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Abstract

This paper presents a non-classical internal polar continuum theory for finite deformation of
isotropic, homogeneous compressible and incompressible solid continua. The classical con-
tinuum theories only incorporate partial physics of deformation in the thermodynamic frame-
work. Since the Jacobian of deformation JJJJJJJJJ is fundamental measure of deformation in solid
continua, JJJJJJJJJ in its entirety must be incorporated in the thermodynamic framework. Polar de-
composition of JJJJJJJJJ into right stretch tensor SSSrrrSSSrrrSSSrrr and pure rotation tensor RRRRRRRRR shows that entirety of JJJJJJJJJ

implies entirety of SSSrrrSSSrrrSSSrrr and RRRRRRRRR. The classical continuum theories for isotropic and homogeneous
solid continua are derived purely using SSSrrrSSSrrrSSSrrr , thus ignoring the influence of RRRRRRRRR altogether. The
purpose of this research is to present a new and more complete thermodynamic framework for
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finite deformation of solids that incorporates complete deformation physics described by JJJJJJJJJ.
This can be accomplished by incorporating the additional physics due to RRRRRRRRR in the current the-
ories as these theories already contain the physics due to SSSrrrSSSrrrSSSrrr . We note that the rotation tensor
RRRRRRRRR results due to deformation of solid continua, hence arises in all deforming solid continua.
Thus, this theory can be referred to as internal polar non-classical theory for solid continua.
The use of internal polar non-classical is appropriate as the theory considers internal rota-
tions .If the varying internal rotations and the rotation rates are resisted by the solid continua,
then there must exist internal moments that are conjugate to the rotations which together with
rotations and rotation rates can result in additional energy storage, dissipation, and memory.
Derivations of conservation and balance laws are presented for internal polar non-classical con-
tinuum theory for solid continua for finite deformation. Necessity of additional conservation
and balance laws is discussed and their derivations are presented. The resulting mathemati-
cal model is compared with the mathematical models resulting from the current continuum
theories for finite deformation to illustrate the differences in them due to incorporating the ad-
ditional physics associated with RRRRRRRRR and thereby incorporating JJJJJJJJJ in its entirety. The non-classical
continuum theory for solid continua presented here is not to be confused with the micropolar
theories, stress-couple theories, or strain gradient theories as demonstrated in this paper. The
objective of the theory presented here is to present new thermodynamic framework for solid
continua with finite deformation that is consistent with the deformation physics, which neces-
sitates that JJJJJJJJJ in its entirety must form the basis for derivation of conservation and balance laws.
Since this internal polar non-classical continuum theory considers additional physics due to RRRRRRRRR,
the resulting thermodynamic framework is more complete and consistent with the physics of
deformation compared to the currently used thermodynamic framework.

1.Introduction, literature review, and scope of present work

In Lagrangian description of homogeneous, isotropic deforming solid matter the
Jacobian of deformation (JJJJJJJJJ) is a fundamental measure of deformation in the solid mat-
ter. Thus in a consistent thermodynamic framework for deforming solid continua, the
Jacobian of deformation in its entirety must form the basis for the derivation of con-
servation and balance laws. In general the Jacobian of deformation varies between
material points, i.e., it varies between a material point and its neighbors. Addition-
ally measures of finite deformation must be considered. Totality of the Jacobian of
deformation can be incorporated in the derivations of conservation and balance laws
in perhaps more than one way. However, the simplest approach is to perhaps consider
polar decomposition of JJJJJJJJJ into stretch tensor (right SSSrrrSSSrrrSSSrrr or left Sl) and pure rotation tensor
RRRRRRRRR. If the Jacobian of deformation JJJJJJJJJ varies between the neighboring material points so
do SSSrrrSSSrrrSSSrrr (or SSSlllSSSlllSSSlll) and RRRRRRRRR. Influence of varying SSSrrrSSSrrrSSSrrr between material points for finite strain
is incorporated in the current classical continuum theories by considering appropriate
strain measures such as Green’s strain tensor, a quadratic function of SSSrrrSSSrrrSSSrrr, while the
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influence of the varying rotation tensor RRRRRRRRR between the material points is completely
ignored.

If the varying rotation (due to varying JJJJJJJJJ) between neighboring material points is
resisted by the solid matter, then it can result in conjugate moment tensor. Varying ro-
tations, rotation rates, and the conjugate moment tensor can result in additional energy
storage, dissipation, and memory. This physics exists in all homogeneous, isotropic
deforming solid matter and must be considered in the derivation of the conservation
and balance laws in addition to SSSrrrSSSrrrSSSrrr (or Green’s strain) if JJJJJJJJJ in its entirety is to form
the basis for the thermodynamic framework. The rotations represented by RRRRRRRRR are due
to Jacobian of deformation JJJJJJJJJ, hence internal to the deforming matter, and completely
defined by JJJJJJJJJ. Thus the name internal polar non-classical continuum theory for finite
deformation. The two most significant aspects of the work presented in this paper are:
(i) consideration of finite deformation and (ii) incorporating JJJJJJJJJ, i.e., SSSrrrSSSrrrSSSrrr and RRRRRRRRR in their
entirety in the derivation of conservation and balance laws.

