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Abstract 

The concept of residual probability plays an important role in reliability and life 
testing. In the current investigation, we presented a new test for testing 
exponentiality against new better than renewal used in the RP order rpNBRU  

based on the goodness of fit approach. The Pitman asymptotic efficiency (PAE), 
the Pitman asymptotic relative efficiency (PARE) relative to rpNBRU  test 

given in the work of Kayid et al. [12] are studied. Power and critical values of 
this test are calculated to assess the performance of the test. Finally, a test of 
exponentiality versus rpNBRU  for right censored data, the power estimates of 

this test are also simulated for some commonly used distributions in reliability 
and sets of real data are used as examples to elucidate the use of the proposed 
test statistic for practical problems. 
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1. Introduction and Motivation 

In contrast to goodness of fit problems, where the test statistic is 
based on a measure of departure from that depends on 0H  both 0H  and 

,1H  most tests in life testing setting, including those referenced above do 

not use the null distribution in devising the test statistics, this resulted 
in test statistics that are often difficult to work and require programming 
to calculated. Alternatively, we demonstrate in current work that in 
cooperating into the measure of departure from it can lead to simpler test 
statistics that are easy to work with are asymptotically equivalent in 
distribution to those cited above and may have equal or higher efficiency 
than the classical procedures. They also may have better finite sample 
behaviours. 

In literature, we found that, based on a goodness of fit approach 
studied by Ahmad [2] for testing exponentiality against major life testing 
IFR, NBU, NBUC, NBUE, and HNBUE, El-Arishy et al. [8] for testing 
exponentiality against NRBU, Diab and Mahmoud [6] for testing 
exponentiality versus HNRBUE, Mahmoud and Diab [16] for testing 
exponentiality versus DVRL, Kayid et al. [11] for testing exponentiality 
against NBU(2). Finally Diab [5] for testing exponentiality against 
NBUL among other. 

In reliability, various ageing classes of life distributions have been 
introduced to describe several types of improvement that accompany 
ageing. The residual probability (RP) function is a well-known reliability 
measure which has applications in many disciplines such as reliability 
theory, survival analysis, and actuarial studies. 

Let X and Y be two random life times representing the life times of 
two systems with distribution functions F and G and survival functions 
( ) ( )xFxF −= 1  and ( ) ( ),1 yGyG −=  respectively. The systems can be 

considered as the products of two different branches of a company. Then 
the quantity ( )YXP >  gives the reliability of X relative to Y. In case of 

both X and Y being distributed as Weibull, Brown and Rutemiller [4] 
have pointed out that to design as long-lived a product as possible one 
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can consider the quantity ( )YXP >  and then choose X or Y when this 

probability is greater or less than 0.5, respectively. However, if the 
systems are known to have a survival age t, it is important to take into 
account the age, when we compare the remaining lifetimes. Let 

[ ]tXtXXt >−=  and [ ]tYtYYt >−=  denote the additional residual 

lifetime of X and Y given that the systems have survived up to age t. The 
RP function is defined as 

( ) ( ) .0, >>= tYXPtR tt  

Kayid et al. [12] defined the rpNBRU  and investigated the 

probabilistic characteristics of this class of life distribution. 

Definition 1. The random variable X is said to be smaller than Y in 
the residual probability order (denoted by YX rp≤ ) if 

[ ( ) ( ) ( ) ( )] .0,0 ≥∀≥−∫
∞

tdxxFxgxGxf
t

 

Definition 2. A random life X is said to be new better than renewal 

used in the RP order ( ),rpNBRU  if ,XX rp≤∗  or equivalently, 

( ) ( ) ( ) .0,02 ≥∀≥







− ∫∫

∞∞
tdxduuFxfxF

xt
 (1.1) 

As the dual version, new worse than renewal used in the RP order 

( ),rpNWRU  may be defined through .XX rp≥∗  

On the other hand, reliability analysts and statisticians have shown a 
growing interest in modelling survival data using classifications of life 
distributions by means of various stochastic orders. These categories are 
useful for maintenance, modelling situations, biometry, and inventory 
theory (cf. Barlow and Proschan [3]). 

