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Abstract 

Multivariate cumulative sum (MCUSUM) control charts are widely used in 
industry because they are powerful and easy to use. They cumulate recent 
process data to quickly detect out-of-control situations. MCUSUM procedures 
will usually give tighter process control than classical quality control charts. A 
MCUSUM signal does not mean that the process is producting bad product. 
Rather it means that action should be taken so that the process does not 
produce bad product. MCUSUM procedures give an early indication of process 
change, they are consistant with a management philosophy that encourages 
doing it right the first time (Pignatiello and Kasunic [14]). MCUSUM charts 
tend to have inertia that later data points carry with them. As a result, when a 
trend occurs on one direction of the target mean and a resulting shift occurs in 
the other direction of the target mean, the two types of charts will not pick up 
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the shift immediately. Industry fertilizers is important one of the chemical 
industries in Egypt, so that this work concerns the fertilizers industries quality 
control, especially urea fertilizer with application on Delta fertilizer and 
chemical industries which is considered one of the leading companies the field of 
fertilizer production in Middle east with application of multivariate quality 
control procedures to achieve best one procedure for multivariate quality 
control. This application shows that the company should use the multivariate 
quality control chart to determine whether not the process is in-control because 
the production have several correlated variables, and the used of separate 
control charts is misleading because the variables jointly affect the process. 

1. Introduction 

The multivariate cumulative sum (MCUSUM) control chart is a 
multivariate quality control chart that has the advantage of detecting 
small changes in the process mean. 

As a multivariate counterpart of the X  chart, the chart-2χ  was first 
suggested and used by Hotelling [10] in the testing of bombsights. 

It is well-known that the chart-2χ  is relatively insensitive to small 
mean shifts. This disadvantage raises the problem of how to obtain 
multivariate extensions of run rules, the CUSUM charts Woodall and 
Ncube [20] suggested a multiple CUSUM chart by using a series of the 
CUSUM control charts on original characteristics or on principal 
component axes depending on the type of shift in the mean that is 
considered to be important to detect. Pignatiello and Runger [15] showed 
that the Woodall and Ncube [20] multiple CUSUM chart does not have 
good average run length (ARL) properties when the process mean shifts 
along several characteristics simultaneously. To lessen the sensitivity of 
the multiple univariate CUSUM chart to directions, they recommended 
using the univariate CUSUM charts aimed at several uniformly elected 
directions. Obviously, the more the directions the less the sensitivity. 
But, at the same time, they found that the resulting control chart is hard 
to manage when there are three or more characteristics. Hawkins [8] 
indicated that under some circumstances separate controls on the 
regression - adjusted variables by the CUSUM charts can both improve 
the speed of detection and make the chart signal more easily interpretable. 
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The above problem also motivates attempts to extend the univariate 
CUSUM statistics to multivariate data. One difficulty encountered with 
generalizing the CUSUM statistics is that there are two cumulative sums 
for each variable, see Crosier ([6], [7]), Pignatiello and Runger [15] 
proposed some two sided methods which require only cumulative sum, 
then they generalized these new statistics to the higher dimension. As a 
result, they obtained two multivariate CUSUM charts: the MCUSUM 
and multivariate CUSUM(I) (MCl) charts. Note that neither of these two 
charts is the natural multivariate extension of the univariate CUSUM 
chart. 

2. Univariate Cumulative Sum (CUSUM) Procedure 

Cumulative sum (CUSUM) control charts were first introduced by 
Page [13]. He proposed that, a decision about changes in a process should 
not be based on a single observation or a statistic calculated from a few 
observations, but on all the observations that had been obtained up to the 
time of testing. 

The information from the new sample should be combined with past 
data to give an indication of a possible shift in the process level. Often 
successive observations cannot be considered independent, so combining 
past and present data should increase sensitivity and speed the detection 
of small shifts in a process. 

Montgomery [12] considered that the (CUSUM) control chart is a 
good alternative when small shifts are important. He proposed that, the 
CUSUM chart directly incorporates all the information in the sequence of 
sample values by plotting the cumulative sum’s of the deviations of the 
sample values from a target value. 

He supposed the samples of size 1≥n  are collected, and jX  is the 

average of the j-th sample. Then if 0µ  is the target for the process mean, 

the cumulative sum control is formed by plotting the quantity 

( ),01
µ−= ∑ = j

i

ji XC   (1) 
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against the sample i. iC  is called the cumulative sum up to and including 

the i-th sample. Because they combined information from several 
samples, cumulative charts are more effective than Shewhart charts for 
detecting small process shifts. 