In recent papers Surana et al. [1, 2] presented conservation and balance laws for
internal polar non-classical continuum theory for solid matter based on small strain,
small deformation assumption. With these assumptions the distinction between co-
and contravariant bases disappears. Authors also presented comprehensive literature
review on related published works. In the following we present a brief literature re-
view on micropolar theories, nonlocal theories, and stress couple theories. A compre-
hensive treatment of micropolar theories can be found in the works by Eringen [3–11].
The concept of couple stresses is presented by Koiter [12]. Balance laws for micromor-
phic materials are presented in [13]. The micropolar theories consider micro deforma-
tion due to micro constituents in the continuum. In [14–16] by Reddy et al. and [17]
by Zang et al. nonlocal theories are presented for bending, buckling and vibration of
beams, beams with nanocarbon tubes and bending of plates. The nonlocal effects are
believed to be incorporated due to the work presented by Eringen [8] in which defi-
nition of a nonlocal stress tensor is introduced through integral relationship using the
product of macroscopic stress tensor and a distance kernel representing the nonlo-
cal effects. The polar continuum theory for solid continua presented in this paper is

strictly local and non-micropolar. The concept of couple stresses was introduced by
Voigt in 1881 by assuming a couple or moment per unit area on the oblique plane of
the deformed tetrahedron in addition to the stress or force per unit area. Since the in-
troduction of this concept many published works have appeared. We cite some recent
works, most of which are related to micropolar stress couple theories. Authors in [18]
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report experimental study of micropolar and couple stress elasticity of compact bones
in bending. Conservation integrals in couple stress elasticity are reported in [19]. A
microstructure-dependent Timoshenko beam model based on modified couple stress
theories is reported by Ma et al. [20]. Further account of couple stress theories in
conjunction with beams can be found in [21–23]. Treatment of rotation gradient de-
pendent strain energy and its specialization to Von Kármán plates and beams can be
found in [24]. Other accounts of micropolar elasticity and Cosserat modeling of cellu-
lar solids can be found in [25–27]. We remark that in [18–27], Lagrangian description
is used for solid matter, however the mathematical descriptions are purely derived
using strain energy density functional and principle of virtual work. This approach
works well for elastic solids in which mechanical deformation is reversible. Extension
of these works to thermoviscoelastic solids with and without memory is not possible.
In such materials the thermal field and mechanical deformation are coupled due to the
fact that the rate of work results in rate of entropy production. In [28] Altenbach and
Eremeyev present a linear theory for micropolar plates. Each material point is regarded
as a small rigid body with six degrees of freedom. Kinematics of plates is described
using the vector of translations and the vector of rotations as dependent variables.
Equations of equilibrium are established in R3 and R2. Strain energy density func-
tion is used to present linear constitutive theory. The mathematical models of [29] are
extended by the same authors to present strain rate tensors and the constitutive equa-
tions for inelastic micropolar materials. In [30], authors consider the conditions for
the existence of the acceleration waves in thermoelastic micropolar media. The work
concludes that the presence of the energy equation with Fourier heat conduction law
does not influence the wave physics in thermoelastic micropolar media. Thus, from
the point of view of acceleration waves in thermoelastic polar media, thermal effects,
i.e., temperature can be treated as a parameter. In [31], authors present a collection of
papers related to the mechanics of continua dealing with micro-macro aspects of the
physics (largely related to solid matter). In [32] a micro-polar theory is presented for
binary media with applications to phase-transitional flow of fiber suspensions. Such
flows take place during the filling state of injection molding of short fiber reinforced
thermoplastics. A similarity solution for boundary layer flow of a polar fluid is given
in [33]. In specific the paper borrows constitutive equations that are claimed to be valid
for flow behavior of a suspension of very fine particles in a viscous fluid. Kinematics
of micropolar continuum is presented in [34]. Material symmetry groups for linear
Cosserat continuum and non-linear polar elastic continuum are considered in [35, 36].
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Grekova et al. [37–39] consider various aspects of wave processes in ferromagnetic
medium and elastic medium with micro-rotations as well as some aspects of linear
reduced Cosserat medium. In [40–58] various aspects of the kinematics of micropo-
lar theories, stress couple theories, etc. are discussed and presented including some
applications to plates and shells.

2.Notations, definitions, bases, measures, and preliminary considerations

2.1.Notations, some basic definitions

We use an overbar to express quantities in the current configuration in Eulerian
description, i.e., all quantities with overbars are functions of deformed coordinates x̄i

and time t. Quantities without an overbar imply Lagrangian description of the quanti-
ties in the current configuration, i.e., these are functions of undeformed coordinates xi

and time t. We use the configuration at time t = t0 = 0, commencement of evolution,
to be the reference configuration. Thus, xi ; i = 1,2,3 and x̄xx̄xxx̄xxx are the coordinates of a
material point in the reference and current configurations, respectively, both measured
in a fixed Cartesian x-frame. This paper only considers Lagrangian description, hence
all measures are expressed in terms of coordinates of the material points in the unde-
formed configuration (same as reference configuration in the present work) xxxxxxxxx and time
t. We use JJJJJJJJJ = eeeeeeeeei⊗eeeeeeeee j

∂ x̄ j
∂xi

or [J] =
[

∂{x̄}
∂{x}

]
to be the Jacobian of deformation, a covariant

measure in Lagrangian description. Likewise, J̄JJJJJJJJ = eeeeeeeeei⊗eeeeeeeee j
∂x j
∂ x̄i

or [J̄] =
[

∂{x}
∂{x̄}

]
is also

Jacobian of deformation but it is contravariant measure in Eulerian description.

The existence of varying rotations at the neighboring material points (evident from
polar decomposition of the Jacobian of deformation) when resisted by the matter can
result in additional energy storage or dissipation in the deforming matter. Just like
points of application of forces when displaced result in work, the moments through
rotations result in work as well. Thus, in the development of the non-classical internal

polar continuum theory presented here we consider existence of internal rotations and

moments independent of forces and displacements. Due to finite deformation, unde-
formed and the corresponding deformed volumes are not the same as x̄xxxxxxxx 6= xxxxxxxxx. Thus, care
is needed in choosing various measures that describe deformation of the solid con-
tinua. Consider a volume of matter V˜ in the reference configuration (Figure 1(a)) with
closed boundary ∂V˜. The volume V is isolated from V˜ by a hypothetical surface ∂V