The exponential distribution represents the lifetime of the units that 
never ages due to wear and tear. Some nonparametric classes have come 
up in the literature testifying to how a lifetime component or/and a 
system ages over the time. A natural question to ask is which ageing 
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class a real data set belongs to. Thus, the problem of testing 
exponentiality against various nonparametric classes may be of some 
interest in reliability or survival analysis (cf. Lai and Xie [15]). 

The rest of the article is organized as follows. In Section 2, we present 
a test statistic based on a U-statistic for testing :0H  is exponential 
against :1H  is rpNBRU  but not exponential. In Section 3, the Pitman 
asymptotic efficiencies (PAE) is studied for some commonly used 
distributions in reliability. The Pitman asymptotic relative efficiencies 
(PARE) are calculated based on U-statistic that proposed by Kayid et al. 
[12]. Monte Carlo null distribution critical points are simulated for 
sample sizes n = 5(1)30, 40, 50 and the power estimates of this test are 
also calculated at the significant level 05.0=α  for some common 
alternatives distribution in Section 4. In Section 5, we considered case of 
right-censored data, and the critical values and the power estimates of 
this test are tabulated. Finally, in Section 6, we discuss some applications 
to elucidate the usefulness of the proposed test in reliability analysis for 
censored and un-censored data. 

2. Hypothesis Testing Problem Against rpNBRU   

Class for Non-censored Data 

Our goal in this section is to present a test statistic based on 
goodness-of-fit approach for testing FH :0  is exponential against an 
alternative that FH :1  is belongs to rpNBRU  class but not exponential. 
We propose the following measure of departure: 

( ) ( ) ( ) 







−=∆ ∫∫

∞∞
dxxFtFdxxFE

tt
rp

22  

( ) ( ) ( ) ( ),2 0
2

0
tdFdxxFtFdxxF

tt 







−= ∫∫∫

∞∞∞
 

where ( ) tetF −−= 10  under .0H  

The following lemma is essential for the development of our test 
statistic. 
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Lemma 2.1. If F is ,rpNBRU  then a measure of the deviation from 

the null hypothesis 0H  is ,0>∆rp  where 

( )[ ] [ ( ) ]21,min
21 1,min XX

rp eEXXE −−−=∆  

( ) ( ) ( ) ( ) ( ) .2
122

1
0

00
+
























>−++− ∫∫

∞
−−

∞
xdFtdFxttIexFexx xx   

(2.1) 

Proof. Since F is ,rpNBRU  then from (1.1) 

( ) ( ) ( ) dxduuFxfdxxF
xtt 








≥ ∫∫∫

∞∞∞ 2  

( ) ( ) dudxxfuF
u

tt 







≥ ∫∫

∞
 

( ) ( ) ( )[ ] ,2 duuFuFtF
t

−≥ ∫
∞

 

which can be written in the form 

( ) ( ) ( ) .2 2 dxxFtFdxxF
tt ∫∫
∞∞

≥  

Take the integral with respect to ( ),0 tF  then take ,2
1

21 II ≥  set 

( )dxdtxFeI
t

t 2
0

1 ∫∫
∞

−
∞

=  

( )[ ] [ ( ) ],1,min ,min ji XX
ji eEXXE −−−=  (2.2) 

and 

( ) ( )dxdtxFtFeI
t

t ∫∫
∞

−
∞

=
0

2  

 ( ) ( ) ( ) ( ) ( ) .12
00

−























>−++= ∫∫

∞
−−

∞
xdFtdFxttIexFexx xx  (2.3) 
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Hence, from (2.2) and (2.3), the result follows. 