He add that, furthermore, they are particularly effective with 
samples of size .1=n  

This makes the cumulative sum control chart a good candidate for 
use in the chemical and process industries were rational subgroups are 
frequently of size one, and in discrete parts manufacturing with 
automatic measurement of each part and on-line control using a 
microcomputer directly at the work center. 

He note that there are two ways to represent CUSUMS, the tabular 
(or algorithmic) CUSUM, and the V-mask form of the CUSUM. 

2.1. The tabular or algorithmic CUSUM for monitoring the process 
mean 

Montgomery [12] shown that a tabular CUSUM may be constructed 
for monitoring the mean of a process. CUSUMs may be constructed both 
for individual observations and for the averages of rational subgroups. 
The case of individual observations occurs very often in practice, so that 
situation will be treated first. Later he shown that how to modify these 
results for rational subgroups. 

Let iX  be the i-th observation on the process. When the process is in 

control iX  has a normal distribution with mean 0µ  and standard 

deviation σ  he assumed that either σ  is known or that an estimate is 
available. 

Sometimes it is consider that 0µ  as a “target” value for the quality 

characteristic X, this viewpoint is often taken in the chemical and process 
industries when the objective is to control X to a particular target value if 
the process drifts or shifts off his target value, the CUSUM will signal, 
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and adjustment is made to some manipulatable variable to bring the 
process back on target. Also, in some cases, a signal from a CUSUM 
indicates the presence of an assignable cause that must be investigated 
just as in the Shewhart chart case. The tabular CUSUM works by 
accumulating derivations from 0µ  that are above target with one 

statistic +C  and accumulating derivations from 0µ  that are below target 

with another statistic .−C  The statistics +C  and −C  are called one-sided 
upper and lower CUSUMs, respectively. They are computed as follows: 

The tabular CUSUM 

[ ( ) ],,0max 10
+
−

+ ++µ−= iii CkXC   (2) 

[ ( ) ],,0max 10
−
−

− +−−µ= iii CXkC   (3) 

where the starting values are .0== −+
ii CC  

In Equations (2) and (3), k is usually called the reference value (or 
the allowance, or the slack value), and it is often chosen about halfway 
between the target 0µ  and the out-of-control value of the mean 1µ  that it 

was interested in detecting quickly. Thus, if the shift is expressed in 
standard deviation units as 

,or 01
01 








σ
µ−µ

=δδσ+µ=µ  

then k is one-half the magnitude of the shift or 

.22
01 µ−µ

=σδ=k  (4) 

Note that +
iC  and −

iC  accumulate deviations from the target value 

0µ  that are greater than k, with both quantities reset to zero on 

becoming negative. If either +
iC  or −

iC  exceed the decision interval H, 

the process is considered to be out-of-control. 
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The action taken following an out-of-control signal on a CUSUM 
control scheme is identical to that with any control: one should search for 
the assignable cause, take any corrective action required, and then 
reinitialize the CUSUM at zero. The CUSUM is particularly helpful in 
determining when the assignable cause has occurred just count backward 
from the out of control signal to the time period when the CUSUM lifted 
above zero to find the first period following the process shift. The 

counters +N  and −N  are used in this capacity ( +N  and −N  indicate 

the number of consecutive periods that the CUSUM +
iC  or −

iC  have been 

nonzero). 

In situations where an adjustment to some manipulatable variable is 
in order to bring the process back to target value ,0µ  it may be helpful to 

have an estimate of the new process mean following the shift. This can be 
computed as follows: 
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 (5) 

Finally, Montgomary [12] noted that runs tests, and other sensitizing 
rules such as the zone rules, cannot be safely applied to the CUSUM, 

because successive values of +
iC  and −

iC  are not independent. In fact, the 

CUSUM can be thought of as a weighted average. Where the weights are 
stochastic or random. 

Now, it is necessary to summarize the recommendations for CUSUM 
design as follows: 

(1) The tabular CUSUM is designed by choosing values for the 
reference value k and the decision interval H. 

(2) These parameters can be selected to provide good average run 
length performance. 
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(3) There have been many analytical studies of CUSUM ARL 
performance. On which, we can select values of H and k. 