as in cut principle of Cauchy. Consider a tetrahedron T1 shown in Figure 1(a) such that
its oblique plane is part of ∂V and its other three planes are orthogonal to each other
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and parallel to the planes of the x-frame. Upon deformation V˜ and ∂V˜ occupy V̄˜ and
∂V̄˜ and likewise V and ∂V deform into V̄ and ∂V̄ . The tetrahedron T1 deforms into
T̄1 whose edges (under finite deformation) are nonorthogonal covariant base vector g̃ggggggggi.
The plane of the tetrahedron formed by the covariant base vectors are flat but obviously
nonorthogonal to each other. We assume the tetrahedron to be the small neighborhood
of material point ō so that assumption of the oblique plane ĀB̄C̄ being flat but still part
of ∂V̄ is valid. When the deformed tetrahedron is isolated from volume V̄ it must be
in equilibrium under the action of disturbance on the surface of ĀB̄C̄ from the volume
surrounding V̄ and the internal fields that act on the flat faces which equilibrate with
the mating faces in volume V̄ when the tetrahedron T̄1 is placed back in the volume V̄ .
Consider deformed tetrahedron T̄1. Let P̄PPPPPPPP be the average stress on plane ĀB̄C̄, M̄MMMMMMMM be the
average moment per unit area also on plane ĀB̄C̄ henceforth referred to as moment for
short and n̄nnnnnnnn be the normal to the face ĀB̄C̄. P̄PPPPPPPP, M̄MMMMMMMM, n̄nnnnnnnn all have different directions when
the deformation is finite.

x2

x1o
• Undeformed tetrahedron (T1)

the reference configuration

x̃1

M̄MMMMMMMM

P̄PPPPPPPP

x̃2n̄nnnnnnnn
C̄
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g̃gggggggg3

Āg̃gggggggg1

g̃gg222ggg222ggg222
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ō
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(a) undeformed or reference configuration (b) current configuration at time t > 0 (or t0)

T1

∂V̄

o
(t = t0 = 0)

x2

x3

x1

Figure 1: Reference and current configurations for a deforming volume of matter

2.2.Covariant and contravariant bases

The edges of the deformed tetrahedron T̄1 are covariant base vectors g̃ggggggggi that are
tangent to the deformed material lines at ō. The faces of the tetrahedron are formed by
the covariant base vectors g̃gggggggg2,g̃gggggggg3, g̃gggggggg3,g̃gggggggg1 and g̃gggggggg1,g̃gggggggg2. Following [59–61] we can define

g̃ggggggggi =
∂ x̄k

∂xi
eeeeeeeeek (2.1)

xi and x̄k being coordinates of a material point in the reference configuration and
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current configuration respectively. If [J] is the Jacobian of deformation

[J] =
∂{x̄}
∂{x}

or Ji j =
∂ x̄i

∂x j
(2.2)

then the columns of [J] are covariant base vectors g̃ggggggggi. The contravariant basis are
reciprocal to the covariant basis [59–61] are defined by the base vectors g̃ggggggggi

g̃gggggggg j =
∂x j

∂ x̄l
eeeeeeeeel (2.3)

We note that
g̃ggggggggi · g̃gggggggg j = δi j (2.4)

Alternatively to (2.3) we can also define g̃ggggggggi as

g̃gggggggg1 =
g̃gggggggg2× g̃gggggggg3

g̃gggggggg1 · (g̃gggggggg2× g̃gggggggg3)

g̃gggggggg2 =
g̃gggggggg3× g̃gggggggg1

g̃gggggggg2 · (g̃gggggggg3× g̃gggggggg1)

g̃gggggggg3 =
g̃gggggggg1× g̃gggggggg2

g̃gggggggg3 · (g̃gggggggg1× g̃gggggggg2)

(2.5)

The volume of the parallelepiped framed by g̃ggggggggi in the current configuration is given
by (same as denominators in (2.5))

V̄ = g̃gggggggg1 · (g̃gggggggg2× g̃gggggggg3) = g̃gggggggg2 · (g̃gggggggg3× g̃gggggggg1) = g̃gggggggg3 · (g̃gggggggg1× g̃gggggggg2) (2.6)

We note that g̃ggggggggi in (2.3) as well as g̃gggggggg j in (2.5) satisfy (2.4). Thus definitions of g̃gggggggg j

in (2.3) and (2.5) are exactly the same, as both definitions with (2.1) satisfy (2.4). We
note that g̃gggggggg1, g̃gggggggg2, g̃gggggggg3 are normal to the faces of the deformed tetrahedron formed by g̃gggggggg2,
g̃gggggggg3; g̃gggggggg3, g̃gggggggg1; g̃gggggggg1, g̃gggggggg2 covariant base vectors. Covariant and contravariant directions are
important in defining and choosing the correct measures of strains, stresses, moment
intensities, etc. Under the action of P̄PPPPPPPP and M̄MMMMMMMM on surface ĀB̄C̄ and the stress and moment
intensities on the faces of the tetrahedron formed by g̃gggggggg2, g̃gggggggg3; g̃gggggggg3, g̃gggggggg1; and g̃gggggggg1, g̃gggggggg2 base
vectors, the tetrahedron T̄1 is in equilibrium.

2.3.Definition of stress tensors

2.3.1.Contravariant Cauchy stress tensor

The definition of the stresses on the non-oblique faces of the tetrahedron in the
contravariant directions is the most natural way to define stress. Let σ̄σσσσσσσσ˜ (0) or σσσσσσσσσ˜ (0) be the
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contravariant stress tensor with components σ̄˜(0)i j or σ˜(0)i j and dyads g̃ggggggggi⊗ g̃gggggggg j. Compo-

nent σ̄˜(0)11 or σ˜(0)11 is in the g̃gggggggg1 direction on a face of the tetrahedron with unit exterior
normal g̃gggggggg1, i.e., on the g̃gggggggg1 face. Likewise σ̄˜(0)12 or σ˜(0)12 and σ̄˜(0)31 or σ˜(0)31 act on the g̃gggggggg1 and
g̃gggggggg3 faces in the g̃gggggggg2 and g̃gggggggg1 directions. Using the dyads g̃ggggggggi⊗ g̃gggggggg j or contravariance law of
transformation we can write

