JOINT MODELLING OF THE RELATIONSHIP BETWEEN SLEEP, DISEASE AND MORTALITY, EXCLUSIVELY IN A COHORT OF OLDER AUSTRALIAN WOMEN (AGED 70-75 YEARS AT BASELINE)

LUCY LEIGH¹, IRENE LENA HUDSON¹,² and JULIE ELLEN BYLES¹

¹Research Centre for Generational, Health and Ageing
Faculty of Health and Medicine
HMRI Building
The University of Newcastle
Callaghan, NSW, 2308
Australia

²School of Mathematical and Physical Sciences
Faculty of Science and Information Technology
The University of Newcastle
Callaghan, NSW, 2308
Australia

e-mail: irenelena.hudson@gmail.com

Abstract

This paper explores the relationship between sleep, disease, and survival, utilising shared random effects joint modelling to account for informative dropout, in a cohort of very old women. Joint modelling simultaneously models the longitudinal sleep trajectory and its effect on survival. A series of nested

2010 Mathematics Subject Classification: 62-XX.

Keywords and phrases: ALSWH, joint models, longitudinal sleep trajectory, shared parameter models, sleep difficulty, survival.

Received October 29, 2016

© 2016 Scientific Advances Publishers
joint models are implemented to separate out the effects on survival of sleep and disease, the latter of which is known to have a causal role in mortality, and other factors of interest, such as self-rated health, physical functioning, mental health, vitality, baseline age, BMI, area of residence, marital status, and education. Dynamic survival predictions are also created and compared for a small sample of subjects.

1. Introduction

Sleep quality deteriorates with age, due to both normal age-related sleep changes and as a result of ill health [1-3], medications, and other factors. The incidence of disturbed sleep is strongly increased in older people [4, 5], with some studies reporting as much as 42% of older adults experiencing difficulty initiating and maintaining sleep [1, 6-9]. While there have been a number of studies investigating the relationship between sleep, mortality and disease, few have examined sleep in very old populations [10-12], particularly those living in the community, and it may be inappropriate to extrapolate results from sleep research on adults aged less than 75 years to those aged 75 and over, given that sleep behaviour changes with age. For instance, some studies have reported a protective effect of sleep apnoea in adults aged over 65 [13].

The current evidence of a relationship between sleep duration and mortality is conflicting. Some systematic reviews [14, 15] have found that a U-shaped relationship exists, with both long and short sleep duration (> 8-9 hours a night, and < 7 hours a night, respectively) associated with increased risk of mortality. However, a more recent systematic review [16] found that the literature does not support a U-shaped relationship. Furthermore, a study of adults aged 32-86 years found that the U-shaped relationship was present only for the elderly (aged 60-86 years) and that it was unlikely to contribute towards mortality, but rather is a consequence of medical conditions, such as diabetes, body weight, hypertension, general health and cancer, and age related sleep changes [17].

The strong associations between socio-demographic factors, health related factors, and sleep duration, may explain the reported associations between sleep duration and mortality [16]. Older people are more likely
to report long or short sleep duration, and unmarried people are more likely to report short, or long and short sleep duration [16]. Insufficient sleep and sleep disorders have been associated with a number of chronic diseases [18-22], such as diabetes [23, 24], hypertension [25, 26], cardiovascular disease [27, 28], stroke [29], arthritis [30], depression [30, 31], cognitive function decline [32-34], and obesity [33, 35]. There is a strong bidirectional relationship between sleep disorders and serious medical problems in adults; many diseases being more likely to develop in individuals with sleep disorders, and individuals with sleep disorders at greater risk of developing these diseases [36]. Nearly all of the aforementioned socio-demographic and health related factors are also correlated with mortality, and so the reported associations between sleep and mortality need to be interpreted with care [16]. Socio-demographic factors are likely to lie upstream of sleep duration, whereas health factors may be either upstream or downstream of sleep duration on the causal pathway [16]. ‘Ambiguities about where on the causal pathway the health conditions lie make it impossible, given the present state of knowledge, to distinguish confounders and mediators’ [16].

Possible mechanisms by which sleep difficulty may lead to increased risk of mortality include adverse effects on endocrinologic, immunologic or metabolic effects [16, 37], induction of chronic, low-grade inflammation [16, 38], increases in cortisol secretion and growth hormone metabolism [16, 39, 40], or changes in immune function, depression, or underlying disease processes [16, 41]. Kurina et al. [16] also state that reverse causation, in which subjects ‘with health conditions putting them at increased of mortality have either lengthened or shortened sleep’ is an alternative explanation for the observed associations between sleep duration and mortality.

Lack of sleep, or poor sleep quality, also has societal impacts for older adults. Poor sleep can have detrimental consequences on many aspects of vitality and resilience required for successful ageing [42]. Sleep disturbance is associated with increased risk of nursing home placement, with as high as 50% of admissions in long-term care directly attributable to elderly sleep disturbances [42]. Sleep difficulty also exacts a toll on
family support by disrupting caregivers’ sleep [42]. The risk of falls is increased in older adults, and this risk should be taken into account when prescribing sleep medications, which also increase the risk of falls [43, 44]. Sleep disturbances have been shown to be associated also with greater frailty in the elderly [45]. Inability to sleep can also lead to delayed response time, which is particularly important as it can affect driving ability as well as increase the risk of falls [46]. Finally, insomnia has been linked to increased consumption of healthcare resources [46]. In America, hundreds of billions of dollars are spent each year on doctor visits, hospital services, prescriptions, and over-the-counter-medications, associated with chronic disorders of sleep and wakefulness [47]. A recent report found that the economic impact of sleep disorders costs Australia $5.1 billion per year, spread over health care costs, costs associated with medical conditions attributable to sleep disorders, and non-medical costs resulting from sleep loss related accidents [48]. Early detection and intervention for sleep disturbance in older adults can help reduce the financial burden associated with sleep related accidents, depression, and illness, and promote better quality lives [49].

This study investigates the relationship between sleep, disease and mortality, exclusively in a cohort of older women (aged 70-75 years at baseline) [50, 51], using data from the 1921-1926 cohort of the Australian Longitudinal Study on Women’s Health (ALSWH; www.alswh.org.au). Rather than posit a causative relationship, we aim to identify whether an association between sleep and mortality exists. Many studies that have investigated sleep and mortality focus on sleep duration. We aim to explore whether a similar relationship holds for sleep difficulty, measured longitudinally using a simple 5 item questionnaire developed by Hunt et al. [52]. Sterniczuk et al. [12] reported that ‘sleep disturbance might have prognostic utility in predicting future increases in frailty and decline in health’ [12]. A short sleep difficulty assessment, such as the one utilised in this paper, has the benefit of reducing responder burden, which would be beneficial both to the clinical staff in busy hospital or nursing home settings, as well as to very old or frail respondents.
Recent analysis [53] of this ALSWH cohort identified unobserved groups (latent classes) of women who were similar in their sleep patterns by Latent Class Analysis (LCA) [54], and related these classes to mortality via distal survival regression techniques [55-57]. Leigh et al. [53] hypothesized that increased sleep difficulty would be associated with mortality. Four latent classes of persistent sleep difficulty were identified, corresponding to women who reported no sleep difficulty (‘untroubled’), those who reported great sleep difficulty (‘troubled’ sleepers), those who reported taking a long time to fall asleep and those who woke in the early hours of the morning. More than 65% of women were classified into a latent class that was characterised by some level of sleep difficulty. These classes were significant indicators for survival, with worse survival for the troubled sleepers compared to untroubled sleepers, and better outcomes for the early wakers and troubled falling asleep classes. This relationship may largely be due to the effects of disease and other factors in survival, which correlate with poor sleep. A differential effect of morbidity across sleep classes was also found. The main effect of disease on mortality was that increased number of diseases was associated with greater hazard of death. However, once an interaction with sleep was included in the modelling of Leigh et al. [53] only having 3 or more diseases was associated with a greater hazard of death, and within the troubled sleepers class the effect of disease on mortality was nonsignificant. Sleep difficulty class was also shown to be associated with a number of specific diseases. Leigh et al. [53] established that having any of arthritis, heart disease, asthma, bronchitis/emphysema, diabetes, hypertension, or osteoporosis, was associated with greater odds of belonging to their troubled sleeping class, early wakers, or trouble falling asleep class, when compared to the untroubled sleepers. Stroke and cancer were not significantly associated with sleep difficulty. Supplementary Material 2 gives the details of these results using a series of multinomial logistic regressions of the latent sleep classes on disease.
One drawback of the previous analysis of Leigh et al. [53] was that the LCA relied on a Missing at Random (MAR) assumption [54], which assumed that dropout was uninformative. Given the advanced age of the cohort, there exists however the possibility that dropout is informative, in which case a Not Missing at Random (NMAR) [58] assumption should be utilised. The use of a MAR assumption instead of a NMAR assumption in the previous study may account for the lack of a significant effect of disease on mortality for women who report the greatest sleep difficulty. Furthermore, the protective effect of the two mild sleep difficulty classes (early wakers or trouble falling asleep) could be biased by NMAR dropout; in that these classes may consist of survivors, women who therefore have greater opportunity to report some sleep difficulty given they live longer.

Therefore in the current study, we investigate simultaneously the evolution of the longitudinal trajectory of the sleep outcome and time-to-death process, as well as the distribution of time to-death conditional on intermediate longitudinal measurements by following the Joint Modelling (JM) with shared-parameter models developed by Rizopoulos [59]. We aim to test for any association between longitudinal sleep trajectory and mortality in a cohort of very old women, using shared random effects joint modelling to account for informative dropout. We also aim to test for a possible interaction between disease and sleep on survival. We hypothesise that greater sleeping difficulty will be associated with worse survival outcomes, and that the effect may be different across the number of reported diseases.

Joint modelling has been utilised widely in the medical literature, including applications to heart failure studies [60, 61], HIV/AIDS research [62], mental health [63, 64], liver transplant studies [65, 66], stem cell transplant [67], cystic fibrosis [68], and in clinical trials [69, 70], however to the authors’ knowledge JM has not been used to date to investigate sleep and mortality.
2. Data

Data analysed were part of the ALSWH; a nationally-representative, prospective study of over 40,000 participants, that commenced in 1996. Cohorts of women, born in 1973-78, 1946-51, and 1921-26 were sampled from the Medicare Australia database [71] and invited to complete the baseline postal survey. Since then women have been re-surveyed on a three-yearly basis. Further details on the establishment of the cohorts, and follow-up, have been published elsewhere [72, 73]. This study presents data collected on the 1921-1926 cohort who completed the baseline survey in 1996 (Survey 1) when aged 70-75 years, and who have since completed sleep questionnaires for at least one of Survey 2 (1999, 73-78 years), Survey 3 (2002, 76-81 years), and Survey 6 (2011, 85-90 years) (n = 10,606).

The longitudinal sleep outcome was the Nottingham Health Profile (NHP) sleep subscale score, a composite measure of sleep quality. The NHP was measured at three time points (surveys 2, 3 and 6). The sleep subscale consists of five yes/no items which are combined to produce a single score; Q1. Do you wake in the early hours of the morning?; Q2. Do you lie awake most of the night?; Q3. Do you take a long time to get to sleep?; Q4. Do you sleep badly at night?; Q5. Do you take sleep medication? The following weighted sum, as outlined in the NHP instrument scoring instructions [74], is used to create the single sleep subscale score: $12.57 \times Q1 + 27.26 \times Q2 + 16.10 \times Q3 + 21.70 \times Q4 + 22.37 \times Q5$, giving a total score out of 100, with larger values indicating greater sleep difficulty. Details of the validity of the NHP sleep subscale were reported previously [53], and are included in Supplementary Material 1.

A number of covariates were also measured at each survey. Body Mass Index (BMI) was calculated from self-reported weight and height, classified according to the World Health Organisation categories [75]. QoL measures of mental health, vitality, and physical function were available at each survey using the Short Form (36) Health Survey (SF-36) subscales [76]. The SF-36 provides subscale scores out of 100, with higher scores indicating better mental health, vitality and physical function. At
each survey, women were also questioned about diagnosed medical conditions including diabetes, arthritis, heart disease, hypertension, asthma, bronchitis/emphysema, stroke, osteoporosis, and cancer. These were combined into a single disease count variable, categorised into 0 diseases, 1-2 diseases, and 3 or more diseases. Area of residence was determined from geocoded address data and categorised using the Accessibility/Remoteness Index of Australia (ARIA +) [77]. Marital status was recorded at each survey, and women were categorised as either married/de facto, separated/divorced, widows, or never married. Highest level of education was ascertained at baseline only, with women categorised as having no education, a school or higher school certificate, having a trade or diploma, or higher education. Self-rated health was also queried at each survey, categorized into good/very good/excellent or fair/poor. Baseline age was included in the analytic modelling. Deaths were ascertained from the National Death Index [78]. Rates of missingness on each of the covariates ranged from less than 1%, to a maximum of around 20% for BMI. A basic cohort descriptive is given in Supplementary Material 2.

