Journal of Algebra, Number Theory: Advances and Applications

Volume 15, Number 2, 2016, Pages 141-146 Available at http://scientificadvances.co.in

DOI: http://dx.doi.org/10.18642/jantaa_7100121614

THE INTRODUCTION OF FI- \overline{Z} -LIFTING MODULES

TAYYEBEH AMOUZEGAR

Department of Mathematics
Quchan University of Advanced Technology
Quchan
Iran

e-mail: t.amouzgar@qiet.ac.ir

Abstract

In this note, we introduce $\operatorname{FI-}\overline{Z}$ -lifting modules and prove some properties of them. In particular, we show that if module R_R is $\operatorname{FI-}\overline{Z}$ -lifting, then R/I has a projective \overline{Z} -cover for every two sided ideal I of R.

1. Introduction

Throughout this paper, R will denote an arbitrary associative ring with identity and all modules will be unitary right R-modules. In [5], Talebi and Vanaja defined $\overline{Z}(M)$ as follows:

$$\overline{Z}(M) = \operatorname{Re}(M, \mathcal{S}) = \bigcap \{ \operatorname{Ker}(g) \mid g \in \operatorname{Hom}(M, L), L \in \mathcal{S} \},$$

where S denotes the class of all small modules.

2010 Mathematics Subject Classification: 16D60, 16D99.

Keywords and phrases: fully invariant submodule, \overline{Z} -lifting modules, FI- \overline{Z} -lifting modules.

Received December 30, 2015

© 2016 Scientific Advances Publishers

They called M a cosingular (noncosingular) module if $\overline{Z}(M) = 0$ $(\overline{Z}(M) = M)$.

Let $M \in \operatorname{Mod} R$. We recall that A is a \overline{Z} -coessential submodule of B in M if $B/A \subseteq \overline{Z}(M/A)$. Recall that a submodule K of M is called fully invariant (denoted by $K \unlhd M$) if $\lambda(K) \subseteq K$ for all $\lambda \in End_R(M)$. A module M is called \overline{Z} -lifting if for every submodule K of M, there is a decomposition $K = A \oplus B$, such that A is a direct summand of M and $B \subseteq \overline{Z}(M)$.

We mainly study FI- \overline{Z} -lifting modules in this paper. We call M is $FI-\overline{Z}$ -lifting if for every fully invariant submodule K of M, there is a decomposition $K=A\oplus B$, such that A is a direct summand of M and $B\subseteq \overline{Z}(M)$. In this note, we show that FI- \overline{Z} -lifting modules are closed under finite direct sums. We prove that if module R_R is FI- \overline{Z} -lifting, then R/I has a projective \overline{Z} -cover for every two sided ideal I of R.

2. FI- \overline{Z} -Lifting Modules

Lemma 2.1 (See [3, Lemma 1.1]). Let M be a module. Then:

- (1) Any sum or intersection of fully invariant submodules of M is again a fully invariant submodule of M (in fact, the fully invariant submodules form a complete modular sublattice of the lattice of submodules of M).
- (2) If $X \subseteq Y \subseteq M$ such that Y is a fully invariant submodule of M and X is a fully invariant submodule of Y, then X is a fully invariant submodule of M.
- (3) If $M = \bigoplus_{i \in I} X_i$ and S is a fully invariant submodule of M, then $S = \bigoplus_{i \in I} \pi_i(S) = \bigoplus_{i \in I} (X_i, \cap S)$, where π_i is the i-th projection homomorphism of M.

(4) If $X \subseteq Y \subseteq M$ such that X is a fully invariant submodule of M and Y/X is a fully invariant submodule of M/X, then Y is a fully invariant submodule of M.

We note that if $M=\bigoplus_{i=1}^n M_i$ and N is a fully invariant submodule of M, then $N=\bigoplus_{i=1}^n (N\cap M_i)$ and $N\cap M_i$ is a fully invariant submodule of M_i .

- **Lemma 2.2** (See [7, Lemma 3.1]). Let N be a module. Then the following are equivalent:
- (a) For every submodule K of N, there is a decomposition $K = A \oplus B$, such that A is a direct summand of N and $B \subseteq \overline{Z}(N)$.
- (b) For every submodule K of N, there is a direct summand A of N such that $A \subseteq K$ and $K / A \subseteq \overline{Z}(N/A)$.
- (c) For every submodule K of N, there is a decomposition $N = A \oplus B$ such that $A \subseteq K$ and $B \cap K \subseteq \overline{Z}(N)$.

A module N is called \overline{Z} -lifting if it satisfies one of the equivalent conditions of Lemma 2.2. It is clear that every semisimple module is \overline{Z} -lifting.

A module N is called \overline{Z} -hollow if for every $A \leq N$, $A \leq \overline{Z}(N)$. It is obvious that every \overline{Z} -hollow module is \overline{Z} -lifting but it is not lifting. If every simple submodule is small, then every \overline{Z} -lifting module is lifting and if every small submodule is simple, then every lifting module is \overline{Z} -lifting.

Proposition 2.3. Let N be a module. The following are equivalent:

(1) For every fully invariant submodule K of N, there is a decomposition $K = A \oplus B$, such that A is a direct summand of N and $B \subseteq \overline{Z}(N)$.