σσσσσσσσσ
(0) = g̃ggggggggi⊗ g̃gggggggg jσ˜(0)i j (2.7)

using (2.1) we can write

σσσσσσσσσ
(0) = eeeeeeeeei⊗eeeeeeeee jσ

(0)
i j

σ
(0)
i j = Jikσ˜(0)kl J jl

or [σ (0)]T = [J] [σ˜(0)] [J]T
(2.8)

σσσσσσσσσ (0) is the contravariant Cauchy stress tensor (Lagrangian) from which σ̄σσσσσσσσ
(0) can

be easily obtained by replacing [J] with [J̄]−1 and σσσσσσσσσ (0) with σ̄σσσσσσσσ
(0) in (2.8). Since the

dyads of σσσσσσσσσ (0) or σ̄σσσσσσσσ
(0) are eeeeeeeeei⊗eeeeeeeee j, the Cauchy principle holds between P̄PPPPPPPP and σ̄σσσσσσσσ

(0), i.e.,

P̄PPPPPPPP =
(

σ̄σσσσσσσσ
(0)
)T
· n̄nnnnnnnn (2.9)

2.3.2.Covariant Cauchy stress tensor

Instead of using contravariant directions and stress components σσσσσσσσσ˜ (0) and covariant
basis g̃ggggggggi we could use covariant stress components (σ˜(0))i j or (σ̄˜(0))i j and contravariant
basis g̃ggggggggi. Consideration of (σ˜(0))i j of course will require a different deformed tetrahe-
dron such that covariant vectors g̃ggggggggi are normal to its non-oblique faces. The adverse
consequences of choosing this measure of stress for finite deformation are discussed
in [61, 62]. Here we proceed using this measure as an alternative to the contravariant
stress measure. Using dyads g̃ggggggggi⊗ g̃gggggggg j and components (σ˜(0))i j we can write

σ̄σσσσσσσσ (0) = g̃ggggggggi⊗ g̃gggggggg j(σ˜(0))i j (2.10)

using (2.3) in (2.10) we can write
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σ̄σσσσσσσσ (0) = eeeeeeeeei⊗eeeeeeeee j
(
σ̄(0)

)
i j(

σ̄(0)
)

i j = J̄ki
(
σ˜(0))kl J̄l j

or [σ̄(0)] = [J̄]T [σ˜(0)][J̄]
(2.11)

σ̄σσσσσσσσ (0) is the covariant Cauchy stress tensor (Eulerian) from which σσσσσσσσσ (0) can be ob-
tained by replacing [J̄] with [J]−1 and σ̄σσσσσσσσ (0) with σσσσσσσσσ (0) in (2.11). Since the dyads of σ̄σσσσσσσσ (0)

are eeeeeeeeei⊗eeeeeeeee j, the Cauchy principle holds between P̄PPPPPPPP and σ̄σσσσσσσσ (0), i.e.,

P̄PPPPPPPP =
(
σ̄σσσσσσσσ (0)

)T · n̄nnnnnnnn (2.12)

Remark

The Cauchy stress tensors σσσσσσσσσ (0) or σ̄σσσσσσσσ
(0) and σσσσσσσσσ (0) or σ̄σσσσσσσσ (0) are nonsymmetric at this

stage and so are stress tensors σσσσσσσσσ˜ (0) and σσσσσσσσσ˜ (0). Following the details in [61] we can also
define Jaumann stress tensor (0)σ̄σσσσσσσσ J using σ̄σσσσσσσσ

(0) and σ̄σσσσσσσσ (0) stress measures.

2.4.Definitions of moment tensors

2.4.1.Contravariant Cauchy moment tensor

When the deformed tetrahedron with moment M̄MMMMMMMM (per unit area) on its oblique face
ĀB̄C̄ is isolated from volume V̄ , its non-oblique face will have existence of moments
(per unit area) on them. As in the case of stress, contravariant basis is the most natural
way to define these. Let mmmmmmmmm˜ (0) or m̄mmmmmmmm˜ (0) be the contravariant moment tensors with compo-
nents m˜(0)i j or m̄˜(0)i j and dyads g̃ggggggggi⊗ g̃gggggggg j. Component m˜(0)11 or m̄˜(0)11 is along g̃gggggggg1 direction on

a face of the tetrahedron with unit exterior normal g̃gggggggg1, i.e., on g̃gggggggg1 face. Likewise m˜(0)12

or m̄˜(0)12 and m˜(0)31 or m̄˜(0)31 act on g̃gggggggg1 and g̃gggggggg3 faces in the g̃gggggggg2 and g̃gggggggg1 directions. Using the
dyads g̃ggggggggi⊗ g̃gggggggg j or contravariance law of transformation we can write

mmmmmmmmm(0) = g̃ggggggggi⊗ g̃gggggggg jm˜(0)i j (2.13)

Using (2.1) we can write
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mmmmmmmmm(0) =eeeeeeeeeeeeeeeeeeeeeeeeeeei⊗eeeeeeeee jm
(0)
i j

m(0)
i j = Jikm˜(0)kl J jl

or [m(0)]T = [J] [m˜(0)] [J]T
(2.14)

mmmmmmmmm(0) is contravariant Cauchy moment tensor (Lagrangian description) from which
m̄mmmmmmmm(0) can be obtained by replacing [J] with [J̄]−1 and mmmmmmmmm(0) with m̄mmmmmmmm(0). Since the dyads
of mmmmmmmmm(0) or m̄mmmmmmmm(0) are eeeeeeeeei⊗eeeeeeeee j, based on Koiter [12], the Cauchy principle is assumed to
hold between M̄MMMMMMMM and m̄mmmmmmmm(0), i.e.,

M̄MMMMMMMM =
(

m̄mmmmmmmm(0)
)T
· n̄nnnnnnnn (2.15)

We need to establish whether m̄mmmmmmmm(0) is symmetric or not, thus at this stage m̄mmmmmmmm(0) is
not symmetric.