Note that under ,0:0 =∆rpH  while under .0:1 >∆rpH  

2.1. Empirical test statistic for rpNBRU  alternative 

To estimate ,rp∆  let nXXX ,,, 21 …  be a random sample from F. Let 

( )xFn  denote the empirical distribution of the survival function ( ),xF  

where 

( ) ( ),1

1
xXInxF j

n

j
n >= ∑

=

 

and let lrp∆  be the empirical estimate of ,rp∆  where 

l ( )[ ] [ ( ) ]1 2min ,
1 2min , 1 X X

rp E X X E e−∆ = − −  

( ) ( )




 ++− −−

∞

∫ xFxexFex n
x

n
x22

1
0

 

( ) ( ) ( ) .2
1

0
+
















>− ∫

∞
− xdFtdFxttIe nn

x   (2.4) 

With 

( )




 >

=>
otherwise,0

,1 xt
xtI  

lrp∆  can be written as, 

l
( ) { ( ) ( ( ) )min ,

1 1

1 min , 11
i j

n n
X X

rp i j
i j

X X en n
−

= =

∆ = − −
− ∑∑  

[ ( ) ( )] }.2
122

1 +>−++− −−−
ij

X
j

X
i

X
i XXIeXeXeX iii  (2.5) 
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To make the test lrp∆  scale invariant, we let 

l l
.rp

rp X
∆

δ =  (2.6) 

Now set 

( ) ( ) ( ( ) )21,min
2121 1,min, XXeXXXX −−−=φ  

[ ( ) ( )] ,2
122

1
12211 111 +>−++− −−− XXIeXeXeX XXX  (2.7) 

and define the symmetric kernel as 

( ) ( ),,!2
1, 21 ji

R
XXXXv φ=/ ∑  

where the sum is over all arrangements of iX  and .jX  This shows that 

l
rpδ  is equivalent to nU -statistic given by 

( ) ( ).,1

2
ji

R
nn XXU φ= ∑  

The following theorem summarizes the asymptotic normality of l :rpδ  

Theorem 2.1. As l( ), rprpn n→ ∞ δ − δ  is asymptotically normal with 

mean 0 and variance 

( ) ( ) .2
1

2
1

4
122Var 111 2

1
00

2













 +−−−=σ −−∫∫ XxXX

eXdxxFedxxF  

Under ,0H  the variance 2σ  reduces to 

.8
7

4
128

9Var 1
22

0 11




 +−−=σ −− Xee XX  (2.8) 
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Proof. Recall the definition of ( )21, XXφ  from (2.7) then, 

( ) ( )[ ]12111 , XXXEX φ=η  

( ) ( ) ( ),12
1 111 2

1
00

−+−−= −−∫∫ XxXX
eXdxxFedxxF  

next, 

( ) ( )[ ]11212 , XXXEX φ=η  

( ) ( ) ,2
5

2
5

4
1 111 2

1
00






 −++−= −−∫∫ XxXX

eXdxxFedxxF  

considering, 

( ) ( ) ( )12111 XXXv η+η=/  

( ) ( ) .2
1

2
1

4
122 111 2

1
00






 +−−−= −−∫∫ XxXX

eXdxxFedxxF  

Since, 

( )[ ].Var 1
2 Xv/=σ  

Under 0H  the variance reduces to (2.8), after calculation .120
12

0 =σ  

3. The Pitman Asymptotic Relative Efficiency 

In order to asses how good our proposed family of tests relative to 
others in the literature, we employ the concept of “Pitman’s asymptotic 
relative efficiency” (PARE) of proposed test. To present this, we need to 
evaluate the “Pitman’s asymptotic efficiency” (PAE) for our tests and 
then compare this (by taking ratios) to the PAEs of other tests to get the 
(PARE). Let us first evaluate the (PAE) for our proposed family of tests 
lrp∆  which is defined in (2.1). It is known that Pitman’s asymptotic 

efficiency (PAE) which is defined as Pitman [18] is given by 
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( l ( ) ) l ( )
00

1 .rp rp
dPAE d θ→θ∆ θ = ∆ θ

σ θ
 

We calculate the Pitman asymptotic efficiency (PAE) of rpNBRU  test 

statistic. These calculations are done using the following common 
alternatives in reliability theory: 

(i) Linear failure rate family, ( ) ( ) ,0,0,2exp 2
1 ≥θ≥θ−−= xxxxF  

(ii) Makeham family, ( ) ( ( )) ,0,0,1exp2 ≥θ≥−+θ−−= − xexxxF x  

(iii) Weibull family, ( ) ( ) ,1,0,exp3 ≥θ≥−= θ xxxF  

(iv) Gamma family, ( ) ( ) .0,0,1
3 ≥θ>θΓ= −θ−∞

∫ xduuexF u
x

 

Note that 0H  (the exponential distribution) is attained at 00 =θ  in 

(i), (ii), and at 1=θ  in (iii), (iv). 

