quantum teleportation. 
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In this paper, we firstly propose a perfect teleportation scheme of an 
arbitrary single-particle state via a four-particle maximally entangled 
state, which is maximally connected and high persistently entangled. 
And then we a present probabilistic teleportation scheme of an arbitrary 
single-particle state. The quantum channel is constructed by a four-
particle non-maximally entangled state. 

The rest of this article is organized as follows. We propose the prefect 
teleportation scheme of an arbitrary single-particle state in Section 2. 
Section 3 is our main section which will present the probabilistic 
teleportation of an arbitrary single-particle state via a four-particle non-
maximally entangled state. Finally, we make a brief conclusion in Section 4. 

2. Teleportation of an Arbitrary Single-Particle State 

Suppose Alice (sender) wants to teleport Bob (receiver) an unknown 
single-particle state, which is 

( ) ,10 aa β+α=γ   (1) 

where .122 =β+α  A four-particle maximally entangled state is used 

as quantum channel between Alice and Bob, which is the following state: 

( ) .10101001011001012
1

12341234 −++=ϕ  (2) 

Particles a, 1, 2, and 3 belong to Alice and particle 4 belongs to Bob, 
respectively. Initially, the joint system before Alice’s measurement can be 
written as follows: 

123412341 ϕ⊗γ=Ψ aa  

 ( ) ( )123410101001011001012
110 −++⊗β+α= a  

 ( 010100100100110001012
1 α−α+α+α=  

 ) 123411010110011011010101 aβ−β+β+β+  
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 [ ( ) ( )4123141230 10102
1 β−αφ+β+αφ= aa  

 ( ) ( ) ],0101 4123341232 β−αφ+β+αφ+ aa  (3) 

where ( )3,2,1,0123 =φ iai  are mutually orthogonal four-particle states 

given by 

( ) ,11001010010100112
1

1231230 aa ++−=φ  

( ) ,11001010010100112
1

1231231 aa −−−=φ  

( ) ,11011011010000102
1

1231232 aa −++=φ  

( ) .11011011010000102
1

1231233 aa +−+=φ  (4) 

In order to realize the teleportation, Alice needs to measure particles       
a, 1, 2, and 3 under measurement basis ( ).3,2,1,0123 =φ iai  Each 

measurement result corresponds to a classical double-bit. Alice sends the 
two classical bits to Bob via a classical channel. Then Bob applies 
appropriate Pauli operations according to Alice’s measurement results to 
recover the unknown single-particle state. The success probability is 1. 
Measurement results of Alice and unitary transformations of Bob are 
listed in Table 1. 

Table 1. The unitary transformations of Bob correspond to Alice’s 
measurement results 

Alice’s measurement 
results 

Classical bits Bob’s unitary 
transformations 

1230 aφ  00 I 

1231 aφ  01 zσ  

1232 aφ  10 xσ  

1233 aφ  11 yiσ  
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3. Probabilistic Teleportation of an Arbitrary 
 Single-Particle State 

In this section, Alice also teleports the unknown single particle state 

( )aa 10 β+α=γ  

to Bob, and they take a four-particle non-maximally entangled state as 
the quantum channel 

( ) ,1010100101100101 12341234 mlj −++=ψ k   (5) 

where 12222 =+++ mlj k  and .mlj >>> k  Particles a, 1, 2, 

and 3 belong to Alice and particle 4 belongs to Bob, respectively. Initially, 
the joint system before Alice’s measurement can be written as follows: 

123412342 ψ⊗γ=ψ aa  

 ( ) ( )1234101010010110010110 mlja −++⊗β+α= k  

 ( 01010010010011000101 mlj α−α+α+α= k  

) 123411010110011011010101 amlkj β−β+β+β+  

 [ ( ) ( )4123141230 1010
2

1 ll aa β−αδ+β+αδ= kk  

( ) ( )4123341232 0101 kk β−αδ+β+αδ+ ll aa  

( ) ( )4123541234 1010 jmjm aa β−αδ+β+αδ+  

( ) ( ) ],0101 4123741236 mjmj aa β−αδ+β+αδ+  (6) 

where ( )7,,1,0123 …=δ iai  are mutually orthogonal four-particle 

states given by 

( ) ,11000011
2

1
1231230 aa +=δ  

( ) ,11000011
2

1
1231231 aa −=δ  
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( ) ,10110100
2