2.4.2.Covariant Cauchy moment tensor

Instead of using contravariant directions we could instead use covariant directions
with moment tensor components (m˜(0))i j and contravariant basis with dyads g̃ggggggggi⊗ g̃gggggggg j.
Consideration of (m˜(0))i j will of course require a different deformed tetrahedron such
that covariant vectors g̃ggggggggi are normal to its non-oblique faces. The adverse consequences
of choosing this measure are similar to those for the choice of (σ˜(0))i j for the stress
measure. Using the dyads g̃ggggggggi⊗ g̃gggggggg j with components (m˜(0))i j we can write

m̄mmmmmmmm(0) = g̃ggggggggi⊗ g̃gggggggg j (m˜(0))i j (2.16)

Using (2.2) we can write

m̄mmmmmmmm(0) = eeeeeeeeei⊗eeeeeeeee j
(
m̄(0)

)
i j(

m̄(0)
)

i j = J̄ki
(
m˜(0))kl J̄l j

or [m̄(0)] = [J̄]T
[
m˜(0)] [J̄]

(2.17)

m̄mmmmmmmm(0) is a covariant Cauchy moment tensor (Eulerian) from which mmmmmmmmm(0) can be ob-
tained by replacing [J̄] with [J]−1 and m̄mmmmmmmm(0) with mmmmmmmmm(0). Following Koiter and since the
dyads of m̄mmmmmmmm(0) are ēeeeeeeeei⊗ ēeeeeeeee j, the Cauchy principle holds between M̄MMMMMMMM and m̄mmmmmmmm(0), i.e.,
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M̄MMMMMMMM =
(
m̄mmmmmmmm(0)

)T · n̄nnnnnnnn (2.18)

As in the case of the contravariant moment tensor, m̄mmmmmmmm(0) is also a non-symmetric
Cauchy moment tensor in covariant basis unless established otherwise.

2.5.First and second Piola-Kirchhoff stress and moment tensors

In the Lagrangian description for deforming solid matter with finite deformation
and finite strain, the Cauchy stress tensors and the Cauchy moment tensors in contra-
and covariant bases must be transformed into corresponding Piola-Kirchhoff tensors.
Following [61] and assuming that σσσσσσσσσ (0) and σσσσσσσσσ (0) are nonsymmetric, we can derive the
following relationship for the corresponding second Piola-Kirchhoff stress tensors σσσσσσσσσ [0]

and σσσσσσσσσ [0], assuming the matter to be compressible.

[
σ
[0]]= |J|[J]−1[

σ
(0)]T [JT ]−1 (2.19)[

σ[0]
]
= |J|[J]T

[
σ(0)

]T
[J] (2.20)

The first Piola-Kirchhoff stress tensor (σσσσσσσσσ∗)[0] using contravariant Cauchy stress
tensor σσσσσσσσσ (0) can be expressed as

[
(σ∗)[0]

]T
= |J|

[
σ
(0)]T [JT ]−1 (2.21)

Covariant (σσσσσσσσσ∗)[0] due to covariant σσσσσσσσσ (0) is of little use as covariant stress descriptions
become non-physical, hence fail for finite deformation and finite strain [61, 62].

Following the same approach as used for stress tensors we can also derive expres-
sions for contravariant and covariant second Piola-Kirchhoff moment tensors using
mmmmmmmmm(0) and mmmmmmmmm(0), contravariant and covariant Cauchy moment tensors, and the first Piola-
Kirchhoff contravariant moment tensor (mmmmmmmmm∗)[0] using contravariant Cauchy moment
tensor mmmmmmmmm(0).

[
m[0]]= |J|[J]−1[m(0)]T [JT ]−1 (2.22)[
m[0]
]
= |J|[J]T

[
m(0)

]T
[J] (2.23)[

(m∗)[0]
]T

= |J|
[
m(0)]T [JT ]−1 (2.24)
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We remark that at this stage mmmmmmmmm(0) and mmmmmmmmm(0) are nonsymmetric, hence mmmmmmmmm[0] and mmmmmmmmm[0] are
nonsymmetric as well. (mmmmmmmmm∗)[0] is always nonsymmetric regardless of mmmmmmmmm(0). Just like
(σσσσσσσσσ∗)[0], the tensor (mmmmmmmmm∗)[0] is of little use as they are both nonphysical [61, 62].

2.6.Jacobian of deformation, internal rotations, their gradients and rates

2.6.1.Internal rotations, rotation matrix, and rotation gradients

In finite deformation a tetrahedron in the undeformed configuration with its or-
thogonal edges deforms into one in which the edges are non-orthogonal covariant base
vectors and the vectors normal to the faces of the deformed tetrahedron are contravari-
ant non-orthogonal base vectors that are reciprocal to the covariant base vectors. The
covariant and contravariant bases are fundamental in the measures of finite deforma-
tion, rotations, etc. Consider deformed coordinates x̄xxxxxxxx of a material point in the current
configuration with undeformed coordinates xxxxxxxxx in the reference configuration. Then

x̄xxxxxxxx = x̄xxxxxxxx(xxxxxxxxx) and xxxxxxxxx = xxxxxxxxx(x̄xxxxxxxx) (2.25)

Let us define JJJJJJJJJ as covariant Jacobian of deformation as its columns are covariant base
vectors and J̄JJJJJJJJ as contravariant Jacobian of deformation whose rows are contravariant
base vectors.

Covariant JJJJJJJJJ

(a) Internal rotations and rotation matrix

Consider decomposition of the Jacobian of deformation JJJJJJJJJ into symmetric and
skew-symmetric tensors.

[J] =
[

∂{x̄}
∂{x}

]
=
[

sJ
]
+
[

aJ
]

(2.26)

[
sJ
]
=

1
2
(
[J]+ [J]T

)
(2.27)

[
aJ
]
=

1
2
(
[J]− [J]T

)
(2.28)

Let {Θ}= [Θx1 ,Θx2 ,Θx3 ]
T be the components of the rotations about covariant axes

expressed as rotations about ox1, ox2, and ox3 axes of the x-frame, then we can write
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[
aJ] =

 0 Θx3 −Θx2

−Θx3 0 Θx1

Θx2 −Θx1 0

 (2.29)

in which

Θx1 =
1
2

(
∂u2

∂x3
− ∂u3

∂x2

)
; Θx2 =

1
2

(
∂u3

∂x1
− ∂u1

∂x3

)
; Θx3 =

1
2

(
∂u1

∂x2
− ∂u2

∂x1

)
(2.30)

Alternatively we can also derive (2.30) as follows.