3. Methodology

3.1. Joint modelling

Joint modelling simultaneously models the longitudinal sleep outcome and the survival outcome; implemented using the R package ‘JM’ [79]. There are various types of joint models in the literature, which generally fall under the banner of either selection models, pattern mixture models, or random-effects models. The difference between these is shown in Equations (1)-(3) [80]:

Selection models: \[W, Y, b = [b][W|b][Y|W], \] (1)

Pattern mixture models: \[W, Y, b = [b][Y|b][W|Y], \] (2)

Random effects models: \[W, Y, b = [b][W|b][Y|b], \] (3)
where W denotes the vector of longitudinal repeated measures, Y the event times, and b the latent random effects that link the longitudinal and survival processes, and $[X, Y, b]$ is the joint distribution [80].

The JM used in this research was the random effects model, due to its popularity in health sciences [60-66]. For simplicity, the random effects model will be referred to as JM for the remainder of the paper. The JM consists of two sub-models, the survival and longitudinal submodels, and shared random effects are assumed to account for the association between the longitudinal and survival outcome [59, 80, 81]. For this reason, random effects models are also known as shared-parameter models.

The formulation of the JM, as used in the R package ‘JM’ and described by Rizopoulos [82], is as follows.

For subjects $i = 1, \ldots, n$, let Y_i denote the event time and C_i the censoring time, let $Z_i(y)$ be the q-dimensional vector of exogeneous (possibly time-varying) covariates, and $X_i(y)$ the longitudinal process at time $y \geq 0$. For each subject, we observe an event time or censoring time, i.e., $V_i = \min(Y_i, C_i).d_i$ is a dichotomous indicator variable; equal to 1 if the event occurs and 0 otherwise. The covariate $X_i(y)$ is observed only intermittently, at times $y_{ij} \leq V_i, j = 1, \ldots, m_i$, for subject i. Additionally, due to error, we may not directly observe $X_i(y)$, and instead observe only $w_i = \{w_i(y_{i1}), \ldots, w_i(y_{im_i})\}^T$, which follows the observed longitudinal process $w_i(y)$.

The joint model is comprised of two sub-models, one for the ‘true’ longitudinal process $X_i(y)$, and the other for the event time. This model is presented graphically in Figure 1, where Y denotes the time-to-event process, W the observed longitudinal process, with coefficients γ and β, respectively; b represents the random effects, which links the two sub-models, and accounts for all association between the longitudinal and survival processes [80].
An advantage of JM is that it allows the longitudinal outcome to be included as an endogeneous predictor of the survival outcome. An endogeneous (or ‘internal’) covariate is a ‘time measurement taken on the individual’, and requires the survival of the individual for its existence, whereas an exogeneous (or external) covariate is not directly involved with the failure mechanism [83]. The observed trajectory of an endogeneous covariate for a subject also provides information on the survival or failure time of that subject. Examples of endogeneous covariates include biomarkers, clinical parameters or questionnaire data; the measurement of which depends on the subject being alive. Conversely, covariates that are measured in advance and remained fixed throughout the study (for example, seasons or time of day) [83], and covariates that are pre-defined, such as a treatment strategy where dose is adjusted according to predetermined criteria [82], are exogeneous.

Endogeneous covariates are typically measured with error, due to variation induced by the subject [81, 82]. Their complete path until any time \(y \) is not fully observed [82] – rather, it is only known at specific occasions, when the individual presented to the study to provide measurements for follow-up, or returned survey data [82].

Finally, because the occurrence of the survival event effectively censors the longitudinal process, this may induce informative censoring, a type of NMAR missingness [84, 85]. Traditional survival analysis models assume that time-varying covariates are predictable processes, in the sense that the value of the covariate is known at an instant just prior to time \(y \) (i.e., a time-continuous process), and are also measured without error, and have fully specified paths [81, 82, 86]. The construction of the likelihoods for these models assumes that the behaviour of the covariate is piecewise-constant, i.e., that the covariate value changes at the observation time, and remains constant in between observation times [82]. This assumes that the value of the covariate is known for any time at which an individual is under observation [86]. The assumption of
piecewise-constant hazards is unrealistic for many covariates, such as biomarkers [82]. Traditional survival analytic approaches, therefore, are only appropriate for exogeneous time-varying covariates [82]. JM overcomes these drawbacks by modelling the longitudinal outcome as an endogeneous predictor.

3.2. Survival sub-model

A proportional hazards model is generally postulated to estimate the strength of the association between $x_i(y)$ and the risk of the event [59, 82, 84],

$$h_i(y | X_i(y), Z_i(y)) = \lim_{dy \to 0} \Pr\{y \leq Y_i \leq y + dy | Y_i \geq y, X_i(y), Z_i(y)\} / dy$$

$$= h_0(y) \exp\{\gamma^T Z_i(y) + \beta x_i(y)\}, \quad y > 0. \quad (4)$$

$X_i(y) = \{x_i(s), 0 \leq s \leq y\}$ denotes the history of the true (unobserved) longitudinal process up to time point y, and $h_0(y)$ the baseline risk [82, 84]. β quantifies the effect of the underlying longitudinal outcome to the risk for an event [82]. $Z_i(y)$ may contain either baseline or timevarying exogeneous covariates, with effect size γ.

The method of B-splines was chosen in this study, given the need to include time-varying predictors in the survival model (in addition to those modelled by the longitudinal sub-model). Currently this is the only option available for time-varying covariates in the R package ‘JM’. The description of this baseline hazard formulation, as set out by Rizopoulos [82], is as follows. The log of the baseline hazard function is expanded into B-spline basis functions for cubic splines:

$$\log h_0(y) = \kappa_0 + \sum_{d=1}^{m} \kappa_d B_d(y, q), \quad (5)$$

where $\kappa^T = (\kappa_0, \kappa_1, \ldots, \kappa_m)$ are the spline coefficients, q is the degree of the B-splines basis functions $B(\cdot)$, and $m = \tilde{m} + q - 1$, where \tilde{m} is the number of interior knots [82].
3.3. Longitudinal sub-model

Recall that we denote the true value of the underlying longitudinal process at time y as $x_i(y)$, but the process is actually observed intermittently, possibly with error, at set times y_{ij} denoted by $w_i(y_{ij})$. This measurement error is accounted for using the first line of Equation (6). We then estimate $x_i(y)$ in order to construct the complete longitudinal history $X_i(y)$ for each subject [82]. This can be achieved in a number of ways. Rizopoulos describes a linear mixed-effects model with normally distributed longitudinal outcomes as follows [82]:

\[
\begin{align*}
 w_i(y) &= x_i(y) + \varepsilon_i(y), \\
 x_i(y) &= m_i^T(y)\alpha + n_i^T(y)b_i, \\
 b_i &\sim \mathcal{N}(0, D), \varepsilon_i \sim \mathcal{N}(0, \sigma^2).
\end{align*}
\]

The design vectors $m_i(y)$ for the fixed effects α and $n_i(y)$ for the random effects b_i, as well as the error terms, are all time-dependent [82]. The error terms are also assumed mutually independent, normally distributed with zero mean and variance σ^2, and independent of the random effects [82]. The first line of Equation (6) accounts for measurement error in the observed longitudinal response. Together with
the random effects, the use of the time structure in the definition of \(m_i(y) \) and \(n_i(y) \), reconstructs the complete path of the longitudinal process \(X_i(y) \) [82].

3.4. Maximum likelihood estimation

Maximum likelihood estimates are derived as the modes of the log-likelihood function corresponding to the joint distribution of the observed outcomes \(\{Y_i, d_i, w_i\} \) [82]. It is assumed that a vector of time-independent random effects \(b_i \) underlies both the longitudinal and survival processes [82]. These random effects account for the association between the longitudinal and survival outcomes, as well as the correlation between the repeated measures [59, 82]. This corresponds to an assumption of conditional independence, that is,

\[
p(Y_i, d_i, w_i \mid b_i; \theta) = p(Y_i, d_i \mid b_i; \theta)p(w_i \mid b_i; \theta),
\]

\[
P(w_i \mid b_i; \theta) = \prod_j p(w_{ij} \mid b_i; \theta).
\]

The \(\theta = (\theta_y^T, \theta_w^T, \theta_b^T) \) denotes the full set of parameters, with \(\theta_y \) indicating the parameters for the survival outcome, \(\theta_w \) the parameters for the longitudinal outcome, and \(\theta_b \) the parameters of the random-effects covariance matrix, with \(w_i \) the \(n_i \times 1 \) vector of longitudinal response for subject \(i \) [59, 82]. Also assumed is that, given the observed history, the censoring mechanism and observation times are independent of the event times and longitudinal measurements [82]. That is, the censoring mechanism (whether a subject withdraws from a study), and the observation of the longitudinal process (i.e., whether a subject turns up for an appointment or returns a survey), depends only on their observed past history of longitudinal and baseline covariates [82]. The log-likelihood contribution for the \(i \)-th subject is then [59, 80, 82]:
The conditional density for the survival part of the JM is written as [59]

\[p(Y_i, d_i \mid b_i; \theta_y, \alpha) = h_i(Y_i \mid X_i(Y_i); \theta_y, \alpha)^d_i S_i(Y_i \mid X_i(Y_i); \theta_y, \alpha), \quad (10) \]

where \(h_i() \) is defined in Equation (4), and

\[S_i(Y \mid X_i(Y), z_i; \theta_y, \alpha) = \Pr(Y_i^* > y \mid X_i(Y), z_i; \theta_y, \alpha) \]

\[= \exp\left\{- \int_0^y h_i(s \mid X_i(s); \theta_y, \alpha) ds\right\}, \quad (11) \]

where \(p(w_i(y_{ij}) \mid b_i; \theta_w) \) is the univariate normal density for the longitudinal responses, and \(p(b_i, \theta_b) \) is the multivariate normal density for the random effects [59]. \(h_0() \) from Equation (4) is any positive function of time (e.g., piecewise constant or B-splines, or a known parametric distribution) [82].

The joint density for the longitudinal responses, with the random effects, takes the form,

\[p(w_i \mid b_i; \theta)p(b_i; \theta) = \prod_j p(w_i(y_{ij}) \mid b_i; \theta_w)p(b_i, \theta_b) \]

\[= (2\pi\sigma^2)^{-n_i/2} \exp\{-\|w_i - M_i\beta - N_i b_i\|^2 / 2\sigma^2\} \]

\[\times (2\pi)^{-q_b/2} \det(D)^{-1/2} \exp\{-b_i^T D^{-1} b_i / 2\}, \quad (12) \]

where \(q_b \) denotes the dimensionality of the random-effects vector, and

\[\|m\| = (\sum_i m_i^2)^{1/2} \]

the Euclidean vector norm [59, 82]. Due to the intractable nature of the survival and random effects integrals in the
joint likelihood, numerical integration using the Gauss-Hermite quadrature rule [87] is utilised to approximate the above integrals [59, 80]. Details of an EM algorithm which maximises the log likelihood can be found in Rizopoulos [82].

3.5. Interaction effects

An interaction between the longitudinal outcome and other exogeneous covariates can also be accommodated in the JM. Such a model assumes that the effect of the longitudinal outcome behaves differently across different subgroups of the subjects [82]. The survival model is expanded to

\[h_i(y) = h_0(y) \exp\{\gamma^T Z_{i1}(y) + \beta[Z_{i2}(y) \times x_i(y)]\}, \tag{13} \]

where \(Z_{i1} \) contains direct effects on the event risk, and \(Z_{i2} \) denote the interaction terms that expand the association of \(x_i(y) \) in different subgroups [82].

3.6. Dynamic survival predictions

Survival predictions for specific subjects at different follow-up times can also be estimated [82, 88, 89]. The dynamic survival model, as formulated by Rizopoulos [87], is described below. A joint model is fitted based on a random sample \(D_n = \{Y_i, d_i, w_i; i = 1, \ldots, n\} \), with the aim of predicting survival probabilities for a new subject \(i \) with longitudinal measurements \(W_i(y) = \{w_i(s); 0 \leq s < y\} \), and covariates \(z_i \). The observed longitudinal covariate \(w_i(y) \) is endogeneous, and as such contains information directly related to the failure mechanism – i.e., a subject, providing longitudinal measurements up to time \(y \), implies survival up to this point [82]. Therefore, JM can predict the conditional probability of surviving time \(u > y \), given a subject has already survived up to time \(y \), \(\pi_i(u \mid y) \) [82]. That is,
\[\pi_i(u \mid y) = \Pr(Y_i^* \geq u \mid Y_i^* > y, W_i(y)z_i, D_i; \theta^*), \; y > 0, \quad (14) \]

where \(\theta^* \) denotes the true parameter values \([82, 89]\). An important characteristic of such predictions from the JM is that they are dynamic in nature, in that as time progresses and additional information is recorded for a subject, these predictions can be updated to incorporate such new information.