(4) Several techniques can be used to calculate the ARL of a CUSUM. 
Vance [18] provides a very accurate computer program. A number of 
authors have used an approach to calculating sARL  due to Brook and 

Evans [5] that is based on approximating transitions from the in-control 
to the out-of-control state with a Markov chain, Howkins [9] has provided 
a simple but very accurate ARL calculation procedure based on an 
approximating equation. His approximation requires a table of constants 
to apply and is accurate to within 1-3% of the true ARL value. Woodall 
and Adams [19] recommend the ARL approximation given by Siegmund 
[16] because of its simplicity. 

For a one-sided CUSUM (that is, +
iC  or −

iC ) with parameters h and 

k, Siegmund’s approximation is, 

( ) .
2

122expARL 2∆

−∆+∆−
=

bb  (6) 

For ,0≠∆  where 







−δ−

−δ
=∆

−∗

+∗
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i

i
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( ) .and166.1 01 σµ−µ=δ+= ∗hb  

If ,0=∆  one can use .ARL 2b=  

The quantity ∗δ  represents the shift in the mean, in the units of ,σ  

for which the ARL is to be calculated. Therefore, if ,0=δ∗  we would 

calculate 0ARL  from Equation (6) whereas if 0≠δ∗  we would calculate 

the value of ARLs of the two one-sided statistics - say, −ARL  by using 

.
ARL

1
ARL

1
ARL

1
−+

+=   (7) 
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Generally, k is choosing relative to the size of the shift we want to 

detect: that ,2
1 δ=k  where δ  is the size of the shift in standard 

deviation units. This approach comes very close to minimizing the 1ARL  

value for detecting a shift of size δ  for fixed .ARL0  It is necessary to 

note that a widely mentioned earlier, a widely used value of k in practice 

is .2
1=k  Then, once k is selected you should choose h to give the desired 

in-control 0ARL  performance. 

The standardized CUSUM. Many users the CUSUM prefer to 
standardize the variable iX  before performing the calculations. Let 

,0
σ
µ−

= i
i

Xy   (8) 

be the standardized value of .iX  Then the standardized CUSUMs are 

defined as follows. 

The standardized two-sided CUSUM 

[ ],,0max 1
+
−

+ +−= iii CkyC   (9) 

[ ].,0max 1
−
−

− +−−= iii CykC   (10) 

Montgomery [12] noted that, there are two advantages to 
standardizing the CUSUM. First, many CUSUM charts can be have the 
same values of k and h, and the choices of these parameters are not scale 
dependent (that is, they do not depend on σ ). Second, a standardized 
CUSUM leads naturally to a CUSUM for controlling variability. 

2.2. The V-mask procedure 

Montgomery shown that the V-mask is an alternative procedure to 
the use of a tabular CUSUM is the V-mask control scheme proposed by 
Barnard [4]. The V-mask is applied to successive values of the CUSUM 
statistic. 
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i

i

j
i yC ∑

=

=
1

 

,1−+= ii Cy  

where iy  is the standardized observation ( ) .0
σ
µ−

= i
i

Xy  A typical       

V-mask is shown in Figure 1. 

 

Figure 1. A typical V-mask. 

The decision procedure consists of placing the V-mask on the 
cumulative sum control chart with the point (0) on the last value of iC  
and the line 0P parallel to the horizontal axis. If all the previous 
cumulative sums, iCCC …21  lie within the two arms of the V-mask, the 
process is in control. However, if any of the cumulative sums lie out-side 
the arms of the mask, the process is considered to be out-of-control. In 
actual use, the V-mask would be applied to each new point on the 
CUSUM chart as soon as it was plotted, and the arms are assumed to 
extend backward to the origin. The performance of the V-mask is 
determined by the lead distance d and the angle ( )θ  shown in Figure 1. 
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The tabular CUSUM and the V-mask scheme are equivalent if 

,tan θ= Ak   (11) 

and 

( ) .tan dkAdh =θ=   (12) 

In these two equations, A is the horizontal distance on the V-mask plot 
between successive points in terms of unit distance on the vertical scale 

where 2
1=k  and 5=n  we would select 1=A  (say), and then 

Equations (11) and (12) would be solved as follows: 

,tan θ= Ak  

( ) ,tan12
1 θ=  

or 

;57.26 D=θ  

and 

,dkh =  

( ),2
15 d=  

or 

.10=d  

That is the lead distance of the V-mask would be 10 horizontal 
positions, and the angle opening on the V-mask would be 26.57°. Johnson 
[11] has suggested a method for designing the V-mask, that is, selecting d 
and .θ  He recommended the V-mask parameters. 