∇∇∇∇∇∇∇∇∇×uuuuuuuuu = eeeeeeeeei×eeeeeeeee j
∂u j

∂xi
= ε i jkeeeeeeeeek

∂u j

∂xi
(2.31)

∇∇∇∇∇∇∇∇∇×uuuuuuuuu = eeeeeeeee1

(
∂u3

∂x2
− ∂u2

∂x3

)
+eeeeeeeee2

(
∂u1

∂x3
− ∂u3

∂x1

)
+eeeeeeeee3

(
∂u2

∂x1
− ∂u1

∂x2

)
(2.32)

∇∇∇∇∇∇∇∇∇×uuuuuuuuu = eeeeeeeee1(−2Θx1)+eeeeeeeee2(−2Θx2)+eeeeeeeee3(−2Θx3) (2.33)

ε i jk is the permutation tensor.

The sign differences between (2.30) and (2.33) are due to clockwise and coun-
terclockwise internal rotations and will only affect sign of M̄MMMMMMMM term in the balance of
angular momenta. If we use (2.30) as the definition of rotations then the term contain-
ing M̄MMMMMMMM in the balance of angular momenta must have negative sign. If the rotations in
(2.33) are defined as Θx1 , Θx2 , and Θx3 then the term containing M̄MMMMMMMM in the balance of
angular momenta must have positive sign. Regardless, the resulting equations and the
following derivations are not affected. We note that decomposition in (2.26) enables
explicit description of stretches and rotations contained in JJJJJJJJJ due to deformation of
solid matter. The stretch tensor and the rotation tensor can also be obtained using polar
decomposition of JJJJJJJJJ into right stretch tensor (SSSrrrSSSrrrSSSrrr) or left stretch tensor (SSSlllSSSlllSSSlll) and pure
rotation tensor (RRRRRRRRR) [59–61].

[J] = [R][Sr] = [Sl ][R] (2.34)

The stretch tensors SSSrrrSSSrrrSSSrrr and SSSlllSSSlllSSSlll are symmetric and positive-definite and the rotation ten-
sor RRRRRRRRR is orthogonal. Since RRRRRRRRR in (2.34) and ΘΘΘΘΘΘΘΘΘ in (2.30) are both obtained from the
same deformation in JJJJJJJJJ, these contain details of the same internal rotation physics but
in different forms. We make the following remarks.
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(i) RRRRRRRRR is rotation matrix, hence relates undeformed orthogonal frame to a new orthog-
onal rotated frame (due to deformation).

(ii) ΘΘΘΘΘΘΘΘΘ on the other hand contains rotation angles due to deformation about the axes
of the x-frame.

(iii) We note that determination of ΘΘΘΘΘΘΘΘΘ from RRRRRRRRR or determination of RRRRRRRRR from ΘΘΘΘΘΘΘΘΘ is not
necessary. Two different mathematical forms of rotation physics in RRRRRRRRR and ΘΘΘΘΘΘΘΘΘ is
sufficient. However, we do remark that this process of obtaining ΘΘΘΘΘΘΘΘΘ from RRRRRRRRR or
RRRRRRRRR from ΘΘΘΘΘΘΘΘΘ in general is not unique and may not even be possible without some
approximation [63–65].

(iv) It suffices to note that internal rotations at a material point present in JJJJJJJJJ can be
expressed either in RRRRRRRRR or in ΘΘΘΘΘΘΘΘΘ. Both forms contain mathematical description of
same physics, hence either can be used as deemed suitable, but determination of
ΘΘΘΘΘΘΘΘΘ from RRRRRRRRR or RRRRRRRRR from ΘΘΘΘΘΘΘΘΘ is not necessary.

(v) The internal rotation angles ΘΘΘΘΘΘΘΘΘ are present at every material point and are a result
of deformation. Between two neighboring material points the variation of ΘΘΘΘΘΘΘΘΘ is
perhaps small otherwise there may be permanent damage or separation between
them. Regardless of the magnitude of ΘΘΘΘΘΘΘΘΘ, these are strictly deterministic from aJJJJJJJJJ,
∇∇∇∇∇∇∇∇∇×uuuuuuuuu, or the polar decomposition.

(b) Internal rotation gradient tensor and its rates using JJJJJJJJJ

The covariant internal rotation tensor aJJJJJJJJJ is a tensor of rank two, hence we can
define

aJJJJJJJJJ = eeeeeeeeei⊗eeeeeeeee j
1
2

(
∂ x̄ j

∂xi
− ∂ x̄i

∂x j

)
(2.35)

Let ΘJJJJJJJJJ be the internal rotation gradient tensor, a tensor of rank three. Using (2.35) we
can define

ΘJJJJJJJJJ = eeeeeeeeek⊗eeeeeeeeei⊗eeeeeeeee j
1
2

∂

∂xk

(
∂ x̄ j

∂xi
− ∂ x̄i

∂x j

)
(2.36)

Alternatively (2.31) can be written as

aJJJJJJJJJ = ε i jleeeeeeeeel
1
2

(
∂ x̄ j

∂xi
− ∂ x̄i

∂x j

)
(2.37)
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and then
ΘJJJJJJJJJ = eeeeeeeeek⊗eeeeeeeeelε i jl

1
2

∂

∂xk

(
∂ x̄ j

∂xi
− ∂ x̄i

∂x j

)
(2.38)

In (2.35) the internal rotations aJJJJJJJJJ are expressed as a tensor of rank one (i.e., Θx1 ,
Θx2 , Θx3 as a vector), hence its gradient ΘJJJJJJJJJ appears as a tensor of rank 2. The repre-
sentation (2.37) is more appealing for matrix and vector representation given in the
following. Let

{Θ}= [Θx1 ,Θx2 ,Θx3 ]
T (2.39)

Then we define rotation gradient tensor ΘJJJJJJJJJ and its decomposition into symmetric and
skew-symmetric tensors Θ

s JJJJJJJJJ and Θ
aJJJJJJJJJ.