- (2) For every fully invariant submodule K of N, there is a direct summand A of N such that $A \subseteq K$ and $K/A \subseteq \overline{Z}(N/A)$.
- (3) For every fully invariant submodule K of N, there is a decomposition $N = A \oplus B$ such that $A \subseteq K$ and $B \cap K \subseteq \overline{Z}(N)$.
- **Proof.** (1) \Rightarrow (2) Let K be a fully invariant submodule of N. By hypothesis, there exists a direct summand A of N and $B \subseteq \overline{Z}(N)$ such that $K = A \oplus B$. Now $N = A \oplus A'$ for some submodule A' of N. Consider the natural epimorphism $\pi: N \to N/A$. Then $\pi(B) = (B+A)/A = K/A \subseteq \overline{Z}(N/A)$. Therefore N is FI- \overline{Z} -lifting module.
 - $(2) \Rightarrow (3)$ By [7, Lemma 3.1].
- (3) \Rightarrow (1) Let K be a fully invariant submodule of N. By hypothesis, there is a decomposition $N=A\oplus B$ such that $A\subseteq K$ and $B\cap K\subseteq \overline{Z}(N)$. Therefore $K=A\oplus (K\cap B)$, as required.

A module N is called $FI-\overline{Z}$ -lifting if it satisfies one of the equivalent conditions of Proposition 2.3. Clearly, semisimple modules and \overline{Z} -lifting modules are $FI-\overline{Z}$ -lifting.

Theorem 2.4. Let $N = \bigoplus_{i=1}^{n} N_i$ be a direct sum of $FI - \overline{Z}$ -lifting modules. Then N is $FI - \overline{Z}$ -lifting.

Proof. Let $K ext{ } ext{$\leq$ N}$. Then $K = \bigoplus_{i=1}^n (K \cap N_i)$ and $K \cap N_i$ is a fully invariant submodule of N_i . As each N_i is $\text{FI-$\overline{Z}$-lifting}$ we have $K \cap N_i = A_i \oplus B_i$, where A_i is a direct summand of N_i and $B_i \subseteq \overline{Z}(N_i)$. Put $A = \bigoplus_{i=1}^n A_i$ and $B = \bigoplus_{i=1}^n B_i$. Then $K = A \oplus B$, where A is a direct summand of N and $B = \bigoplus_{i=1}^n B_i \subseteq \bigoplus_{i=1}^n \overline{Z}(N_i) = \overline{Z}(\bigoplus_{i=1}^n N_i) = \overline{Z}(N)$.

Corollary 2.5. If N is a finite direct sum of \overline{Z} -lifting modules, then N is FI- \overline{Z} -lifting.

Let N be a module. We call an epimorphism $f: P \to N$ a projective \overline{Z} -cover of N if P is projective and $\operatorname{Ker}(f) \subseteq \overline{Z}(P)$.

Theorem 2.6. Let P be a projective module. If P is $FI-\overline{Z}$ -lifting, then P/A has a projective \overline{Z} -cover for every fully invariant submodule A of P.

Proof. Suppose P is a projective $\operatorname{FI-}\overline{Z}$ -lifting module and A is a fully invariant submodule of P. Then $A = X \oplus S$, where X is a direct summand of P and $S \subseteq \overline{Z}(P)$. Suppose $P = X \oplus Y$. As $S \subseteq \overline{Z}(P)$, $(X+S)/X \subseteq (X+\overline{Z}(P))/X \subseteq \overline{Z}(P/X)$. Hence, the natural map $f: P/X \to P/(X+S) = P/A$ is a projective \overline{Z} -cover.

Corollary 2.7. Suppose R is a ring. If module R_R is $FI-\overline{Z}$ -lifting, then R/I has a projective \overline{Z} -cover for every two sided ideal I of R.

Proposition 2.8. Let N be a FI- \overline{Z} -lifting module. Then every fully invariant submodule of $N/\overline{Z}(N)$ is a direct summand.

Proof. Let $K/\overline{Z}(N)$ be a fully invariant submodule of $N/\overline{Z}(N)$. Then K is a fully invariant submodule by Lemma 2.1. By hypothesis, there is a decomposition $N=N_1\oplus N_2$ such that $N_1\subseteq K$ and $K\cap N_2\subseteq \overline{Z}(N)$. Thus $N/\overline{Z}(N)=(K/\overline{Z}(N))\oplus ((N_2+\overline{Z}(N))/\overline{Z}(N))$, as required.

Acknowledgement

This work was supported by Quchan University of Advanced Technology.

References

- F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1992.
- [2] K. Al-Takhman, C. Lomp and R. Wisbaure, τ-complemented and τ-supplemented modules, Algebra and Discrete Mathematics 3 (2006), 1-15.
- [3] G. F. Birkenmeier, B. J. Muller and S. T. Rizvi, Modules in which every fully invariant submodule is essential in a direct summand, Comm. Algebra 30 (2002), 1395-1415.
- [4] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules, Frontiers in Mathematics, Birkhäuser Verlag, 2006.
- [5] Y. Talebi and N. Vanaja, The torsion theory cogenerated by M-small modules, Comm. Alg. 30(3) (2002), 1449-1460.
- [6] Y. Talebi and T. Amoozegar, Strongly FI-lifting modules, International Electronic J. of Algebra 3 (2008), 75-82.
- [7] R. Tribak and D. Keskin, On \overline{Z}_M -semiperfect modules, East-West. Journal of Mathematicals 8 (2006), 193-203.