Estimation of the subject-specific, dynamic, conditional survival probabilities utilises the conditional independence assumptions outlined in Subsection 3.4 above. Following the formulation by Rizopoulos \([82]\), in which conditioning on covariates \(z_i \) is assumed but omitted from notation, Equation (14) can be rewritten as follows:

\[
\Pr(Y_i^* \geq u \mid Y_i^* > y, W_i(y); \theta) = \int \Pr(Y_i^* \geq u \mid Y_i^* > y, W_i(y), b_i; \theta) \times p(b_i \mid Y_i^* > y, W_i(y); \theta)db_i
\]

\[
= \int \Pr(Y_i^* \geq u \mid Y_i^* > y, W_i(y); \theta)p(b_i \mid Y_i^* > y, W_i(y); \theta)db_i
\]

\[
= \int \frac{S_i[u \mid X_i(u, b_i, \theta)]}{S_i[yX_i(y, b_i, \theta)]} p(b_i \mid Y_i^* > y, W_i(y); \theta)db_i, \quad (15)
\]

where \(S_i(\cdot) \) is the survival function defined earlier, and the longitudinal history \(X_i(\cdot) \) is a function of both the random effects and the parameters \([82]\). Further details regarding the derivation of empirical Bayes estimates for \(\pi_i(u \mid y) \) and their estimation using Monte Carlo simulations can be found in Proust-Lima and Taylor \([88]\), Rizopoulos \([90]\) and Rizopoulos \([82]\).

3.7. Missing covariates

Since JM requires complete data on the longitudinal covariates, we used multiple imputation (MI) \([91]\) to handle the missing data on the covariates. Missing data rates for the cohort are given in Supplementary Material 2. Due to the variety of covariate types (continuous,
dichotomous, and unordered categorical), multiple imputation using chained equations (‘mice’) was utilized [91]. Graham et al. [92] recommend 20 imputed data sets for imputing data with 10-30% missing information. Bodner [93] and White et al. [94] also recommend that the number of imputations should be similar to the percentage of cases that are incomplete.

3.8. Statistical analyses

A set of four nested joint models were created to investigate the impact of sleep, disease and other covariates on survival. Time was centred at survey 2 ($y = 0$ years), with survey 3 at $y = 3$ years, and survey 6 at $y = 12$ years. Survival data was censored at the end of 2013 ($y = 14.77$ years).

In the first model, only time was included as a predictor of the longitudinal sleep outcome (an ‘empty’ model), and the longitudinal sleep trajectory was the sole predictor for survival. In Model 2, categorical disease count was included as a predictor in both the longitudinal and survival parts of the JM. In Model 3, the survival part of Model 2 was extended to include an interaction between sleep and disease; the longitudinal part of the model remained unchanged. Finally, Model 4 extends Model 3 by including all other covariates of interest (BMI, self-rated health, physical functioning, mental health, vitality, marital status, area of residence, baseline age, and education) as time-varying predictors in both the longitudinal and survival parts of the JM (excluding age and education, which were included as baseline predictors).

MI was not performed for Model 1, since no additional covariates with missing data were included in this model. In Models 2 and 3, 10 imputed data sets were analysed and combined, since the amount of missing on the disease covariate was around 3% across all surveys. Finally, 20 imputed data sets were used to impute all missing covariates for Model 4, due to the higher levels of missing on BMI.
4. Results

4.1. The longitudinal sub-models

To determine the suitability of a linear mixed model to model change in the NHP sleep subscale scores over time, the intra class correlation coefficient (ICC) [80, 95] was first estimated by building a null mixed model using the R package ‘nlme’ [96]. The ICC is calculated as the ratio of the subject random effect variance over the total variance, and allows assessment of whether or not a random effect is present in the data [95]. Approximately 53% of the variation in NHP sleep subscale scores was found to be due to the within-individual correlation, and as such was suitable for random effects modelling.

Table 1 displays the results for the longitudinal parts of Models 1, 2, and 4. Model 3 is not reported, since the longitudinal results for Models 2 and 3 were almost identical (to the second decimal place), not surprising given these models differ only in their survival sub-model. Greater sleep difficulty was associated with time, with 0.54 unit increases (95%CI (0.48, 0.60), \(p < 0.01 \)) and 0.35 unit (95%CI (0.28, 0.41), \(p < 0.01 \)) increases in the NHP per year estimated from Models 1 and 2, respectively. However, after adjusting for all other covariates this effect was non-significant (Model 4; Table 1).
Table 1. Point estimates and 95% CIs for the longitudinal sub-model results (bold values are significant at alpha = 0.05)

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>29.11 (9.06, 49.16)</td>
<td>26.17 (6.52, 45.83)</td>
<td>76.91 (58.43, 95.39)</td>
</tr>
<tr>
<td></td>
<td>p = 0.0044</td>
<td>p < 0.01</td>
<td>p < 0.01</td>
</tr>
<tr>
<td>Survey (years)</td>
<td>0.54 (0.48, 0.60)</td>
<td>0.35 (0.28, 0.41)</td>
<td>0.06 (– 0.01, 0.128)</td>
</tr>
<tr>
<td></td>
<td>p < 0.01</td>
<td>p < 0.01</td>
<td>p = 0.09</td>
</tr>
<tr>
<td>Baseline age</td>
<td>– 0.12 (– 0.40, 0.16)</td>
<td>– 0.13 (– 0.40, 0.14)</td>
<td>– 0.39 (– 0.64, – 0.13)</td>
</tr>
<tr>
<td></td>
<td>p = 0.39</td>
<td>p = 0.21</td>
<td>p = < 0.01</td>
</tr>
<tr>
<td>0 disease</td>
<td>Ref</td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>1-2 disease</td>
<td></td>
<td>3.36 (2.65, 4.07)</td>
<td>1.58 (0.88, 2.28)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p < 0.01</td>
<td>p < 0.01</td>
</tr>
<tr>
<td>3+ disease</td>
<td></td>
<td>8.93 (8.00, 9.86)</td>
<td>4.78 (3.84, 5.71)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p < 0.01</td>
<td>p < 0.01</td>
</tr>
<tr>
<td>SF36: Physical Functioning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– 0.03 (– 0.05, – 0.17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p < 0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF36: Mental Health</td>
<td></td>
<td>– 0.23 (– 0.26, – 0.21)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>p < 0.01</td>
<td></td>
</tr>
<tr>
<td>SF36: Vitality</td>
<td></td>
<td>– 0.14 (– 0.16, – 0.12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>p < 0.01</td>
<td></td>
</tr>
<tr>
<td>BMI: Underweight</td>
<td></td>
<td>– 1.24 (– 2.76, 0.27)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>p = 0.11</td>
<td></td>
</tr>
<tr>
<td>BMI: Normal weight</td>
<td></td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>BMI: Overweight</td>
<td></td>
<td></td>
<td>0.19 (– 0.52, 0.92)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p = 0.99</td>
</tr>
<tr>
<td>BMI: Obese</td>
<td></td>
<td></td>
<td>– 0.47 (– 1.55, 0.62)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p = 0.4</td>
</tr>
<tr>
<td>SRH: Fair/Poor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRH: Good/Very</td>
<td></td>
<td></td>
<td>– 2.05 (– 2.78, – 1.32)</td>
</tr>
<tr>
<td>Good/Excellent</td>
<td></td>
<td></td>
<td>p < 0.01</td>
</tr>
<tr>
<td>MS: Married/De facto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separated/Divorced</td>
<td>1.68 (0.09, 3.28)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p = 0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS: Widow</td>
<td>2.20 (1.52, 2.88)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p < 0.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1. (Continued)

<table>
<thead>
<tr>
<th></th>
<th>Effect Size (95% CI)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS: Never married</td>
<td>− 1.10 (− 3.36, 1.17)</td>
<td>p = 0.34</td>
</tr>
<tr>
<td>ARIA: Major City</td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>ARIA: Inner Regional</td>
<td>− 0.20 (− 0.96, 0.56)</td>
<td>p = 0.61</td>
</tr>
<tr>
<td>ARIA: Outer Regional</td>
<td>− 0.56 (− 1.56, 0.44)</td>
<td>p = 0.27</td>
</tr>
<tr>
<td>ARIA: Remote/Very Remote</td>
<td>− 1.37 (− 3.82, 1.09)</td>
<td>p = 0.28</td>
</tr>
<tr>
<td>EDU: None</td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>EDU: School/High school certificate</td>
<td>− 1.01 (− 1.86, − 0.17)</td>
<td>p = 0.02</td>
</tr>
<tr>
<td>EDU: Trade/Diploma</td>
<td>− 1.53 (− 2.81, − 0.25)</td>
<td>p = 0.02</td>
</tr>
<tr>
<td>EDU: Higher education</td>
<td>− 0.81 (− 2.82, 1.21)</td>
<td>p = 0.43</td>
</tr>
</tbody>
</table>

Disease count was strongly associated with longitudinal sleep difficulty in both Models 2 and 4. In Model 2, having 1-2 diseases was associated with a 3.36 unit increase (95%CI (2.65, 4.07), p < 0.01) in NHP sleep subscale (increased sleep difficulty), compared to subjects with zero diseases. The effect of disease was larger for subjects reporting 3 or more diseases, associated with an 8.93 unit increase in NHP sleep subscale (95%CI (8.0, 9.86), p < 0.01), compared to women with 0 diseases. After adjusting for all other predictors, the association between disease and sleep was still significant, but the effect sizes were reduced to 1.58 (95%CI (0.88, 2.28), p < 0.01) and 4.78 (95%CI (3.83, 5.71), p < 0.01) for 1-2 diseases and 3 or more diseases, respectively, compared to 0 diseases.

For every year increase in age at baseline, NHP Sleep Score decreased by − 0.39 points (95% CI (− 0.64, − 0.13), p < 0.01). BMI and area of residence were not significant predictors of sleep difficulty. Women who were separated/divorced or widowed scored 1.68 (95%CI (0.09, 3.28), p = 0.04) units and 2.20 (95%CI (1.52, 2.88), p < 0.01) units
higher respectively on the NHP sleep subscale, compared to married/de facto women. The effect was not significant for women who had never married. Education and self-rated health were both significantly associated with improved sleep. Women who reported their health as good/very good/excellent scored – 2.05 (95%CI (– 2.78, – 1.32), p < 0.01) lower than women who rated their health as fair/poor. Women whose highest level of education was SC/HSC or trade/diploma also scored better on the NHP (– 1.01 (95%CI (– 1.86, – 0.17), p = 0.02); – 1.53 (95%CI (– 2.81, – 0.25), p = 0.02) respectively), but the effect was not significant for women with higher education. Improved physical functioning, mental health and vitality were all associated with improved sleep, corresponding to – 0.03 (95%CI (– 0.05, – 0.017), p < 0.01), – 0.23 (95%CI (– 0.26, – 0.21), p < 0.01) and – 0.14 (95%CI (– 0.16, – 0.12), p < 0.01) unit decreases in sleep difficulty respectively.

Trajectory plots comparing the longitudinal sleep trajectories across the latent sleep classes of earlier work [53] are included in Supplementary Material 2.