[
ΘJ
]
=

[
∂{Θ}
∂{x}

]
=
[

Θ
s J
]
+
[

Θ
a J
]

(2.40)[
Θ
s J
]
=

1
2

([
ΘJ
]
+
[

ΘJ
]T
)

(2.41)[
Θ
a J
]
=

1
2

([
ΘJ
]
−
[

ΘJ
]T
)

(2.42)

We can also define the velocity gradients as

∂{v}
∂{x}

= [L] = [D]+ [W ] (2.43)

in which

[D] =
1
2
(
[L]+ [L]T

)
(2.44)

[W ] =
1
2
(
[L]− [L]T

)
(2.45)

Likewise if tΘΘΘΘΘΘΘΘΘ or
.

ΘΘΘΘΘΘΘΘΘ is the rotation rate then its gradients are given by

∂{tΘ}
∂{x}

=
[

ΘL
]
=
[

ΘD
]
+
[

ΘW
]

(2.46)

[
ΘD
]
=

1
2

([
ΘL
]
+
[

ΘL
]T
)

(2.47)
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ΘW
]
=

1
2

([
ΘL
]
−
[

ΘL
]T
)

(2.48)

Remarks.

(1) Symmetric rotation gradient tensor in (2.40) is a covariant measure in Lagrangian
description. It describes symmetric part of the gradients in x-frame of rotations
about covariant axes expressed about the axes of the x-frame.

(2) Just like Green’s strain tensor (covariant measure) is conjugate with contravarian
second Piola-Kirchhoff stress tensor derived using contravariant Cauchy stress ten-
sor, Θ

s JJJJJJJJJ plays a significant role in conjugacy with the contravariant moment tensor
(mmmmmmmmm∗)[0].

(3) The covariant nature of this measure is intrinsic in its derivation due to JJJJJJJJJ, hence
can not be changed. However, by replacing JJJJJJJJJ with J̄JJJJJJJJ−1 these measures can be
converted to Eulerian description.

Contravariant J̄JJJJJJJJ

(a) Internal rotations and rotation matrix

Following the derivations for covariant measures, we can derive the following if
we consider Jacobian of deformation J̄JJJJJJJJ in contravariant basis. Consider decomposition
of J̄JJJJJJJJ into symmetric and skew-symmetric tensors.

[J̄] =
[

∂{x̄}
∂{x}

]
=
[

sJ̄
]
+
[

aJ̄
]

(2.49)

[
sJ̄
]
=

1
2
(
[J̄]+ [J̄]T

)
(2.50)

[
aJ̄
]
=

1
2
(
[J̄]− [J̄]T

)
(2.51)

Let {Θ̄}= [Θ̄x1 ,Θ̄x2 ,Θ̄x3 ]
T be the components of the rotations about covariant axes

expressed as the rotations about ox1, ox2, and ox3 axes of the x-frame, then we can write

[
aJ̄] =

 0 Θ̄x3 −Θ̄x2

−Θ̄x3 0 Θ̄x1

Θ̄x2 −Θ̄x1 0

 (2.52)
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in which

Θ̄x1 =
1
2

(
∂ ū2

∂ x̄3
− ∂ ū3

∂ x̄2

)
; Θ̄x2 =

1
2

(
∂ ū3

∂ x̄1
− ∂ ū1

∂ x̄3

)
; Θ̄x3 =

1
2

(
∂ ū1

∂ x̄2
− ∂ ū2

∂ x̄1

)
(2.53)

Alternatively we can also derive (2.53) as follows.

∇̄∇∇∇∇∇∇∇∇× ūuuuuuuuu = eeeeeeeeei×eeeeeeeee j
∂ ū j

∂ x̄i
= ε i jkeeeeeeeeek

∂ ū j

∂ x̄i
(2.54)

∇̄∇∇∇∇∇∇∇∇× ūuuuuuuuu = eeeeeeeee1

(
∂ ū3

∂ x̄2
− ∂ ū2

∂ x̄3

)
+eeeeeeeee2

(
∂ ū1

∂ x̄3
− ∂ ū3

∂ x̄1

)
+eeeeeeeee3

(
∂ ū2

∂ x̄1
− ∂ ū1

∂ x̄2

)
(2.55)

∇̄∇∇∇∇∇∇∇∇× ūuuuuuuuu = eeeeeeeee1(−2Θ̄x1)+eeeeeeeee2(−2Θ̄x2)+eeeeeeeee3(−2Θ̄x3) (2.56)

The reason for the sign difference in (2.53) and (2.56) is exactly same as for covariant
measures. We note that decomposition (2.49) enables explicit description of stretches
(elongation per unit length and change in angles between the pair of orthogonal ma-
terial lines in the undeformed configuration) and rotation tensor contained in J̄JJJJJJJJ. The
stretch tensors and the rotation tensor can also be obtained using polar decomposition
of J̄JJJJJJJJ into right stretch tensor S̄SSSSSSSSrrrrrrrrr or left stretch tensor S̄SSSSSSSSlllllllll and rotation tensor R̄RRRRRRRR [59–61].

[J̄] = [R̄][S̄r] = [S̄l ][R̄] (2.57)

The stretch tensors S̄SSSSSSSSrrrrrrrrr and S̄SSSSSSSSlllllllll are symmetric and positive-definite and the rotation ten-
sor R̄RRRRRRRR is orthogonal. Since R̄RRRRRRRR in (2.57) and Θ̄ΘΘΘΘΘΘΘΘ in (2.53) are both obtained from the same
deformation in J̄JJJJJJJJ, these contain details of the same internal rotation physics but in dif-
ferent forms. We make the following remarks parallel to those for covariant measures.