( ),2
8tan 1
A

−=θ  (13) 
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and 

( ) ( ),1ln2
2 α

β−

δ
=d  (14) 

where α2  is the greatest allowable probability of a signal when the 
process mean is on target (a false alarm) and β  is the probability of not 
detecting a shift of size .δ  If β  is small, which is usually the case, then 

( ( ) ).ln2
δ
α−≈d   (15) 

Montgomery [12] strongly advise the quality engineer not to use the 
V-mask procedure. Some of the disadvantages and problems associated 
with this scheme are as follows: 

(1) The V-mask is a two-sided scheme: it is not very useful for one-
sided process monitoring problems. 

(2) The head start feature, which is very useful in practice, cannot be 
implemented with the V-mask. 

(3) It is sometimes difficult to determine how far backwards the arms 
of the V-mask should extend thereby making interpretation difficult for 
the practitioner. 

(4) Perhaps the biggest problem with the V-mask is the ambiguity 
associated with α  and .β  

Adams et al. [1] point out that detaining α2  as the probability of a 
false alarm is incorrect. Essentially α2  cannot be the probability of a 
false alarm on any single sample because this probability changes over 
time on the CUSUM nor can α2  be the probability of eventually 
obtaining a false alarm (this probability is, of course, l). In fact, α2  must 
be the long-run proportion of observations reservations resulting in false 

alarms. If this is so, then the in-control ARL should be .2
1ARL0 α

=  

However, Johnson’s design method produces values of 0ARL  that are 

substantially larger than .2
1
α
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Note that the actual values of 0ARL  are about five times the desired 

value used in the design procedure. The schemes will also be much less 
sensitive to shifts in the process mean. Consequently, the use of the         
V-mask scheme is not a good idea unfortunately, it’s still the default 
CUSUM in many SPC software packages. Hopefully computer software 
developers will soon replace this procedure with the algorithmic or 
tabular  CUSUM. 

Alwan [3] presents a CUSUM control scheme based on the sequential 
probability ration test. He defines the statistic iE  as 

( ) ( ),0
\

0
1

µ−µ−=
−∑

iii XXME  

and indicates that iE  is distributed as a noncentral 2χ  distribution. 

Then, he proposes a sequential test in reverse order on the noncentrality 
parameter of the distribution of statistic iE  Alwan [3] shown that the 

decision equation of the test is linear and therefore a standard V-mask 
can be constructed. 

3. The Multiple Univariate CUSUM Control Charts 

Woodall and Ncube [20] introduced the use of a one-sided or two-
sided univariate CUSUM chart to monitor a p-dimensional multivariate 
normal process. They assumed that the independent p-characteristic 
random variables …,2,1, =tXt  are successive samples from a              

p-dimensional multivariate normal process with mean 0µ  and variance-

covariance matrix .∑  The run length of a one-sided procedure for 

detecting the positive mean shift of the j-th characteristic is: 

( ) { },:MIN , jtj HStjN ≥=   (16) 

where 

{ } .,2,1,,0Max ,1,, …=−+= − tkXSS jtjtjtj  
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In Equation (16), tjX ,  refers to the j-th characteristic of the t-th 

observation, tjS ,  is the upper CUSUM of the j-th, characteristic after t 

observations, 0>jH  is the upper decision interval or control limit for 

characteristic j and jk  is the reference value for characteristic j. The 

choice of the reference value jk  depends on the shift in the mean that is 

considered to be important and needs to be detected quickly for the j-th 
characteristic. 

To detect shifts in either direction, the run length of the two-sided 
CUSUM procedure is defined as 

( ) { },or:MIN ,, jtjjtj HTHStjN −≤≥=  

where 

{ },,0MIN ,1,, jtjtjtj kXTT ++= −  

,0,,2,1 0, ≤<= jj THt …  

and tjT ,  is the lower CUSUM of the j-th characteristic after t-th 

observations. The run length of the multiple CUSUM procedure is 
defined as 

( ) ( ) ( ){ }.,,2,1MIN pNNNN …=  

Therefore, the process is considered out of control as soon as any one 
of the multiple CUSUM control charts indicates an out of control signal. 
This method has two obvious advantages. It is very easy to understand 
and very easy to implement. 