4.3. The Survival sub-model

From 10,606 women, there were 5186 deaths. Table 2 displays the results for the survival parts of Models 1-4. Model 1 is the effect of sleep on survival, unadjusted for any other covariates. A unit increase in the NHP sleep subscale (i.e., increasing sleep difficulty) was associated with a slightly higher hazard of death (HR = 1.005 (95%CI (1.003, 1.006), p < 0.01). However, as more covariates were added to the model, the size of this effect decreased. In Model 4, which adjusts for all covariates and an interaction between sleep and diseases, the effect of sleep on survival was non-significant.
<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHP Sleep Subscale</td>
<td>1.005</td>
<td>1.003</td>
<td>1.006</td>
<td>0.999</td>
</tr>
<tr>
<td></td>
<td>(1.003,1.006)</td>
<td>(1.002,1.005)</td>
<td>(1.002,1.011)</td>
<td>(0.994, 1.003)</td>
</tr>
<tr>
<td></td>
<td>*p < 0.01</td>
<td>*p < 0.01</td>
<td>*p < 0.01</td>
<td>*p = 0.99</td>
</tr>
<tr>
<td>Baseline age</td>
<td>1.14 (1.12, 1.16)</td>
<td>1.10 (1.08, 1.12)</td>
<td>1.10 (1.08, 1.12)</td>
<td>1.12 (1.10, 1.15)</td>
</tr>
<tr>
<td></td>
<td>*p < 0.01</td>
<td>*p < 0.01</td>
<td>*p < 0.01</td>
<td>*p < 0.01</td>
</tr>
<tr>
<td>0 diseases</td>
<td>Ref</td>
<td>Ref</td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>1-2 diseases</td>
<td>0.95 (0.88,1.02)</td>
<td>1.0 (0.88,1.14)</td>
<td></td>
<td>0.86 (0.76, 0.97)</td>
</tr>
<tr>
<td></td>
<td>*p = 0.18</td>
<td>*p = 0.99</td>
<td></td>
<td>p = 0.01</td>
</tr>
<tr>
<td>3+ diseases</td>
<td>1.27 (1.17,1.39)</td>
<td>1.42 (1.22,1.65)</td>
<td>0.91 (0.79, 1.06)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*p < 0.01</td>
<td>*p < 0.01</td>
<td></td>
<td>p = 0.22</td>
</tr>
<tr>
<td>NHP*0 diseases</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHP*1-2 diseases</td>
<td>0.998</td>
<td>0.998</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.992,1.003)</td>
<td>(0.993, 1.003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*p = 0.35</td>
<td>*p = 0.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHP*3+ diseases</td>
<td>0.996</td>
<td>0.999</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.99,1.001)</td>
<td>(0.993, 1.004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*p = 0.12</td>
<td>*p = 0.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF36:Physical</td>
<td></td>
<td></td>
<td></td>
<td>0.991 (0.99, 0.993)</td>
</tr>
<tr>
<td>functioning</td>
<td></td>
<td></td>
<td></td>
<td>*p < 0.01</td>
</tr>
<tr>
<td>SF36:Mental health</td>
<td></td>
<td></td>
<td></td>
<td>0.997 (0.995, 0.999)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*p < 0.01</td>
</tr>
<tr>
<td>SF36:Vitality</td>
<td></td>
<td></td>
<td></td>
<td>0.999 (0.997, 1.001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*p = 0.32</td>
</tr>
<tr>
<td>SRH:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fair/Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good/Very</td>
<td></td>
<td></td>
<td></td>
<td>0.68 (0.63, 0.74)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*p < 0.01</td>
</tr>
<tr>
<td>Good/Excellent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underweight</td>
<td></td>
<td></td>
<td></td>
<td>1.67 (1.48, 1.88)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*p < 0.01</td>
</tr>
<tr>
<td>BMI: Normal weight</td>
<td></td>
<td></td>
<td></td>
<td>Ref</td>
</tr>
</tbody>
</table>
Model 2 also included disease as a predictor for survival, in addition to sleep. Women reporting 1-2 diseases were at no greater risk compared to women reporting 0 diseases, but women reporting 3 or more diseases
had a HR = 1.27 (95%CI (1.17, 1.39), \(p < 0.01 \)) compared to women with 0
diseases. This effect was strengthened slightly after adjusting for an
interaction between sleep and disease (Model 3); but once all other
covariates were included, having 3 or more diseases was no longer a
significant predictor of death. However having 1-2 diseases was now
protective, HR = 0.86 (95%CI (0.76, 0.97), \(p = 0.01 \)). The interaction effect
between sleep and disease was not significant in either Model 3 or 4.

Improved physical function and mental health were associated with a
decrease in the hazard of death (HR = 0.991, 95%CI (0.99, 0.993), \(p < 0.01 \);
and HR = 0.997, 95%CI (0.995, 0.999), \(p < 0.01 \), respectively). Also associated
with decreased hazard of death was self-rated health, with women who
rated their health as good/very good/excellent having a HR = 0.68 (95%CI
(0.63, 0.74), \(p < 0.01 \)), compared to women who rated their own health as
fair/poor. Compared to women with no education, educated women were
at a lower risk of death, with HR = 0.93 (95%CI (0.87, 0.99), \(p = 0.02 \);
HR = 0.82 (95%CI (0.74, 0.90), \(p < 0.01 \)) and HR = 0.74 (95%CI (0.63,
0.88), \(p < 0.01 \)) for school/higher school certificate, trade/diploma and
higher education levels, respectively. Women who were overweight or
obese also had lower hazard of death, with HR = 0.83 (95%CI (0.77, 0.89),
\(p < 0.01 \)) and HR = 0.84 (95%CI (0.76, 0.92), \(p < 0.01 \)), respectively,
compared to normal weight women. However, women who were
underweight had a greater hazard of death compared to women of normal
weight, with HR = 1.67 (95%CI (1.48, 1.88), \(p < 0.01 \)).

Also associated with greater hazard of death was area of residence.
Compared to women in major cities, women in inner regional areas had a
HR = 1.08 (95%CI (1.02, 1.15), \(p = 0.01 \)), and women in remote or very
remote areas had HR = 1.33 (95%CI (1.10, 1.60), \(p < 0.01 \)). The effect was
non-significant for women in outer regional areas. Baseline age was a
significant predictor of mortality, with HR = 1.12 (95%CI (1.10, 1.15),
\(p < 0.01 \)). Finally, women who were never married had HR = 1.31 (95%CI
(1.12, 1.54), \(p < 0.01 \)) compared to married/de facto women, but the effect
was not significant for widows or women who were separated or divorced.
Vitality was not a significant predictor of mortality.
4.4. Dynamic survival predictions

Dynamic survival predictions based on Model 1 were created for a select sample of individuals’ longitudinal profiles. To compare these results to the previous sleep analysis on the cohort [53], subjects were selected so as to include one subject from each of the four latent sleep classes identified by Leigh et al. [53], and included also a range of dropout times.

Model 1 was chosen to create the predictions, as these results represent the effect of sleep on survival adjusted only for age, and so are most directly comparable to the latent sleep classes obtained from the previous analysis [53]. These predictions are displayed for women who had data for all three longitudinal time points (Figure 2), surveys 2 and 3 only (Figure 3), and survey 2 only (Figure 4). The accompanying tables containing specific survival probabilities for each subgraph are included in Supplementary Material 2 (see Tables 2-4).

For women with sleep data for surveys 2, 3, and 6 (Figure 2), little discernible difference exists in the survival predictions across the four latent sleep classes. The results are similar for women who had sleep data for surveys 2 and 3 (Figure 3), although in this case the woman from the troubled sleeping class (top left corner) appears to have slightly lower predicted survival at censoring than the women from the remaining three classes. Similarly for women who only answered survey 2 (Figure 4), the woman from the troubled sleeping class appears to have slightly lower predicted survival at censoring that the women from the other three classes.
Figure 2. Dynamic survival predictions for subjects surviving until survey 6, Model 1. Participants belonged to (a) ‘troubled sleepers’, (b) ‘early wakers’, (c) ‘trouble falling asleep’, and (d) ‘untroubled sleepers’ classes [53].
Survival Predictions

(a)

Survival Predictions

(b)
Figure 3. Dynamic survival predictions for subjects surviving until survey 3, Model 1. Participants belonged to (a) ‘troubled sleepers’, (b) ‘early wakers’, (c) ‘trouble falling asleep’, and (d) ‘untroubled sleepers’ class [53].
Figure 4. Dynamic survival predictions for subjects surviving until survey 2, Model 1. Participants belonged to (a) ‘troubled sleepers’, (b) ‘early wakers’, (c) ‘trouble falling asleep’, and (d) ‘untroubled sleepers’ class in previous analysis [53].
5. Discussion

Longitudinal trajectories of sleep difficulty were strongly associated with disease count, self-rated health, quality of life measures (physical function, vitality and mental health), as well as baseline age, marital status and highest level of education. This supports the current literature that reports associations between poor sleep and a variety of illnesses and health complaints. However surprisingly, given the correlation between obesity and sleep apnoea, BMI was not a significant predictor for sleep difficulty.

Our first hypothesis was that greater sleep difficulty would be associated with lower survival. This was supported by the results from Model 1, with increased sleep difficulty associated with greater hazard of death. Dropout was assumed to be NMAR, and unlike a previous analysis of the data [53] (which assumed MAR dropout), after adjusting for multiple health-related and demographic covariates, the effect of sleep on survival was no longer significant. However, this may be due to the fact that sleeping difficulty may not play a causative role in poorer survival, but rather it is correlated with other factors such as disease which do have a causal role. This correlation is supported and demonstrated by the significant impacts of disease, self-rated health, quality of life, and other demographics, on sleep in the longitudinal part of the JM. Use of sleep medications was also factored into the NHP sleep difficulty score, so it is unlikely that use of sleep medications is confounding the results by masking sleep difficulty.

Our second aim was to investigate the interaction effect between longitudinal sleep and disease on survival. We hypothesized that disease would be a significant predictor for survival, and that an interaction effect between disease and sleep difficulty would exist. This relationship was evident in the results of the models with only disease and sleep (Models 2 and 3), where having 3 or more diseases was associated with greater hazard of death. However surprisingly, after adjusting for all
covariates, having 3 or more diseases was no longer a significant predictor for death. To test whether this might be due to collinearity between the number of diseases and other health-related variables, such as BMI, self-rated health, and physical functioning, we utilised Variance Inflation Factor methods [97-99], the results of which are included in Supplementary Material 3. There was no indication of strong collinearity. However, having 1-2 diseases became a significant protective predictor for survival in Model 4. This may be due to the fact that women who survive longer have greater opportunity to develop disease.

One of the strongest predictors of survival was self-rated health. Although correlation between self-rated health and disease was only moderate ($r = -0.29$, $p < 0.0001$, Supplementary Material 3), it may be that self-rated health separates out those women whose health is suffering more from their morbidities (e.g., increased pain, disability, decreased quality of life), from those whose health remains fairly robust in spite of their diseases. Physical functioning was also an important predictor for survival, with improved physical function associated with lower hazard of death. Again, physical function scores may be identifying the women who suffer more from their diseases.

Our results also support the findings of other studies which have found that post-menopause, being overweight is protective against death [100, 101]. In fact our results suggest this protective effect may extend to obese subjects. This is in contrast to a recent meta-analysis [100], which found that obesity was linked to higher mortality; note however, that our study does not differentiate between the various levels of obesity. Conversely, we found that women who were underweight were at a greater risk of death compared to normal weight women. We stop short of recommending obesity in older ages; further evidence is needed of the impact of obesity in old age, ideally utilising models which treat BMI as an endogenous predictor.

Unlike previous analysis of this data [53], area of residence was a significant predictor of mortality, with women living in inner regional and remote or very remote areas at a greater hazard of death.
In studies where both a longitudinal outcome and a survival outcome exist, traditionally the effects are analysed separately, with one model for the longitudinal outcome, and another for the survival outcome [59]. The longitudinal outcome is often also included as a time-varying predictor for the survival outcome, usually within a Cox Proportional Hazards model. Such models assume that the longitudinal outcome is constant between observation times. Additionally, the longitudinal marker or predictor is assumed to be exogeneous – i.e., that the longitudinal trajectory of the covariate is independent of, and therefore contains no information about, the survival outcome. However, it is more likely that the longitudinal outcome may be influenced by the failure mechanism [59]. Furthermore, when assessing the trajectory of the longitudinal outcome, standard mixed effects models treat dropout as non-random. Estimation essentially handles the missing data, due to dropout, by interpolating their trajectories from the remaining sample. This treats the trajectories of the dropouts and survivors as the same, and can lead to bias [59, 82]. One of the strengths of this study is the use of JM. Jointly modelling the two outcomes avoids the aforementioned problems and allows for valid inferences on the longitudinal and survival processes [82].

We utilised ‘JM’ to simultaneously analyse longitudinal and survival data, however other options exist. Other software platforms that perform JM include ‘joineR’ which utilises shared latent random effects [102], STJM in stata [103], MATLAB [104, 105], SAS [106], and HETMIXSURV on Fortran 90 [107]. Selection models [80, 108], pattern mixture models [109], stochastic process modelling [110], or even joint latent class mixture models [111, 112] could be also have been utilised instead of shared-parameter JMs. Joint latent class mixture models (JLCMM) were initially trialled for this analysis; however the model complexity, and data size and complexity, proved to be too computationally demanding to be handled by standard computing power. Joint modelling using shared-parameter models was chosen as an alternative for this work, due to its widespread use in the field of biostatistics.
‘JM’ utilises maximum-likelihood estimation, however it should be noted that Bayesian estimation techniques are also available [80]. The expectation-maximisation algorithm of Dempster et al. [113] and Wulfsohn and Tsiatis [81] can lead to intractable integrals, since there is no closed-form solution for either the integral involving the random effects, or the integral involving the survival function [80]. Numerical approximations exist, such as adaptations of the Gauss-Hermite quadrature rule [81, 114-116]. More recently, Laplace approximations have been trialled to reduce the computational complexity [80]. However convergence rates remain slow, and prove to be a major disadvantage of using ML techniques for joint modelling. Bayesian methods have been developed which take advantage of the computational advantages associated with Bayesian approaches. The most common Bayesian method is that of Faucett and Thomas [117] which uses MCMC algorithm and Gibbs sampling [104, 118-120]. However, Bayesian methods require careful choice of prior distributions and sensitivity analysis for model validation [80].