Since 

l ( ) ( ) ( ) { ( ( ) ( )
2

0 0

11 22
x x xrp e F x dx x e F x xe F x

∞ ∞
− − −

θ θ θ∆ θ = − − + +∫ ∫  

( ) ) ( )} .2
1+








− θθ

∞
− ∫ xdFttdFe

X
x  

The ( l ( ) )rpPAE ∆ θ  can be written as 

l ( )( ) ( ) ( ) ( )
00

1 2 1 xrpPAE e F x F x dx
∞

−
θ θ

 ′∆ θ = − σ  ∫  

( ) ( ) ( ) ( )






 ′
















−++− θθ

∞
−

θ
−

θ
−

∞

∫∫ xFdttdFexFxexFex
X

xxx22
1

0
 

( ) ( ) ( ) ( ) .22
1

0 






















 ′−′+′− θθ
∞

−
θ

−
θ

−
∞

∫∫ xdFtFtdexFxexFe
X

xxx  

Direct calculations of (i) and (ii), we get the efficiencies of these families. 
Using MATHEMATECA 9 program to calculate the Pitman asymptotic 
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efficiency (PAE) of rpNBRU  test statistic in case of Weibull and Gamma 

family as alternatives and we get the following PAE values for the 
following Table 1, and compare this values to others that may be useful 

for this problem. Here we choose the tests θδ̂  which represented by 

Kayid et al. [12]. 

Table 1. It shows that the asymptotic efficiencies l ( )rp∆ θ  and θδ̂  test 

Distribution l ( )rp∆ θ  θδ̂  

Linear failure rate 0.91287 0.5708 

Makeham 0.22823 0.2681 

Weibull 0.78785 1.4263 

Gamma 0.34142 – 

It is clear from Table 1 that, the new test statistic l ( )rp∆ θ  for 

rpNBRU  is higher than the efficiency of .ˆ
θδ  

Table 2. It shows that the asymptotic relative efficiencies ( )λδθˆ  test 

Distribution ( l ( ) )ˆ,rpPARE θ∆ θ δ  

Linear failure 1.59928 

Makeham 0.85129 

Weibull 0.55237 

We can see from Table 2 that our test statistic l ( )rp∆ θ  for rpNBRU  is 

more efficiently than θδ̂  for all cases and also simpler. 

4. Monte Carlo Null Distribution Critical Points 

In practice, simulated percentiles for small samples are commonly 
used by applied statisticians and reliability analyst. We have simulated 
the upper percentile values for 90%, 95%, 98%, and 99%. Table 2 
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presented these percentile values of the statistics l .rpδ  In (2.6) and the 

calculations are based on 5000 simulated samples of sizes n = 5(1)30(10)50. 

Table 3. The upper percentile of lrpδ  

n 90% 95% 98% 99% 

10 0.0856381 0.0953402 0.107233 0.114546 

15 0.0607192 0.0682655 0.0757513 0.0809333 

20 0.0497829 0.0565534 0.0638284 0.0697333 

25 0.0431859 0.0491471 0.0556706 0.0601939 

30 0.0365525 0.0423996 0.0487393 0.0525652 

35 0.032805 0.0380689 0.0436325 0.0481034 

40 0.0304604 0.0355315 0.0409407 0.0439622 

45 0.0274317 0.0321793 0.037968 0.0415453 

50 0.0260057 0.0305405 0.0350498 0.0376607 

In view of Table 3 and Figure 1, it is noticed that the critical values 
are increasing as the confidence level increasing and decreasing as the 
sample size increasing. 

 

Figure 1. Relation between critical values, sample size and confidence 
levels. 
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4.1. The power estimates 

Now, we present an estimation of the power estimate of the test 

statistic lrpδ  at the significance level 05.0=α  using LFR, Weibull, and 

Gamma distribution. The estimates are based on 5000 simulated samples 
for sizes n = 10, 20, and 30 with parameter ,2,1=θ  and 3. 