1
1231232 aa +=δ  

( ) ,10110100
2

1
1231233 aa −=δ  

( ) ,10100101
2

1
1231234 aa +−=δ  

( ) ,10100101
2

1
1231235 aa −−=δ  

( ) ,11010010
2

1
1231236 aa −=δ  

( ) .11010010
2

1
1231237 aa +=δ  (7) 

Next, Alice needs to measure particles  a, 1, 2, and 3 under measurement 
basis ( ).7,,1,0123 …=δ iai  Each measurement result corresponds to a 

classical three-bit. Alice sends the three classical bits to Bob via a 
classical channel. Then Bob applies appropriate Pauli operations 
according to Alice’s measurement results and then the state 4γ  will 

collapse to ( ).4,3,2,14 =γ ii  The unitary transformations of Bob 

correspond to Alice’s measurement results and the collapsed states under 
the unitary transformations are listed in Table 2. 
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Table 2. The unitary transformations of Bob correspond to Alice’s 
measurement results and the collapsed states under the unitary 
transformations 

Alice’s 
measurement 

results 

Classical 
bits 

Bob’s unitary 
transformations 

The collapsed states under 
the unitary 

transformations 

1230 aδ  000 I 

1231 aδ  001 zσ  
( )4

1
4 10

2
1 lβ+α=γ k  

1232 aδ  010 xσ  

1233 aδ  011 yiσ  
( )4

2
4 10

2
1 kβ+α=γ l  

1234 aδ  100 I 

1235 aδ  101 zσ  
( )4

3
4 10

2
1 jm β+α=γ  

1236 aδ  110 xσ  

1237 aδ  111 yiσ  
( )4

4
4 10

2
1 mj β+α=γ  

Suppose Bob gets the state 

( ) .10
2

1
4

1
4 lβ+α=γ k  

In order to acquire the initial state, Bob needs to introduce an auxiliary 
qubit with the original state A0  under the basis { ,01,00 44 AA  

}.11,10 44 AA  A collective unitary transformation 1U  is made, where 

,
12

21
1 














−
=

AA

AA
U  

( ) ,1,1diag,,diag 2
1

2
02101 





 −−== aaAaaA  

( ) ,1,, 10 




=
k
laa  
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.

1000
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0010

010

2
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1
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























−

−




−






−

=

kk

kk

ll

ll

U  

For example, 

1010000 2
001 aaU −+=  

.10100
2





−+=
kk
ll  (8) 

Then with the unitary transformation 1U  operation, the 

unnormalized state 1
40 γ⊗A  will be changed as follows: 

( ) ( )
4

1
1
41 0100

2
10

A
A lUU 



 β+α=γ⊗ k  

 444 01
2

10100 AAA
lll β+













−+α=
kk2

k  

 ( ) .01
2

1110
2

0 4

2
4 


















−α⊗+β+α⊗=
k

k ll
AA  

 (9) 

Equation (9) is also unnormalized, so Bob needs to measure the auxiliary 
particle under measurement basis { }.1,0  The result A1  means the 

failed teleportation, while the result A0  means the successful case. 

Thus, Bob will acquire the initial single-particle state 

( ) ,10 aa β+α=γ  

with the success probability .2

2l  
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Similarly, the other possible states can be discussed in the same way. 
While the values of ( )1,0=iai  in the unitary transformation 1U  are 

different and described in Table 3. Synthesizing all cases (8 kinds in all), 

the probability of successful teleportation is =









+ 224

22 ml ( ).2 22 ml +  

Table 3. The values of ( )1,0=iai  in the unitary transformation 1U  

The state of the 
particle 4 

0a  1a  The probability 
of the successful 

teleportation 

1
4γ  

k
l  1 

2

2l  

2
4γ  1 

k
l  

2

2l  

3
4γ  1 

j
m  

2

2m  

4
4γ  

j
m  1 

2

2m  

4. Conclusion 

In this paper, we propose two different quantum teleportation 
schemes of an arbitrary single-particle state. In the first scheme, a four-
particle maximally entangled state is used as quantum channel between 
Alice and Bob. Furthermore, Bob can easily reconstruct the original state 
by applying appropriate unitary transformations according to Alice’s 
measurement results and the success probability is 1. In the second 
scheme, Alice also teleports this arbitrary single-particle state via a four-
particle non-maximally entangled state, which is probabilistic 
teleportation. In the second scheme, Bob needs to introduce an auxiliary 
qubit to recover the initial state and the success probability is 

( ).2 22 ml +  At last, the latter has an obvious superiority that the 

quantum channel is a more general state. 
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