One limitation of the current analysis is that only the longitudinal sleep and survival outcomes were modelled jointly. Other variables of interest were treated as exogeneous and included as time-varying covariates in the survival model as per a Cox Proportional Hazards model. Literature exists for modelling multiple longitudinal outcomes jointly with a survival outcome [115, 121-127]. However, Rizopoulos states that while such models are mathematically straightforward, in practice they are computationally demanding [82]. At this point in time, there is no readily available software [128] that allows for multiple longitudinal outcomes to be modelled jointly with a survival outcome. The high computational requirements of joint models limit the functionality of current freely available and accessible software packages to simpler models [80]. Sleep was chosen to be modelled as the longitudinal outcome, since it was the main predictor of interest in the current study. The current functionality of JM is also limited to a normal
longitudinal outcome [59]. However ideally, other variables such as BMI, disease and self-rated health would also be modelled jointly. Such a model would help determine, for instance, whether the significant effect of having 1-2 diseases on mortality in Model 4 was a true protective effect, or a result of survivors having greater opportunity to develop and report disease. Advancements in the field of JM may in the future allow for more complicated models to be computationally viable, for example, the work of Barrett et al. [128], which utilises a discretisation of the time-scale for the time-to-event outcome (as opposed to continuous time).

Another limitation of the current study is that the NHP sleep subscale is not directly comparable to the latent sleep classes of earlier work [53], which captured more complex longitudinal sleep difficulty patterns than simply ‘good sleep’ and ‘poor sleep’. In future work, we plan to model alternative continuous covariates, such as physical functioning, mental health and vitality, as the endogeneous longitudinal outcome, and to utilise the latent sleep classes [53] as an exogeneous predictor of survival.

Residual diagnostics were also performed by assessing residual plots from Models 1-4 across the multiple imputed analyses (results not included). There was some residual pattern evident in these plots, however this did not improve when various model parameters were changed (for instance, adding a quadratic time effect in the longitudinal sub-model). It is possible that the use of a different baseline hazard function for the survival model, such as a Weibull, may improve the residual plots. However, currently the possibility to use different hazard functions is not available in JM or any other available software when time-varying covariates are included in the survival sub-model.

An avenue identified for future extension of the analysis is to use exact chronological age, rather than follow-up years from baseline, as the time metameter in both the survival and longitudinal sub-models. However, this requires software that allows for left-censoring as well as right-censoring of the survival data. The ‘JMbayes’ package is currently being developed to include left-censoring in its functionality [89, 129].
Another limitation of this study is that the possible collinearity between sleep, disease, self-rated health, and quality of life, may be masking the effect of sleep on mortality (Model 4). Future analysis will use Bayesian profile regression [130, 131] to jointly model the various sleep and health covariates and survival. Such an approach forms classes based on the latent relationships between the multivariate covariates and the sleep outcome, and can handle collinearity. Alternatively, in the future variable selection approaches may become available for use with JM [132]. Another possible alternative is Bayesian model averaging, which allows predictions to be based on a collection of models simultaneously, rather than a single model, and explicitly accounts for model uncertainty and ‘acknowledges that a single prognostic model may not be adequate for quantifying the risk of all future patients’ [133].

6. Conclusion

The association between sleep and mortality was investigated for a cohort of very old women, using shared random effects joint modelling to account for informative dropout. We have shown that sleep difficulty is correlated with other factors, such as disease, which have a proven causal effect on poorer survival. Sleep difficulty was significantly associated with increased disease count, decreased quality of life, decreased self-rated health, and education. Greater sleep difficulty was also associated with greater hazard of death in unadjusted and disease adjusted models. However, after adjusting for disease, other health-related covariates and demographics, sleep was not significantly associated with mortality. We expected that having 3 or more diseases would be a significant predictor of survival; however after adjusting for other health-related predictors the effect was non-significant. Women reporting 1-2 diseases had lower hazard of death in the fully-adjusted model, however future modelling with multiple longitudinal outcomes is required to investigate whether, once disease is also treated as an endogeneous rather than an exogeneous predictor, this protective effect remains significant. The main health
related predictors of mortality in this analysis were BMI, self-rated health, physical functioning and mental health. Therefore, it may be most useful for health practitioners to focus on these, rather than on sleep difficulty or disease, when assessing mortality risk in very old women.

Acknowledgements

This research was conducted as part of the Australian Longitudinal Study on Women's Health (ALSWH), the University of Newcastle and the University of Queensland. We are grateful to the Australian Government Department of Health and Ageing for funding, to the staff of ALSWH, and to the women who provided the survey data. Researchers in the Research Centre for Generational, Health and Ageing at the University of Newcastle are members of the Hunter Medical Research Institute (HMRI), Newcastle, Australia.

References

[22] A. Koyanagi et al., Chronic conditions and sleep problems among adults aged 50 years or over in nine countries: A multi-country study, PLoS ONE 9(12) (2014), e114742.

[33] T. E. Gildner et al., Associations between sleep duration, sleep quality, and cognitive test performance among older adults from six middle income countries: Results from the Study on Global Ageing and Adult Health (SAGE), Journal of Clinical Sleep Medicine 10(6) (2014), 613-621.

[34] T. Blackwell et al., Associations of objectively and subjectively measured sleep quality with subsequent cognitive decline in older community-dwelling men: The MrOS study, Sleep 37(4) (2014), 655-663.

[44] K. L. Stone, K. E. Ensrud and S. Ancoli-Israel, Sleep, insomnia and falls in elderly patients, Sleep Medicine Suppl. 1 (2008), S18-S22.

[65] I. Guler et al., Joint modeling for longitudinal and time-to-event data: Application to liver transplantation data, Lecture Notes in Computer Science (2014), 8581 LNCS(PART 3) 580-593.

[71] Medicare Australia.

[74] S. M. Hunt et al., Nottingham Health Profile Scoring Instructions; Accessed 16/03/2015.
http://reseauconceptuel.umontreal.ca/rid=1J1WXGYDk-CPP19Z-1ZqY/Nottingham.pdf

http://cran.r-project.org/web/packages/JM/JM.pdf

http://cran.rproject.org/web/packages/car/car.pdf

http://cran.rproject.org/web/packages/joineR/joineR.pdf

[130] J. Molitor et al., Identifying vulnerable populations through an examination of the association between multipollutant profiles and poverty, Environmental Science and Technology 45 (2011), 7754-7760.

Supplementary Material 1

A substudy of 1210 women from the ALSWH 1921-26 cohort was conducted in 2000. An alternative measure of sleep was measured alongside the NHP sleep subscale items, the Pittsburgh Sleep Quality Index (PSQI). The PSQI is a valid reliable measure of sleep quality which can be used to discriminate between good and poor sleepers and continues to be used regularly in sleep research [1-4], including studies of older women [5]. The PSQI produces seven component scores, and one global score, and has an overall reliability coefficient (α) of 0.83 and a test-retest reliability (Pearson) of 0.85 [6]. The PSQI global score ranges from a minimum of 0 (better), to a maximum of 21 (worse). A total score of ≤ 5 is associated with good sleep quality, while scores > 5 are associated with poor sleep quality [7]. The component scores cover the domains Sleep quality, Sleep latency, Sleep duration, Habitual sleep efficiency, Sleep disturbance, Sleeping medications, and Daytime dysfunction. Each is scored from 0 (better) to 3 (worse).

In order to investigate the reliability of the four NHP sleep items used to create the latent classes in this study, the PSQI was dichotomised, and the association between the sleep items and the PSQI dichotomised global score and component scores assessed using Kendall’s Tau rank correlation tests [8, 9], which is an appropriate non-parametric test for the correlation between two ordinal variables. Kendall’s Tau-B test statistics were used for the relationship between the NHP sleep items and the PSQI global score, and Kendall-Stuarts Tau-C [10] for the relationship between the NHP items and the PSQI component scores. The results of these tests are displayed in Table 1 below.

The NHP sleep item ‘wake in the early hours of the morning’ is strongly concordant with the PSQI components ‘sleep quality’ (0.32, 95%CI (0.25, 0.38)), ‘sleep duration’ (0.38, 95%CI (0.32, 0.44)), and ‘habitual sleep efficiency’ (0.36, 95%CI (0.29, 0.42)), as well as with the global PSQI (0.32, 95%CI (0.25, 0.38)). NHP item ‘lie awake at night’ was strongly
concordant with ‘sleep quality’ (0.25, 95% CI (0.20, 0.30)), ‘sleep latency’ (0.22, 95% CI (0.17, 0.28)), and ‘sleep duration’ (0.23, 95% CI (0.18, 0.29)). ‘Taking a long time to fall asleep at night’ had strong concordance with ‘sleep latency’ (0.62, 95% CI (0.57, 0.68)), as well as ‘sleep quality’ (0.31, 95% CI (0.25, 0.37)), ‘sleep duration’ (0.31, 95% CI (0.25, 0.36)), ‘habitual sleep efficiency’ (0.31, 95% CI (0.24, 0.37)), and the global PSQI score (0.32, 95% CI (0.27, 0.36)). Finally, the NHP sleep item ‘sleep badly’ was strongly concordant with ‘sleep quality’ (0.44, 95% CI (0.38, 0.49)), ‘sleep duration’ (0.30, 95% CI (0.25, 0.36)), ‘sleep latency’ (0.283, 95% CI (0.22, 0.35)) and ‘habitual sleep efficiency’ (0.27, 95% CI (0.22, 0.33)).

Correlation between the global PSQI score and the total NHP sleep subscale score was also investigated using Pearson’s and non-parametric Spearman’s tests. Both the Pearson and Spearman’s correlation test between the global PSQI and NHP sleep subscale found strong correlation between the two measures. The correlation coefficient of the Pearson’s was 0.69 (95% CI (0.65, 0.72)), and for the Spearman’s was 0.71 (95% CI (0.67, 0.74)). Concordance between the global PSQI and NHP scores was also assessed using Kendall-Stuarts Tau-C. There was strong concordance between the two measures, with concordance coefficient of 0.54 (95% CI (0.50, 0.57)).

The results of the concordance tests show that there is strong concordance between both the NHP items and the PSQI component scores, as well as with the global PSQI score. The NHP items and subscale score therefore capture a similar range of sleep difficulty as the PSQI, and are therefore reliable measures upon which to base the latent class sleep analysis.
<table>
<thead>
<tr>
<th>NHP Sleep Item</th>
<th>PSQI</th>
<th>Tau-B/C^*</th>
<th>95%CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do you wake in the early hours of the morning?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SQ</td>
<td>0.32</td>
<td>(0.25,0.38)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>0.16</td>
<td>(0.09,0.23)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>0.38</td>
<td>(0.32,0.44)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>HSE</td>
<td>0.36</td>
<td>(0.29,0.42)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>SDi</td>
<td>0.15</td>
<td>(0.10,0.20)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>0.10</td>
<td>(0.03,0.17)</td>
<td>0.0046</td>
<td></td>
</tr>
<tr>
<td>DD</td>
<td>0.10</td>
<td>(0.04,0.16)</td>
<td>0.0016</td>
<td></td>
</tr>
<tr>
<td>Global PSQI^</td>
<td>0.32</td>
<td>(0.25,0.38)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>Do you lie awake most of the night?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SQ</td>
<td>0.25</td>
<td>(0.20,0.30)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>0.22</td>
<td>(0.17,0.28)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>0.23</td>
<td>(0.18,0.29)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>HSE</td>
<td>0.20</td>
<td>(0.15,0.25)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>SDi</td>
<td>0.11</td>
<td>(0.07,0.16)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>0.02</td>
<td>(-0.03,0.08)</td>
<td>0.3674</td>
<td></td>
</tr>
<tr>
<td>DD</td>
<td>0.12</td>
<td>(0.07,0.17)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>Global PSQI^</td>
<td>0.16</td>
<td>(0.12,0.20)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>Do you take a long time to get to sleep?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SQ</td>
<td>0.31</td>
<td>(0.25,0.37)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>0.62</td>
<td>(0.57,0.68)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>0.31</td>
<td>(0.24,0.36)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>HSE</td>
<td>0.31</td>
<td>(0.24,0.37)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>SDi</td>
<td>0.16</td>
<td>(0.11,0.21)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>0.23</td>
<td>(0.16,0.29)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>DD</td>
<td>0.07</td>
<td>(0.01,0.13)</td>
<td>0.0311</td>
<td></td>
</tr>
<tr>
<td>Global PSQI^</td>
<td>0.32</td>
<td>(0.27,0.36)</td>
<td>< 0.0001</td>
<td></td>
</tr>
</tbody>
</table>
Table 1. (Continued)

<table>
<thead>
<tr>
<th>Do you sleep badly at night?</th>
<th>SQ 0.44 (0.38,0.49)</th>
<th>< 0.0001</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL</td>
<td>0.28 (0.22,0.35)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>SD</td>
<td>0.30 (0.25,0.36)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>HSE</td>
<td>0.27 (0.22,0.33)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>SDi</td>
<td>0.18 (0.13,0.23)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>SM</td>
<td>0.12 (0.05,0.18)</td>
<td>0.0004</td>
</tr>
<tr>
<td>DD</td>
<td>0.13 (0.08,0.19)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Global PSQI</td>
<td>0.24 (0.20,0.28)</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

| NHP Sleep Subscale | Global PSQI 0.54 (0.50,.57) | < 0.0001 |

Abbreviations: Sleep Quality (SQ), Sleep Latency (SL), Sleep Duration (SD), Habitual Sleep Efficiency (HSE), Sleep Disturbance (SDi), Sleeping Medications (SM), Daytime Dysfunction (DD), Global Score (Global PSQI); PSQI, Pittsburgh Sleep Quality Index; NHP, Nottingham Health Profile; ^Global PSQI dichotomised, = 5/>5.*Kendall-Stuarts Tau-C for correlation with PSQI components, Kendall’s Tau-B for correlation with dichotomised global PSQI.