However, it has a major disadvantage in that the correlation between 
the various quality characteristics is not taken into account. Therefore, it 
is impossible to tell exactly what is the significance level of the test. 

 



M. S. HAMED et al. 118

4. Multivariate CUSUM Charts 

Pignatiello and Runger [15] introduced two multivariate CUSUM 
charting procedures. Both these multivariate CUSUM procedures are 
based on quadratic forms of the mean vector. The difference between the 
two multivariate CUSUM procedures discussed here centers on the point 
at which the accumulation (i.e., the sum) is made. Multivariate CUSUM (I) 
(MC1) accumulates the X vectors before producing the quadratic forms 
while multivariate CUSUM (II) (MC2) calculates a quadratic form for 
each X and then accumulates those quadratic forms. A procedure similar 
to MC1, described below, was first proposed by Pignatiello and Kasunic 
[14] in the following subsections. 

4.1. Multivariate CUSUM (I) 

To introduce the first multivariate CUSUM charts, they considered 
that the multivariate sum 

( ),, 0
1

µ= ∑
+−=

i

t

nti
t XC

t

 (17) 

where tn  is formally defined in (17) and can be interpreted as the 

number of subgroups since the most recent renewal (i.e., zero value) of 

CUSUM. Since t
t

Cn
1  may be written as 

( ) .11
0

1
µ−= ∑

+−=
i

t

ntit
t

t
XnCn

t

 

The vector t
t

Cn
1  represents the difference between the accumulated 

sample average and the target value for the mean. Consequently, at time 

t, the multivariate process mean can be estimated to be .1
0µ+t

t
Cn  The 

norm of tC  
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,1\
ttt CCC −∑=  

is seen as a measure of the distance of our estimate of the mean of the 
process from the target mean for the process. A multivariate control chart 
can be constructed by defining MC1 as, 

{ },0,max1MC ttt knC −=   (18) 

and 





 >+

=
−−

otherwise,,1

,01MCif,1 11 tt
t

n
n  (19) 

where the choice of the reference value 0>k  is discussed below. The 
MC1 chart operates by plotting t1MC  on a control chart with an upper 

control limit of 1UCL  if t1MC  exceeds 1UCL  then the process is deemed 

to be off-target. 

Because the MC1 chart can not be modelled as a simple stationary 
Markov chain, Pignatiello and Runger [15] use a Monte Carlo simulation 
to evaluate the ARL performance of the chart. 

4.2. Multivariate CUSUM (II) 

Pignatiello and Runger [15] proposed a method denoted by MC2, 
based on the square of distance of each sample mean from 0µ  and 

accumulate those squared distances they defined the square distance of 
the t-th sample mean from the target value of ,0µ  where 

( ) ( ),0
\

0
2 1

µ−µ−=
−∑

ttt XXD  (20) 

has 2χ  distribution with p degrees of freedom when the process is         

on-target and a non central 2χ  distribution when the process is off-

target. A one-sided univariate CUSUM can now be formed as 

{ },2MC,0max2MC 2
1 kDttt −+= −   (21) 
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with .02MC 0 =  The primary difference in the two CUSUM charts is 

that MC1 accumulates the sample mean vector prior to the production of 
the quadratic forms, while MC2 calculates the quadratic forms for each 
sample mean and then accumulates the values of those forms. 

Moreover, Pignatiello and Runger [15] compared MC1 and MC2 to 
the multiple univariate CUSUM charts given by Woodall and Ncube [20] 

and to the multivariate Shewhart 2χ  charts. The results show that the 

ARL of the MC1 chart outperforms the other three charts in almost all 
cases. Crosier [6] also presented two multivariate cumulative sum 
(MCUSUM) quality control charts. 

The first CUSUM chart reduces each observation vector or sample 
mean vector to a t-statistic (the square root of the right hand side of 
Equation (17)) and then forms a CUSUM of the T-statistics. Crosier 
states that a problem with this method is that when a shift of the mean is 
indicated, the procedure gives no indication of where the shift occurs. 