Table 4. Power estimates using 05.0=α  

Distribution Parameter θ  Sample Size 

  n = 10 n = 20 n = 30 

 1 1.000 1.000 1.000 

LFR family 2 1.000 1.000 1.000 

 3 1.000 1.000 1.000 

 1 0.959 0.953 0.953 

Weibull Family 2 1.000 1.000 1.000 

 3 1.000 1.000 1.000 

 1 0.956 0.949 0.951 

Gamma Family 2 0.969 0.987 0.996 

 3 0.996 1.000 1.000 

From Table 4, it is noted that the power of the test increases by 
increases the value of the parameter θ  and sample size n, and it is clear 
that our test has good powers. 

5. Testing Against rpNBRU  Class for Censored Data 

The objective of this section, a test statistic is proposed to test 0H  

versus 1H  with randomly right-censored data. Such a censored data is 

usually the only information available in a life-testing model or in a 
clinical study where patients may be lost (censored) before the completion 
of a study. This experimental situation can formally be modelled as follows. 
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Suppose n objects are put on test, and nXXX ,,, 21 …  denote their 

true life time. We assume that nXXX ,,, 21 …  be independent, 

identically distributed (i.i.d.) according to a continuous life distribution F. 
Let nYYY ,,, 21 …  be (i.i.d.) according to a continuous life distribution G. 

Also we assume that X ’s and Y ’s are independent. 

In the randomly right-censored model, we observe the pairs ( ),, jjZ δ  

,,,1 nj …=  where ( )jjj YXZ ,min=  and 

( )

( )





=

=
=δ

.censoredisnobservatioth-if0

,censored-unisnobservatioth-if1

jYZ

jXZ

jj

jj
j  

Let ( ) ( ) ( ) ( )nZZZZ <<<<= …2100  denote the ordered Z’s and ( )jδ  is 

the jδ  corresponding to ( ) ,jZ  respectively. 

Using the censored data ( ) ,,,1,, njZ jj …=δ  Kaplan and Meier 

[10] proposed the product limit estimator. 

( ) ( )
( )[ ]

( ) ( ){ } ( ) [ ].,0,11
:

n
XZj

nn ZXjnjnxFXF j

j

∈+−−=−= δ

≤
∏  

Now, for testing l
0 : 0,rpH δ =  against l

1 : 0,rpH δ >  using the randomly 

right censored data, we propose the following test statistic: 

l { ( )[ ] [ ( ) ]1 2min ,
1 2

1 min , 1
c X X
rp E X X E e−δ = − −

µ
 

( ) ( ) ( ) ( ) ( ) .2
122

1
00 




+























>−++− ∫∫

∞
−−

∞
xdFtdFxttIexFexx nn

x
n

x  

For computational purposes, l
c
rpδ  may be rewritten as 

l 1 1 1 ,2 2
c
rp

 δ = η − β + µ  
 (5.1) 
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where 

( ) ( ( ) ( ) ) ( ( ) ) ( )
( ) ( )( ),1, 1
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1
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δ
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−

=
−
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==
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i
ZZCeZZC mim  
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( ) ( )( ){ ( ) ( )













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−
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−

=
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
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where .1+−
−=
k
k

k n
nC  

Table 5 gives the critical values percentiles of l
c
rpδ  test for sample 

sizes n = 5(5)30(10)81, 86, based on 5000 replications. 

Table 5. Critical values for percentiles of l
c
rpδ  test 

n 90% 95% 98% 99% 

5 0.499601 0.572898 0.655153 0.71178 

10 0.302203 0.380319 0.484856 0.554815 

15 0.224151 0.305659 0.421147 0.483003 

20 0.181842 0.255692 0.357101 0.428505 

25 0.161337 0.232022 0.323571 0.388901 

30 0.139445 0.219249 0.295775 0.344373 

40 0.11282 0.18023 0.266007 0.314739 

50 0.10213 0.172359 0.244888 0.286549 

60 0.0956138 0.151781 0.228875 0.273672 

70 0.0904157 0.154129 0.214899 0.240948 

81 0.0857939 0.140193 0.197087 0.228399 

86 0.0817471 0.137208 0.185919 0.22613 
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It is noticed from Table 5 and Figure 2 that the critical values are 
increasing as the confidence level increasing and decreasing as the 
sample size increasing. 