References

http://www.sleep.pitt.edu/content.asp?id=1484&subid=2316

M. Kendall, A new measure of rank correlation, Biometrika 30(1-2) (1938), 81-89.

A. Göktaş and Ö. Işıç, A comparison of the most commonly used measures of association for doubly ordered square contingency tables via simulation, Metodološki zvezki 8(1) (2011), 17-37.
Table 1. Participation, attrition, and key variables distributions across all surveys

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Response (N)</td>
<td>12432 (100%)</td>
<td>10434 (83.9%)</td>
<td>8646 (69.6%)</td>
<td>7158 (57.6%)</td>
<td>5560 (44.7%)</td>
<td>4055 (32.6%)</td>
</tr>
<tr>
<td>Deaths</td>
<td>489 (3.9%)</td>
<td>1127 (9.1%)</td>
<td>2098 (16.9%)</td>
<td>3330 (26.8%)</td>
<td>4869 (39.2%)</td>
<td></td>
</tr>
<tr>
<td>Other*</td>
<td>1509 (12.1%)</td>
<td>3659 (29.4%)</td>
<td>3176 (25.5%)</td>
<td>3542 (28.5%)</td>
<td>3508 (28.2%)</td>
<td></td>
</tr>
<tr>
<td>Disease Count</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2276 (18.3%)</td>
<td>2857 (23.4%)</td>
<td>1375 (15.9%)</td>
<td>960 (13.4%)</td>
<td>858 (15.4%)</td>
<td>444 (11.0%)</td>
</tr>
<tr>
<td>1-2</td>
<td>7097 (57.1%)</td>
<td>5871 (46.3%)</td>
<td>5098 (59.0%)</td>
<td>4119 (57.5%)</td>
<td>3255 (58.5%)</td>
<td>2061 (50.8%)</td>
</tr>
<tr>
<td>3+</td>
<td>3034 (24.4%)</td>
<td>1480 (14.2%)</td>
<td>1994 (23.1%)</td>
<td>1993 (27.8%)</td>
<td>1388 (25.0%)</td>
<td>1506 (37.1%)</td>
</tr>
<tr>
<td>Missing</td>
<td>25 (0.2%)</td>
<td>226 (2.2%)</td>
<td>179 (2.1%)</td>
<td>86 (1.2%)</td>
<td>59 (1.1%)</td>
<td>44 (1.1%)</td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underweight</td>
<td>360 (2.9%)</td>
<td>319 (3.1%)</td>
<td>261 (3.0%)</td>
<td>272 (3.8%)</td>
<td>203 (3.7%)</td>
<td>228 (5.6%)</td>
</tr>
<tr>
<td>Normal weight</td>
<td>5575 (44.8%)</td>
<td>4453 (42.7%)</td>
<td>2975 (34.4%)</td>
<td>3078 (43.0%)</td>
<td>2276 (40.9%)</td>
<td>1665 (41.4%)</td>
</tr>
<tr>
<td>Overweight</td>
<td>3698 (29.8%)</td>
<td>3049 (29.2%)</td>
<td>2002 (23.2%)</td>
<td>2082 (29.1%)</td>
<td>1462 (26.3%)</td>
<td>990 (24.4%)</td>
</tr>
<tr>
<td>Obese</td>
<td>1486 (39.8%)</td>
<td>1223 (11.7%)</td>
<td>844 (9.8%)</td>
<td>873 (12.2%)</td>
<td>670 (12.1%)</td>
<td>419 (10.3%)</td>
</tr>
<tr>
<td>Missing</td>
<td>1313 (10.6%)</td>
<td>1390 (13.3%)</td>
<td>2564 (29.7%)</td>
<td>853 (11.9%)</td>
<td>949 (17.1%)</td>
<td>751 (18.5%)</td>
</tr>
</tbody>
</table>
Table 1. (Continued)

<table>
<thead>
<tr>
<th>Marital Status</th>
<th>6934 (55.8%)</th>
<th>5314 (50.9%)</th>
<th>3849 (44.5%)</th>
<th>2624 (36.7%)</th>
<th>1639 (29.5%)</th>
<th>880 (21.7%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Married/de facto</td>
<td>6934 (55.8%)</td>
<td>5314 (50.9%)</td>
<td>3849 (44.5%)</td>
<td>2624 (36.7%)</td>
<td>1639 (29.5%)</td>
<td>880 (21.7%)</td>
</tr>
<tr>
<td>Separated/divorced</td>
<td>699 (5.6%)</td>
<td>505 (4.8%)</td>
<td>423 (4.9%)</td>
<td>307 (4.3%)</td>
<td>217 (3.9%)</td>
<td>163 (4.0%)</td>
</tr>
<tr>
<td>Widowed</td>
<td>4224 (34.0%)</td>
<td>4284 (41.1%)</td>
<td>4099 (47.4%)</td>
<td>3978 (55.6%)</td>
<td>3526 (63.4%)</td>
<td>2892 (71.4%)</td>
</tr>
<tr>
<td>Never married</td>
<td>351 (2.8%)</td>
<td>290 (2.8%)</td>
<td>238 (2.8%)</td>
<td>204 (2.9%)</td>
<td>142 (2.5%)</td>
<td>102 (2.5%)</td>
</tr>
<tr>
<td>Missing</td>
<td>224 (1.8%)</td>
<td>41 (0.4%)</td>
<td>37 (0.4%)</td>
<td>45 (0.6%)</td>
<td>36 (0.7%)</td>
<td>16 (0.4%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area of Residence</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Major City</td>
<td>5173 (41.6%)</td>
<td>4034 (38.7%)</td>
<td>3769 (43.6%)</td>
<td>3205 (44.8%)</td>
<td>2421 (43.5%)</td>
<td>1863 (46.0%)</td>
</tr>
<tr>
<td>Inner regional</td>
<td>4803 (38.6%)</td>
<td>4285 (41.1%)</td>
<td>3246 (37.5%)</td>
<td>2629 (36.7%)</td>
<td>2023 (36.4%)</td>
<td>1453 (35.9%)</td>
</tr>
<tr>
<td>Outer regional</td>
<td>2185 (17.6%)</td>
<td>1858 (17.8%)</td>
<td>1461 (16.9%)</td>
<td>1188 (16.6%)</td>
<td>884 (15.9%)</td>
<td>655 (16.2%)</td>
</tr>
<tr>
<td>Remote/Very</td>
<td>271 (2.2%)</td>
<td>237 (2.3%)</td>
<td>168 (1.9%)</td>
<td>134 (1.9%)</td>
<td>101 (1.8%)</td>
<td>79 (2.0%)</td>
</tr>
<tr>
<td>Missing</td>
<td>0 (0%)</td>
<td>20 (0.2%)</td>
<td>2 (0.2%)</td>
<td>2 (0.3%)</td>
<td>131 (2.4%)</td>
<td>3 (0.1%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Self-rated Health</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Good/Very</td>
<td>8666 (69.7%)</td>
<td>7524 (72.1%)</td>
<td>6306 (72.9%)</td>
<td>4794 (67.0%)</td>
<td>3557 (64.0%)</td>
<td>2565 (63.3%)</td>
</tr>
<tr>
<td>Good/Excellent</td>
<td>3376 (27.2%)</td>
<td>2871 (27.5%)</td>
<td>2280 (26.4%)</td>
<td>2324 (32.5%)</td>
<td>1974 (35.5%)</td>
<td>1467 (36.2%)</td>
</tr>
<tr>
<td>F/P</td>
<td>1112 (10.7%)</td>
<td>778 (9.0%)</td>
<td>1103 (15.4%)</td>
<td>675 (12.1%)</td>
<td>491 (12.1%)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>390 (3.1%)</td>
<td>39 (0.4%)</td>
<td>60 (0.7%)</td>
<td>40 (0.6%)</td>
<td>29 (0.5%)</td>
<td>21 (0.5%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NHP Sleep Subscale Items</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NHP1 – Y</td>
<td>4313 (41.3%)</td>
<td>4018 (46.5%)</td>
<td>4090 (57.1%)</td>
<td>3043 (54.7%)</td>
<td>2152 (53.1%)</td>
<td></td>
</tr>
<tr>
<td>NHP1 - N</td>
<td>5895 (56.5%)</td>
<td>4474 (51.8%)</td>
<td>2840 (39.7%)</td>
<td>2403 (43.2%)</td>
<td>1842 (45.6%)</td>
<td></td>
</tr>
<tr>
<td>NHP2 – Y</td>
<td>1112 (10.7%)</td>
<td>778 (9.0%)</td>
<td>1103 (15.4%)</td>
<td>675 (12.1%)</td>
<td>491 (12.1%)</td>
<td></td>
</tr>
<tr>
<td>NHP2 - N</td>
<td>9096 (87.2%)</td>
<td>7714 (89.2%)</td>
<td>5827 (81.4%)</td>
<td>4771 (85.8%)</td>
<td>3503 (86.4%)</td>
<td></td>
</tr>
</tbody>
</table>
Table 1. (Continued)

<table>
<thead>
<tr>
<th></th>
<th>NHP3 – Y</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2670</td>
<td>2335</td>
<td>2584</td>
<td>1833</td>
</tr>
<tr>
<td></td>
<td>(25.6%)</td>
<td>(27.0%)</td>
<td>(36.1%)</td>
<td>(33.0%)</td>
<td>(31.7%)</td>
</tr>
<tr>
<td>NHP3 - N</td>
<td>7538</td>
<td>6157</td>
<td>4346</td>
<td>3613</td>
<td>2709</td>
</tr>
<tr>
<td></td>
<td>(972.2%)</td>
<td>(71.2%)</td>
<td>(60.7%)</td>
<td>(65.0%)</td>
<td>(66.8%)</td>
</tr>
<tr>
<td>NHP4 – Y</td>
<td>2147</td>
<td>1710</td>
<td>1977</td>
<td>1359</td>
<td>923</td>
</tr>
<tr>
<td></td>
<td>(20.6%)</td>
<td>(19.8%)</td>
<td>(27.6%)</td>
<td>(24.4%)</td>
<td>(22.8%)</td>
</tr>
<tr>
<td>NHP4 - N</td>
<td>8061</td>
<td>6782</td>
<td>4953</td>
<td>4087</td>
<td>3071</td>
</tr>
<tr>
<td></td>
<td>(77.3%)</td>
<td>(78.4%)</td>
<td>(69.2%)</td>
<td>(73.5%)</td>
<td>(75.8%)</td>
</tr>
<tr>
<td>Missing</td>
<td>226</td>
<td>154</td>
<td>228</td>
<td>114</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>(2.2%)</td>
<td>(1.8%)</td>
<td>(3.2%)</td>
<td>(2.1%)</td>
<td>(1.5%)</td>
</tr>
</tbody>
</table>

Sleep medication use

<table>
<thead>
<tr>
<th></th>
<th>NHP5 – Y</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2110</td>
<td>1561</td>
<td>1578</td>
</tr>
<tr>
<td></td>
<td>(16.7%)</td>
<td>(15.0%)</td>
<td>(18.3%)</td>
<td>(23.1%)</td>
</tr>
<tr>
<td>NHP5 - N</td>
<td>10103</td>
<td>8602</td>
<td>6915</td>
<td>3058</td>
</tr>
<tr>
<td></td>
<td>(81.3%)</td>
<td>(82.4%)</td>
<td>(80.0%)</td>
<td>(75.5%)</td>
</tr>
<tr>
<td>Missing</td>
<td>219</td>
<td>271</td>
<td>153</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>(1.8%)</td>
<td>(2.6%)</td>
<td>(1.8%)</td>
<td>(1.5%)</td>
</tr>
</tbody>
</table>