The second method derived by Crosier is a two-sided vector-value 
CUCUM scheme. He shrinks the updated CUSUM toward zero after each 
observation. The shrinkage is performed by multiplication rather than by 
addition or subtraction. Crosier defined the statistic iC  the CUSUM after 

the i-th sample mean vector as, 

{( ) ( )} ,2
11

1
\

1 iiiii XSXSC ++= −
∑

−
−

 (22) 

where 

( )







>





 −+

≤

=
− ,if,1

,if,0

1
1

1

1

kCC
kXS

kC
S

i
i

ii

i

i  

and ;,2,1 …=i  where 00 =S  and .01 >k  

Note that 01 >k  is the reference value of the scheme and iC  is the 

generalized length of the CUSUM vector before shrinking. 
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Multivariate CUSUM scheme, denoted by MCUSUM, signals when, 

{ } ,2
\ 2

11
hSSY iii >=

−∑   (23) 

where ,02 >h  and 2h  is the decision interval. The multivariate CUSUM 

chart independently proposed and developed by Crosier [6] is similar to, 
yet distinctively different from Pignatiello and Runger [15] MC1, 
CUSUM procedure. Crosier [6] “contracts” or “shrinks” each of his vectors 
of cumulative sums toward the zero vector by multiplying the cumulative 
sum by a scalar. The norm of the contracted cumulative sum is then 
compared with an upper control limit. It turns out that the ARL 
performance of crosier’s multivariate cumulative sum chart is similar to 
that Pignatiello and Runger [15] MC1 chart. Smith [17] developed 
another multivariate CUSUM procedure based on the likelihood ratio 
test. She also extended the procedure to study shifts in the covariance 
matrix of a multivariate normal process and to study shifts in the 
probability of multinominal process compared the statistical performance 
of the procedure with Alt and Smith [2], Crosier [6] and Pignatiello’s, 
method under the bivariate case using simulation. 

5. The Application 

Delta fertilizers and chemical industries is considered on of the 
leading companies in the field of fertilizers production in Egypt. About 
4500 employees are working for it, on the various managerial levels. 
Urea production is one of the major products of the company. The 
production of urea occurs through three stages, summarized as follows: 

A. High pressure stage 

In this stage, urea is produced through two reactions; the first 
reaction occurs by condensation of ammonia gas and carbon dioxide 
under high pressure and temperature for the sake of the production of 
intermediate material, known as Carbamate. The second reaction 
happens by separating the water from the Carbamate in order to achive 
urea. In this stage, the condensation of urea approximately 56%. 
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It contains 16 variables, these are: 

X1         E-201 Outlet temperature 

X2        Outlet cold 3NH  from E-201 

X3        2CO  to train 

X4        2CO  Pressure to synthesis 

X5        2CO  after E-22 

X6        R-201 

X7        Temperature in reactor R-201 

X8        Temperature in reactor R-201 

X9        Temperature in reactor R-201 

X10      Temperature in reactor R-201 

X11      Stripper level 

X12      Liquid leaving the stripper 

X13      Stream from E-204 to j-201 

X14      Conditioned water to scrubber E-204 

X15      Conditioned water from scrubber E-204 

X16      Stream from j-203 

Table analysis of laboratory in this stage: 

t1.1        3NH         Reactor outlet 

t1.2        2CO          Reactor outlet 

t1.3        UR            Reactor outlet 

t1.4        1B             Reactor outlet 

t1.5        OH2          Reactor outlet 
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t2.1        3NH           Stripper outlet 

t2.2        2CO           Stripper outlet 

t2.3        UR             Stripper outlet 

t2.4        1B              Stripper outlet 

t2.5        OH2           Stripper outlet 

B. Low pressure stage 

In this stage, the condensation of urea liquid rises from 56% to 71%. 
This happens through the decomposition of the remaining Carbamate 
and the elimination of water under low pressure. 

It contains seven variables, these are: 

y1           Urea solution from stripper E-202 

y2           Steam to E-205 

y3           Urea carbonate solution from stripper T-201 to E-205 

y4           Gas leaving T-201 

y5           Level in TK-201 

y6           P-203 

y7           Urea solution in TK-201 

Table analysis of laboratory in this stage: 

t3.1        3NH         D 202 Outlet 

t3.2        2CO          D 202 Outlet 

t3.3        UR            D 202 Outlet 

t3.4        1B             D 202 Outlet 

t3.5        OH2          D 202 Outlet 

t4.1        3NH          In TK 201 
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t4.2        2CO           In TK 201 

t4.3        UR            In TK 201 

t4.4        1B             In TK 201 

t4.5        OH2         In TK 201 

t5.1        3NH         In PI 302 

t5.2        2CO          In PI 302 

t5.3        UR            In PI 302 

C. Evaporation and prilling stage 

This stage occurs by two stage: 

(i) Evaporation stage 

In this stage, the condensation of urea rises from 71% to 98.7% 
approximately and the urea liquid trams forms to urea melt. This 
happens under high pressure and temperature. 