 

Figure 2. Relation between critical values, sample size and confidence 
levels. 

5.1. The power estimates for l
c
rpδ  

Here, we present an estimation of the power for testing 
exponentiality Versus .rpNBRU  Using significance level 05.0=α  with 

suitable parameter values of θ  at n = 10, 20, and 30, and for commonly 
used distributions in reliability such as LFR family, Weibull family, and 
Gamma family alternatives which include in Table 6. 
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Table 6. Power estimates for l
c
rpδ  test 

Distribution Parameter θ  Sample size 

  n = 10 n = 20 n = 30 

 1 0.993 1.000 1.000 

LFR family 2 0.998 1.000 1.000 

 3 0.999 1.000 1.000 

 1 0.943 0.957 0.950 

Weibull family 2 0.998 0.999 0.999 

 3 1.000 1.000 1.000 

 1 0.953 0.959 0.952 

Gamma family 2 0.971 0.831 0.697 

 3 0.996 0.8714 0.707 

We notice from Table 6 that our test has a good power, and the power 
increases as the sample size increases. 

6. Applications 

In this section, we calculate some of a good real examples to illustrate 

the use of our test statistics lrpδ  in the case of non-censored and censored 

data at 95% confidence level. 

6.1. Non-censored data 

Data-set #1. 

Consider the data set in Abouammoh et al. [1], these data represent 
set of 40 patients suffering from blood cancer (leukemia) from one of 
ministry of health hospitals in Saudi Arabia. In this case, we get 
l 0.164416rpδ =  and this value exceeds the tabulated critical value in 

Table 3. It is evident that at the significant level 95% this data set has 

rpNBRU  property. 
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Data-set #2. 

Consider the data set in Keating et al. [13], these data represent set 
on the time, in operating days, between successive failures of air 
conditioning equipment in an aircraft. In this case, it is found that  
l 0.020589,rpδ =  which is less than the critical value of Table 3, then we 

accept the null hypothesis. This means that the data set has the 
exponential property. 

Data-set #3. 

Consider the data set given in Grubbs [9]. This data set gives the 
times between arrivals of 25 customers at a facility. It is easily to show 

that l 0.27372,rpδ =  which is greater than the critical value of Table 3. 

Then we accept 1H  which states that the data set have rpNBRU  

property and not exponential. 

Data-set #4. 

Consider the data set given in Edgeman et al. [7] consists of 16 
intervals in operating days between successive failures of air 
conditioning equipment in a Boeing 720 aircraft. We can see that the 

value of test statistic for the data set by (2.6) is given by l 0.032470,rpδ =  

which is less than the critical value of Table 3. Then we accept the null 
hypothesis of exponentiality property. 

Data-set #5. 

Consider the data set in Kochar [14]. In an experiment at Florida 
state university to study the effect of methyl mercury poisoning on the 
life lengths of fish goldfish were subjected to various dosages of methyl 
mercury. At one dosage level the ordered times to death in day. We can 
see that the value of test statistic for the data set by (2.6) is given by 
l 0.366358rpδ =  and this value greater than the tabulated critical value 

in Table 3. This means that the set of data have rpNBRU  property and 

not exponential. 
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6.2. Censored data 

Data-set #6. 

Consider the data from Susarla and Vanryzin [18], which represent 
81 survival times (in months) of patients melanoma. Out of these 46 
represents non-censored data. 

Now, taking into account the whole set of survival data (both 
censored and un-censored). It was found that the value of test statistic for 

the data set by (5.1) is given by l 0.3437
c
rpδ =  and this value greater than 

the tabulated critical value in Table 5. This means that the data set have 
the rpNBRU  property and not exponential. 

Data-set #7. 

On the basis of right censored data for lung cancer patients from 
Pena [16]. These data consists of 86 survival times (in month) with 22 
right censored. 

Now account the whole set of survival data (both censored and un-
censored), and computing the test statistic given by formula (5.1). It was 

found that l 0.616101,
c
rpδ =  which is exceeds the tabulated value in Table 

5. It is evident that at the significant level 0.95. Then this data set has 

rpNBRU  property. 
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