Education

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>4023</td>
<td>(32.4%)</td>
<td></td>
</tr>
<tr>
<td>School/Higher</td>
<td>6003</td>
<td>(48.3%)</td>
<td></td>
</tr>
<tr>
<td>School Certificate</td>
<td>1311</td>
<td>(10.6%)</td>
<td></td>
</tr>
<tr>
<td>Trade/Diploma</td>
<td>431</td>
<td>(3.5%)</td>
<td></td>
</tr>
<tr>
<td>Higher education</td>
<td>664</td>
<td>(5.3%)</td>
<td></td>
</tr>
</tbody>
</table>

Percentages expressed as proportion of respondents at each survey (N); Abbreviations: NHP1, NHP Sleep Subscale item ‘Do you wake in the early hours of the morning? ’; NHP2, NHP Sleep Subscale item ‘Do you lie awake most of the night? ’; NHP3, NHP Sleep Subscale item ‘Do you take a long time to get to sleep? ’; NHP4, NHP Sleep Subscale item ‘Do you sleep badly a night? ’; NHP5, NHP Sleep Subscale item ‘Do you take sleep medication?’; Other* encompasses missing due to withdrawal, ineligibility due to frailty, nonresponse or loss to follow-up – actual number of deaths is higher, however for attrition purposes those who die after withdrawing for other reasons are counted here under ‘other’.
Table 2. Odds ratios (and 95%CI) multinomial logistic regressions of latent class on disease

<table>
<thead>
<tr>
<th>Disease</th>
<th>Comorbidity adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T</td>
</tr>
<tr>
<td>Arthritis</td>
<td>2.27</td>
</tr>
<tr>
<td></td>
<td>(1.98, 2.61)</td>
</tr>
<tr>
<td>CC</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>(1.41, 1.59)</td>
</tr>
<tr>
<td>Heart disease</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>(1.52, 1.6)</td>
</tr>
<tr>
<td>CC</td>
<td>1.61</td>
</tr>
<tr>
<td></td>
<td>(1.52, 1.71)</td>
</tr>
<tr>
<td>Asthma</td>
<td>1.48</td>
</tr>
<tr>
<td></td>
<td>(1.21, 1.82)</td>
</tr>
<tr>
<td>CC</td>
<td>1.65</td>
</tr>
<tr>
<td></td>
<td>(1.56, 1.75)</td>
</tr>
<tr>
<td>Bronchitis/emphysema.</td>
<td>1.73</td>
</tr>
<tr>
<td></td>
<td>(1.45, 2.08)</td>
</tr>
<tr>
<td>CC</td>
<td>1.62</td>
</tr>
<tr>
<td></td>
<td>(1.53, 1.72)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1.45</td>
</tr>
<tr>
<td></td>
<td>(1.15, 1.83)</td>
</tr>
<tr>
<td>CC</td>
<td>1.65</td>
</tr>
<tr>
<td></td>
<td>(1.56, 1.74)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>(1.18, 1.54)</td>
</tr>
<tr>
<td>CC</td>
<td>1.71</td>
</tr>
<tr>
<td></td>
<td>(1.61, 1.82)</td>
</tr>
<tr>
<td>Stroke</td>
<td>1.31</td>
</tr>
<tr>
<td></td>
<td>(0.96, 1.79)</td>
</tr>
<tr>
<td>CC</td>
<td>1.64</td>
</tr>
<tr>
<td></td>
<td>(1.56, 1.74)</td>
</tr>
</tbody>
</table>
Table 2. (Continued)

<table>
<thead>
<tr>
<th>Disease</th>
<th>1.67</th>
<th>1.25</th>
<th>1.14</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1.41,1.97)</td>
<td>(1.05,1.33)</td>
<td>(0.92,1.43)</td>
<td></td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>1.63</td>
<td>1.25</td>
<td>1.34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.54,1.73)</td>
<td>(1.17,1.33)</td>
<td>(1.24,1.44)</td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td>1.19</td>
<td>1.0</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.93,1.52)</td>
<td>(0.77,1.3)</td>
<td>(0.94,1.69)</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>1.65</td>
<td>1.28</td>
<td>1.32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.57,1.75)</td>
<td>(1.2,1.35)</td>
<td>(1.23,1.42)</td>
<td></td>
</tr>
</tbody>
</table>

Bolded values are significant at 0.05 level of significance; Abbreviations: OR, Odds Ratio; T, troubled sleepers class; EW, early wakers class; TF, trouble falling asleep class; UT, untroubled sleepers class; CC, Comorbidity count (calculated as the sum of all other diseases).
Figure 1. NHP Sleep Subscale trajectory plots for censored and uncensored women, within the (a) ‘troubled sleepers’, (b) ‘early wakers’, (c) ‘trouble falling asleep’, and (d) ‘untroubled sleepers’ classes.
In order to compare the current analysis, which incorporates NMAR dropout, with the previous analysis of this cohort (Leigh et al. [1]) which assumed MAR dropout, we compared how the sleep trajectories (as given by the NHP sleep subscale score) varied across the ‘troubled’ sleepers, ‘early wakers’, ‘trouble falling asleep’ and ‘untroubled’ sleepers classes obtained from the previous analysis (Leigh et al. [1]). Trajectory plots (Figure 1) of the longitudinal NHP sleep subscale were created using ‘joineR’ (Philipson et al. [102]), and compared censored and uncensored women, stratified across the four latent sleep classes from earlier work on this cohort (Leigh et al. [1]). It is clear from Figure 1 that the NHP sleep subscale score is generally greater and highly variable in the ‘troubled’ sleepers, slightly lower for ‘early wakers’ and in women who had ‘trouble falling asleep’, and lowest and less variable for the ‘untroubled’ sleepers class. This demonstrates that the latent classes are also reflected by the variation in scoring of the NHP sleep subscale itself.
Table 3. Dynamic survival predictions (mean, median, and 95% CIs) for subjects surviving until survey 6, model 1. Participants belonged to (i) ‘troubled sleepers’, (ii) ‘early wakers’, (iii) ‘trouble falling asleep’, and (iv) ‘untroubled sleepers’ class in previous analysis (Leigh et al. [1])

(i)

<table>
<thead>
<tr>
<th>Times</th>
<th>Mean</th>
<th>Median</th>
<th>Lower CI</th>
<th>Upper CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>12.25</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>12.5</td>
<td>0.97</td>
<td>0.97</td>
<td>0.96</td>
<td>0.97</td>
</tr>
<tr>
<td>13.0</td>
<td>0.93</td>
<td>0.93</td>
<td>0.92</td>
<td>0.94</td>
</tr>
<tr>
<td>13.5</td>
<td>0.90</td>
<td>0.90</td>
<td>0.89</td>
<td>0.91</td>
</tr>
<tr>
<td>14.0</td>
<td>0.87</td>
<td>0.87</td>
<td>0.85</td>
<td>0.88</td>
</tr>
<tr>
<td>14.5</td>
<td>0.83</td>
<td>0.84</td>
<td>0.81</td>
<td>0.85</td>
</tr>
<tr>
<td>14.77</td>
<td>0.82</td>
<td>0.82</td>
<td>0.79</td>
<td>0.84</td>
</tr>
</tbody>
</table>

(ii)

<table>
<thead>
<tr>
<th>Times</th>
<th>Mean</th>
<th>Median</th>
<th>Lower CI</th>
<th>Upper CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>12.25</td>
<td>0.99</td>
<td>0.99</td>
<td>0.98</td>
<td>0.99</td>
</tr>
<tr>
<td>12.5</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
</tr>
<tr>
<td>13.0</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
<td>0.95</td>
</tr>
<tr>
<td>13.5</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.92</td>
</tr>
<tr>
<td>14.0</td>
<td>0.88</td>
<td>0.88</td>
<td>0.87</td>
<td>0.90</td>
</tr>
<tr>
<td>14.5</td>
<td>0.86</td>
<td>0.86</td>
<td>0.84</td>
<td>0.87</td>
</tr>
<tr>
<td>14.77</td>
<td>0.84</td>
<td>0.84</td>
<td>0.82</td>
<td>0.86</td>
</tr>
<tr>
<td>Times</td>
<td>Mean</td>
<td>Median</td>
<td>Lower CI</td>
<td>Upper CI</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>12.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>12.25</td>
<td>0.99</td>
<td>0.99</td>
<td>0.98</td>
<td>0.99</td>
</tr>
<tr>
<td>12.5</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
</tr>
<tr>
<td>13.0</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
<td>0.95</td>
</tr>
<tr>
<td>13.5</td>
<td>0.92</td>
<td>0.92</td>
<td>0.90</td>
<td>0.93</td>
</tr>
<tr>
<td>14.0</td>
<td>0.89</td>
<td>0.89</td>
<td>0.87</td>
<td>0.90</td>
</tr>
<tr>
<td>14.5</td>
<td>0.86</td>
<td>0.86</td>
<td>0.84</td>
<td>0.87</td>
</tr>
<tr>
<td>14.77</td>
<td>0.84</td>
<td>0.84</td>
<td>0.83</td>
<td>0.86</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Times</th>
<th>Mean</th>
<th>Median</th>
<th>Lower CI</th>
<th>Upper CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>12.25</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>12.5</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.98</td>
</tr>
<tr>
<td>13.0</td>
<td>0.95</td>
<td>0.95</td>
<td>0.94</td>
<td>0.95</td>
</tr>
<tr>
<td>13.5</td>
<td>0.92</td>
<td>0.92</td>
<td>0.92</td>
<td>0.93</td>
</tr>
<tr>
<td>14.0</td>
<td>0.90</td>
<td>0.90</td>
<td>0.89</td>
<td>0.91</td>
</tr>
<tr>
<td>14.5</td>
<td>0.87</td>
<td>0.87</td>
<td>0.86</td>
<td>0.89</td>
</tr>
<tr>
<td>14.77</td>
<td>0.86</td>
<td>0.86</td>
<td>0.85</td>
<td>0.88</td>
</tr>
</tbody>
</table>
Table 4. Dynamic survival predictions (mean, median, and 95% CIs) for subjects surviving until survey 3, model 1. Participants belonged to (i) ‘troubled sleepers’, (ii) ‘early wakers’, (iii) ‘trouble falling asleep’, and (iv) ‘untroubled sleepers’ class in previous analysis (Leigh et al. [1])

(i)

<table>
<thead>
<tr>
<th>Times</th>
<th>Mean</th>
<th>Median</th>
<th>Lower CI</th>
<th>Upper CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>3.5</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>5.0</td>
<td>0.96</td>
<td>0.96</td>
<td>0.95</td>
<td>0.96</td>
</tr>
<tr>
<td>7</td>
<td>0.92</td>
<td>0.92</td>
<td>0.90</td>
<td>0.92</td>
</tr>
<tr>
<td>9</td>
<td>0.84</td>
<td>0.84</td>
<td>0.81</td>
<td>0.86</td>
</tr>
<tr>
<td>11</td>
<td>0.77</td>
<td>0.77</td>
<td>0.73</td>
<td>0.79</td>
</tr>
<tr>
<td>13</td>
<td>0.66</td>
<td>0.67</td>
<td>0.61</td>
<td>0.70</td>
</tr>
<tr>
<td>14.77</td>
<td>0.58</td>
<td>0.58</td>
<td>0.52</td>
<td>0.63</td>
</tr>
</tbody>
</table>

(ii)

<table>
<thead>
<tr>
<th>Times</th>
<th>Mean</th>
<th>Median</th>
<th>Lower CI</th>
<th>Upper CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>3.5</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>5.0</td>
<td>0.97</td>
<td>0.97</td>
<td>0.96</td>
<td>0.97</td>
</tr>
<tr>
<td>7</td>
<td>0.93</td>
<td>0.93</td>
<td>0.93</td>
<td>0.94</td>
</tr>
<tr>
<td>9</td>
<td>0.87</td>
<td>0.87</td>
<td>0.86</td>
<td>0.89</td>
</tr>
<tr>
<td>11</td>
<td>0.81</td>
<td>0.81</td>
<td>0.79</td>
<td>0.83</td>
</tr>
<tr>
<td>13</td>
<td>0.72</td>
<td>0.72</td>
<td>0.69</td>
<td>0.75</td>
</tr>
<tr>
<td>14.77</td>
<td>0.64</td>
<td>0.64</td>
<td>0.60</td>
<td>0.68</td>
</tr>
</tbody>
</table>
(iii)