(ii) Prilling stage 

In this stage, the urea melt is through formed into prilling in the 
prilling tower. 

It contains four variables, these are: 

Z1         Urea solution from D-204 to E-209 

Z2         D-205 Vacuum 

Z3         Urea to prilling tower X-202 

Z4         E-211 Vacuum 

Table analysis of laboratory in this stage: 

t6.1         B1 

t6.2         OH2  
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t6.3         Pills > 3.35 

t6.4         Pills 3.35: 2.4 

t6.5         Pills 2.4 : 1.4 

t6.6         Pills 1.4 :1.0 

t6.7         Pills < 1.0 

t6.8         UR 

5.1. Data description 

For the application of multivariate quality control, chart data 
originate from urea production process, which consists of the three stages 
and the analysis of laboratory, which discussed above. 

The number of the sample is 732 observations taken per hour. 

The advantages of this sample that, it has several variables and 
several stage of the production. This advantage of the production is the 
basic reason for choosing this production to allow us to study the 
multivariate quality control charts. 

In this application, we shall introduce the most common using 
technique of multivariate quality control chart; MCUSUM chart. 

A MCUSUM chart consists of: 

● Plotted points, each of which represents the multivariate statistic 
for each observation. 

● A center line (green), which is the median of the theoretical 
distribution of multivariate statistic. 

● Control limits (red), which provide a visual means for assessing 
whether the process is in-control. The control limits represent the 
expected variation. 

MINITAB marks points outside of the control limits with a red 
symbol. 
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(a) MCUSUM chart of X16;X1; …  and t2.5;t1.1; …  

Test results for MCUSUM chart of X16;;X1 …  and 5.2t;;1.1t …  

TEST. One point beyond control limits. 

Test failed at points: (Less than LCL) 
114 118 123 128 133 134 138 140 143 147 

151 156 161 166 167 171 173 349 352 353 

354 361 373 374 378 384 385 386 576 578 

582 586 590 594 598 600 604 608 612 616 

620 624 626 630 634 638 642 646 650 652 

656 660         

Test failed at points: (Greater than UCL) 
13 20 30 40 43 45 48 50 52 56 

60 66 80 100 245 247 250 252 254 259 

261 265 276 448 458 483 636 647 657 658 

663 664 703 714 715 718 721 724 727 730 

 

Figure 2. MCUSUM chart of X16;;X1 …  and .5.2t;;1.1t …  
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We can summarize the MCUSUM chart of X16;;X1 …  and t2.5;;t1.1 …  
as follows: 

● The lower and upper control limits are 9.7 and 52, respectively. 
Therefore, we expect the MCUSUM statistics to fall between 9.7 and 52. 
The center line or median, is 25.3. 

● Test results indicate that 52 point less than LCL, for example, 
point 114 exceeds the lower control limit. 

● Test results indicate that 40 points greater than UCL, for example, 
the test results indicate that point 13 exceeds the upper control limit. 

● Test results indicate 92 point through beyond the control limits. 
Then the out-of-control rate 12.6% and the in-control rate 87.4%. 

(b) MCUSUM chart of y7;y1; …  and t4.5;t3.1; …  

Test results for MCUSUM chart of y7;;y1 …  and 5.4t;;1.3t …  

TEST. One point beyond control limits. 

Test failed at points: (Greater than UCL) 

28 91 114 130 150 200 250 256 264 268 

551 703 714 715 718 721 724 727 730  

 

Figure 3. MCUSUM chart of 7y;;1y …  and .5.4t;;1.3t …  
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We can summarize the MCUSUM chart of 7y;;1y …  and 5.4t;;1.3t …  

as follows: 

● The lower and upper control limits are 0.2 and 43.6, respectively. 
Therefore, we expect the MCUSUM statistics to fall between 0.2 and 
43.6. The center line, or median, is 19.3. 

● Test results indicate that 19 point greater than UCL, for example, 
test results indicate that point 91 exceeds the upper control limit. 

● Test results indicate 19 point that are beyond the control limit. 
Then the out of control rate 2.59% and the in-control rate 97.41%. 

(c) MCUSUM chart of Z4;Z1; …  and t6.8;t6.1; …  

Test results for MCUSUM chart of 4Z;;Z1 …  and 8.6t;;1.6t …  

TEST. One point beyond control limits. 

Test failed at points: (Greater than UCL) 

245 248 250 252 254 259 261 265 269 272 

276 280 284 489 491 493 495 497 515 517 

519          

 

Figure 4. MCUSUM chart of 4Z;;1Z …  and .8.6t;;1.6t …  
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We can summarize the MCUSUM chart of 4Z;;1Z …  and 8.6t;;1.6t …  

as follows: 

● The lower and upper control limits are 2.37 and 31.63, respectively. 
Therefore, we expect the MCUSUM statistics to fall between 2.37 and 
31.63. The center line, or median, is 11.35. 

● Test results indicate that 21 point greater than UCL, for example, 
test results indicate that point 245 exceeds the upper control limit. 

● Test results indicate 21 point that are beyond the control limit. 
Then the out of control rate 2.87% and the in-control rate 97.13%. 

5.2. Test results of the application 

The application is shown that in high process stage, test results of 
MCUSUM chart indicate that the out-of-control percentage 87.4% and 
the in-control percentage 12.6%, and it shown that in low process stage, 
test results of MCUSUM chart indicate that the out-of-control percentage 
2.59% and the in-control percentage 97.41%. 

It is shown that in the evaporation and prilling stage, test results of 
MCUSUM chart indicates that the out-of-control percentage 2.87% and 
the in-control percentage 97.13%. 

6. Conclusions 

Multivariate quality control charts are a type of variables control 
that how correlated, or dependent, variables jointly affect a process or 
outcome. The multivariate quality control charts are powerful and simple 
visual tools for determining whether the multivariate process is in-
control or out-of-control. In the other words, control charts can help us to 
determine whether the process average (center) and process variability 
(spread) are operating at constant levels. Control charts help us focus 
problem-solving efforts by distinguishing between common and 
assignable cause variation. Multivariate control chart plot statistical 
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from more than one related measurement variable. The multivariate 
control chart shows how several variables jointly influence a process or 
outcome. 

It is demonstrated that if the data include correlated variables the 
use of separate control chart is misleading because the variables jointly 
affect the process. If we use separate univariate control chart in a 
multivariate situation, type I error and probability of a point correctly 
plotting in- control are not equal to their expected values the distortion of 
those values increases with the number of measurement variables. 

It is shown that multivariate control chart has several advantages in 
comparison with multiply univariate charts: 

● The actual control region of the related variables is represented. 

● We can maintain specification type I error. 

● A signal control limit determines whether the process is in control. 

● Multivariate control chart simultaneously monitor two or more 
correlated variables. To monitor more than one variable using univariate 
charts, we need to create a univariate charts for each variable. 

● The scale on multivariate control charts unrelated to the scale of 
any of the variables. 

● Out-of-control signals in multivariate charts do not reveal which 
variable or combination of variables cause the signal. 

A multivariate control chart consists of: 

● Plotted points, each for which represents a rational subgroup of 
data sampled from the process, such as a subgroup mean vector 
individual observation, or weighted statistic. 

● A center line, which represents the expected value of the quality 
characteristics for all subgroups. 
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● Upper and lower control limits (UCL and LCL), which are set a 
distance above and below the center line. These control limits provide a 
visual display for the expected amount for variation. The control limits 
are based on the actual behaviour of the process, not the desired 
behaviour or specification limits. A process can be in control and yet not 
be capable of meeting requirements. 

The MCUSUM: 

● It is shown that the MCUSUM chart is a multivariate quality 
control chart, has the advantage of detecting small shifts in the process 
mean. 

● The MCUSUM chart used to determine whether the process mean 
vector for two or more variables is in-control. 

● The MCUSUM charts allow us to simultaneously monitor whether 
two or more related variables are in-control. 

Finally, the company should use MCUSUM quality control chart to 
monitor the quality of the urea production. 

Too, the company should use the MCUSUM chart to determine 
variables which causes the out-of-control signals. 
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