<table>
<thead>
<tr>
<th>Times</th>
<th>Mean</th>
<th>Median</th>
<th>Lower CI</th>
<th>Upper CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>3.5</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>5.0</td>
<td>0.97</td>
<td>0.97</td>
<td>0.93</td>
<td>0.97</td>
</tr>
<tr>
<td>7</td>
<td>0.93</td>
<td>0.93</td>
<td>0.92</td>
<td>0.94</td>
</tr>
<tr>
<td>9</td>
<td>0.87</td>
<td>0.87</td>
<td>0.85</td>
<td>0.88</td>
</tr>
<tr>
<td>11</td>
<td>0.80</td>
<td>0.80</td>
<td>0.78</td>
<td>0.82</td>
</tr>
<tr>
<td>13</td>
<td>0.71</td>
<td>0.71</td>
<td>0.67</td>
<td>0.73</td>
</tr>
<tr>
<td>14.77</td>
<td>0.63</td>
<td>0.63</td>
<td>0.59</td>
<td>0.66</td>
</tr>
</tbody>
</table>

(iv)

<table>
<thead>
<tr>
<th>Times</th>
<th>Mean</th>
<th>Median</th>
<th>Lower CI</th>
<th>Upper CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>3.5</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>5.0</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
</tr>
<tr>
<td>7</td>
<td>0.94</td>
<td>0.94</td>
<td>0.93</td>
<td>0.95</td>
</tr>
<tr>
<td>9</td>
<td>0.88</td>
<td>0.88</td>
<td>0.87</td>
<td>0.90</td>
</tr>
<tr>
<td>11</td>
<td>0.82</td>
<td>0.82</td>
<td>0.80</td>
<td>0.84</td>
</tr>
<tr>
<td>13</td>
<td>0.74</td>
<td>0.74</td>
<td>0.71</td>
<td>0.77</td>
</tr>
<tr>
<td>14.77</td>
<td>0.67</td>
<td>0.67</td>
<td>0.63</td>
<td>0.71</td>
</tr>
</tbody>
</table>
Table 5. Dynamic survival predictions (mean, median, and 95% CIs) for subjects surviving until survey 2, model 1. Participants belonged to (i) ‘troubled sleepers’, (ii) ‘early wakers’, (iii) ‘trouble falling asleep’, and (iv) ‘untroubled sleepers’ class in previous analysis (Leigh et al. [1])

(i)

<table>
<thead>
<tr>
<th>Times</th>
<th>Mean</th>
<th>Median</th>
<th>Lower CI</th>
<th>Upper CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>3.0</td>
<td>0.94</td>
<td>0.94</td>
<td>0.93</td>
<td>0.95</td>
</tr>
<tr>
<td>5.0</td>
<td>0.91</td>
<td>0.91</td>
<td>0.89</td>
<td>0.92</td>
</tr>
<tr>
<td>7.0</td>
<td>0.87</td>
<td>0.87</td>
<td>0.84</td>
<td>0.88</td>
</tr>
<tr>
<td>9.0</td>
<td>0.80</td>
<td>0.80</td>
<td>0.77</td>
<td>0.82</td>
</tr>
<tr>
<td>11.0</td>
<td>0.73</td>
<td>0.73</td>
<td>0.69</td>
<td>0.76</td>
</tr>
<tr>
<td>13.0</td>
<td>0.64</td>
<td>0.64</td>
<td>0.58</td>
<td>0.67</td>
</tr>
<tr>
<td>14.77</td>
<td>0.56</td>
<td>0.56</td>
<td>0.50</td>
<td>0.60</td>
</tr>
</tbody>
</table>

(ii)

<table>
<thead>
<tr>
<th>Times</th>
<th>Mean</th>
<th>Median</th>
<th>Lower CI</th>
<th>Upper CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>3.0</td>
<td>0.95</td>
<td>0.95</td>
<td>0.94</td>
<td>0.96</td>
</tr>
<tr>
<td>5.0</td>
<td>0.92</td>
<td>0.92</td>
<td>0.91</td>
<td>0.93</td>
</tr>
<tr>
<td>7.0</td>
<td>0.89</td>
<td>0.89</td>
<td>0.87</td>
<td>0.90</td>
</tr>
<tr>
<td>9.0</td>
<td>0.83</td>
<td>0.83</td>
<td>0.81</td>
<td>0.85</td>
</tr>
<tr>
<td>11.0</td>
<td>0.77</td>
<td>0.77</td>
<td>0.74</td>
<td>0.79</td>
</tr>
<tr>
<td>13.0</td>
<td>0.68</td>
<td>0.68</td>
<td>0.64</td>
<td>0.72</td>
</tr>
<tr>
<td>14.77</td>
<td>0.61</td>
<td>0.61</td>
<td>0.56</td>
<td>0.65</td>
</tr>
<tr>
<td>Times</td>
<td>Mean</td>
<td>Median</td>
<td>Lower CI</td>
<td>Upper CI</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>3.0</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.96</td>
</tr>
<tr>
<td>5.0</td>
<td>0.92</td>
<td>0.92</td>
<td>0.91</td>
<td>0.93</td>
</tr>
<tr>
<td>7.0</td>
<td>0.89</td>
<td>0.89</td>
<td>0.88</td>
<td>0.90</td>
</tr>
<tr>
<td>9.0</td>
<td>0.83</td>
<td>0.83</td>
<td>0.81</td>
<td>0.85</td>
</tr>
<tr>
<td>11.0</td>
<td>0.77</td>
<td>0.77</td>
<td>0.74</td>
<td>0.80</td>
</tr>
<tr>
<td>13.0</td>
<td>0.69</td>
<td>0.68</td>
<td>0.65</td>
<td>0.72</td>
</tr>
<tr>
<td>14.77</td>
<td>0.61</td>
<td>0.61</td>
<td>0.57</td>
<td>0.66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Times</th>
<th>Mean</th>
<th>Median</th>
<th>Lower CI</th>
<th>Upper CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>3.0</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.96</td>
</tr>
<tr>
<td>5.0</td>
<td>0.92</td>
<td>0.92</td>
<td>0.92</td>
<td>0.93</td>
</tr>
<tr>
<td>7.0</td>
<td>0.89</td>
<td>0.89</td>
<td>0.88</td>
<td>0.90</td>
</tr>
<tr>
<td>9.0</td>
<td>0.83</td>
<td>0.83</td>
<td>0.82</td>
<td>0.85</td>
</tr>
<tr>
<td>11.0</td>
<td>0.77</td>
<td>0.77</td>
<td>0.75</td>
<td>0.80</td>
</tr>
<tr>
<td>13.0</td>
<td>0.69</td>
<td>0.69</td>
<td>0.66</td>
<td>0.72</td>
</tr>
<tr>
<td>14.77</td>
<td>0.62</td>
<td>0.62</td>
<td>0.58</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Reference

As an initial investigation into the possibility of multi-collinearity between the covariates in the survival sub-model, Spearman’s correlations (Zar [5]) were performed for all health related covariates, which were deemed as the covariates most likely to suffer from collinearity. The results are presented in Table 1 below. Strong correlation is not exhibited for any pair, however many display moderate correlations with more than one other covariate.

Table 1.

<table>
<thead>
<tr>
<th>Variable 1</th>
<th>Variable 2</th>
<th>Spearman’s Rho</th>
<th>P-value (rho ≠ 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Function</td>
<td>Mental health</td>
<td>0.35</td>
<td>< 0.000001</td>
</tr>
<tr>
<td>Physical Function</td>
<td>Vitality</td>
<td>0.62</td>
<td>< 0.000001</td>
</tr>
<tr>
<td>Physical Function</td>
<td>BMI</td>
<td>-0.24</td>
<td>< 0.000001</td>
</tr>
<tr>
<td>Physical Function</td>
<td>NHP Sleep</td>
<td>-0.24</td>
<td>< 0.000001</td>
</tr>
<tr>
<td>Physical Function</td>
<td>Self-rated health</td>
<td>0.50</td>
<td>< 0.000001</td>
</tr>
<tr>
<td>Physical Function</td>
<td>Disease</td>
<td>-0.37</td>
<td>< 0.000001</td>
</tr>
<tr>
<td>Mental Health</td>
<td>Vitality</td>
<td>0.59</td>
<td>< 0.000001</td>
</tr>
<tr>
<td>Mental Health</td>
<td>BMI</td>
<td>-0.001</td>
<td>0.9226</td>
</tr>
<tr>
<td>Mental Health</td>
<td>NHP Sleep</td>
<td>-0.34</td>
<td>< 0.000001</td>
</tr>
<tr>
<td>Mental Health</td>
<td>Self-rated health</td>
<td>0.36</td>
<td>< 0.000001</td>
</tr>
<tr>
<td>Mental Health</td>
<td>Disease</td>
<td>-0.20</td>
<td>< 0.000001</td>
</tr>
<tr>
<td>Vitality</td>
<td>BMI</td>
<td>-0.12</td>
<td>< 0.000001</td>
</tr>
<tr>
<td>Vitality</td>
<td>NHP Sleep</td>
<td>-0.34</td>
<td>< 0.000001</td>
</tr>
<tr>
<td>Vitality</td>
<td>Self-rated health</td>
<td>0.52</td>
<td>< 0.000001</td>
</tr>
<tr>
<td>Vitality</td>
<td>Disease</td>
<td>-0.31</td>
<td>< 0.000001</td>
</tr>
<tr>
<td>BMI</td>
<td>NHP Sleep</td>
<td>0.03</td>
<td>0.01978</td>
</tr>
<tr>
<td>BMI</td>
<td>Self-rated health</td>
<td>-0.08</td>
<td>< 0.000001</td>
</tr>
<tr>
<td>BMI</td>
<td>Disease</td>
<td>0.14</td>
<td>< 0.000001</td>
</tr>
<tr>
<td>NHP Sleep</td>
<td>Self-rated health</td>
<td>-0.24</td>
<td>< 0.000001</td>
</tr>
<tr>
<td>NHP Sleep</td>
<td>Disease</td>
<td>0.18</td>
<td>< 0.000001</td>
</tr>
<tr>
<td>Self-rated health</td>
<td>Disease</td>
<td>-0.29</td>
<td>< 0.000001</td>
</tr>
</tbody>
</table>

P-value: $H_0: \text{spearman’s rho} = 0, H_A: \text{spearman’s rho} \neq 0$.
To further investigate the possibility of multi-collinearity between
the predictors in the survival part of the joint model, VIF (variance
inflation factor) tests were performed. Allison [1] states that for survival
analyses, ‘one can simply do a preliminary check with a linear regression
program, while specifying the event time as the dependent variable.
Because multi-collinearity is all about linear relations among the
covariates, it is not necessary to evaluate it within the context of a
survival analysis.’ This was performed on a single imputed data set to
investigate whether multi-collinearity was likely to be present. VIF tests
were performed in the R package ‘car’ (Fox et al. [2]), using survival time
as the outcome in a linear mixed effects model within the R package ‘JM’
(Rizopoulos [4]), and the NHP sleep subscale and all other covariates as
predictors (all time-varying except for education). VIF is thought to
indicate a problem for any value over ten (Kutner et al. [3]). All VIF
values produced were less than 10 (see Table 1 below). Therefore, multi-
collinearity may not be a cause for concern in the JM analysis.
Table 2.

<table>
<thead>
<tr>
<th>Variable</th>
<th>VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survey Time</td>
<td>1.185096</td>
</tr>
<tr>
<td>NHP sleep subscale score</td>
<td>1.173700</td>
</tr>
<tr>
<td>Physical Functioning</td>
<td>1.981889</td>
</tr>
<tr>
<td>Mental Health</td>
<td>1.591845</td>
</tr>
<tr>
<td>Vitality</td>
<td>2.284028</td>
</tr>
<tr>
<td>Underweight</td>
<td>1.053690</td>
</tr>
<tr>
<td>Overweight</td>
<td>1.151908</td>
</tr>
<tr>
<td>Obese</td>
<td>1.203247</td>
</tr>
<tr>
<td>Disease Count – 1-2</td>
<td>1.712128</td>
</tr>
<tr>
<td>Disease Count – 3+</td>
<td>2.000932</td>
</tr>
<tr>
<td>Self-rated health</td>
<td>1.541110</td>
</tr>
<tr>
<td>Separated/divorced</td>
<td>1.062193</td>
</tr>
<tr>
<td>Widowed</td>
<td>1.165306</td>
</tr>
<tr>
<td>Never married</td>
<td>1.054234</td>
</tr>
<tr>
<td>Inner regional</td>
<td>1.175291</td>
</tr>
<tr>
<td>Outer regional</td>
<td>1.167005</td>
</tr>
<tr>
<td>Remote/very remote</td>
<td>1.030432</td>
</tr>
<tr>
<td>SC/HSC</td>
<td>1.305320</td>
</tr>
<tr>
<td>Trade/Diploma</td>
<td>1.249721</td>
</tr>
<tr>
<td>Higher Education</td>
<td>1.125777</td>
</tr>
<tr>
<td>Baseline age</td>
<td>1.030703</td>
</tr>
</tbody>
</table>

References

http://cran.r-project.org/web/packages/car/car.pdf

 http://cran.r-project.org/web/packages/JM/JM.pdf