(i) R̄RRRRRRRR is rotation matrix due to deformation, hence relates two orthogonal frames.

(ii) Θ̄ΘΘΘΘΘΘΘΘ on the other hand contains rotation angles due to deformation about the axes
of the x-frame due to rotations about contravariant axes.

(iii) We note that determination of Θ̄ΘΘΘΘΘΘΘΘ from R̄RRRRRRRR or determination of R̄RRRRRRRR from Θ̄ΘΘΘΘΘΘΘΘ is not
necessary. Two different mathematical forms of rotation physics is sufficient in
derivation of the conservation and balance laws. However, we do remark that this
process of obtaining Θ̄ΘΘΘΘΘΘΘΘ from R̄RRRRRRRR or R̄RRRRRRRR from Θ̄ΘΘΘΘΘΘΘΘ in general is not unique and may not
even be possible without some approximation [63–65].
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(iv) It suffices to note that internal rotations at a material point present in J̄JJJJJJJJ can be
expressed either in R̄RRRRRRRR or in Θ̄ΘΘΘΘΘΘΘΘ. Both forms contain mathematical description of
same physics, hence either can be used as deemed suitable, but determination of
Θ̄ΘΘΘΘΘΘΘΘ from R̄RRRRRRRR or R̄RRRRRRRR from Θ̄ΘΘΘΘΘΘΘΘ is not necessary.

(v) The internal rotation angles Θ̄ΘΘΘΘΘΘΘΘ are present at every material point and are a result
of deformation. Between two neighboring material points the variation of Θ̄ΘΘΘΘΘΘΘΘ is
perhaps small otherwise there may be permanent damage or separation between
them. Regardless of the magnitude of Θ̄ΘΘΘΘΘΘΘΘ, these are strictly deterministic from aJ̄JJJJJJJJ,
∇̄∇∇∇∇∇∇∇∇× ūuuuuuuuu, or the polar decomposition.

(b) Internal rotation gradient tensor using J̄JJJJJJJJ

The contravariant internal rotation tensor aJ̄JJJJJJJJ is a tensor of rank two, hence we can
define

aJ̄JJJJJJJJ = eeeeeeeeei⊗eeeeeeeee j
1
2

(
∂x j

∂ x̄i
− ∂xi

∂ x̄ j

)
(2.58)

Let ΘJ̄JJJJJJJJ be the internal rotation gradient tensor, a tensor of rank three. Using (2.58) we
can define

ΘJ̄JJJJJJJJ = eeeeeeeeek⊗eeeeeeeeei⊗eeeeeeeee j
1
2

∂

∂ x̄k

(
∂x j

∂ x̄i
− ∂xi

∂ x̄ j

)
(2.59)

Alternatively (2.58) can be written as

aJ̄JJJJJJJJ = ε i jleeeeeeeeel
1
2

(
∂x j

∂ x̄i
− ∂xi

∂ x̄ j

)
(2.60)

and then
ΘJ̄JJJJJJJJ = eeeeeeeeek⊗eeeeeeeeelε i jl

1
2

∂

∂ x̄k

(
∂x j

∂ x̄i
− ∂xi

∂ x̄ j

)
(2.61)

In (2.59) the internal rotations aJ̄JJJJJJJJ are expressed as a tensor of rank one (i.e., Θ̄x1 ,
Θ̄x2 , Θ̄x3 as a vector), hence its gradient ΘJ̄JJJJJJJJ appears as a tensor of rank 2. The repre-
sentation (2.60) is more appealing for matrix and vector representations given in the
following. Let

{Θ̄}= [Θ̄x1 ,Θ̄x2 ,Θ̄x3 ]
T (2.62)
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Then we define rotation gradient tensor ΘJ̄JJJJJJJJ and its decomposition into symmetric and
skew-symmetric tensors Θ

s J̄JJJJJJJJ and Θ
a J̄JJJJJJJJ.

[
ΘJ̄
]
=

[
∂{Θ̄}
∂{x̄}

]
=
[

Θ
s J̄
]
+
[

Θ
a J̄
]

(2.63)[
Θ
s J̄
]
=

1
2

([
ΘJ̄
]
+
[

ΘJ̄
]T
)

(2.64)[
Θ
a J̄
]
=

1
2

([
ΘJ̄
]
−
[

ΘJ̄
]T
)

(2.65)

Remarks.

(1) Symmetric rotation gradient tensor in (2.63) is a contravariant measure in Eule-
rian description. It describes symmetric part of the dradients of rotations about
contravariant axes expressed about the axes of the x-frame.

(2) Since this measure is contravariant its work conjugate moment measure is ex-
pected to be covariant (see derivation of first law of thermodynamics).

(3) Contravariant nature of this measure is intrinsic in its derivation, hence can not
be changed. However by replacing J̄JJJJJJJJ with JJJJJJJJJ−1, these measures will become La-
grangian descriptions.

2.6.2.Measure of finite strain

For finite deformation Green’s strain (εεεεεεεεε [0]) is a suitable choice in Lagrangian de-
scription for measure of finite strain. Following [59–61] we can write

[
ε[0]
]
=

1
2
(
[J]T [J]− [I]

)
(2.66)

Since

[J] = [I]+ [dJ] = [I]+
[

∂{u}
∂{x}

]
(2.67)[

ε[0]
]

can be expressed in terms of [dJ].

[
ε[0]
]
=

1
2

(
[dJ]+ [dJ]T +[dJ]T [dJ]

)
(2.68)
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or (ε[0])i j =
1
2

(
∂u j

∂xi
+

∂ui

∂x j
+

∂ui

∂xk

∂uk

∂x j

)
(2.69)

For infinitesimal deformation

[
ε[0]
]
' 1

2

(
[dJ]+ [dJ]T

)
(2.70)

or (ε[0])i j '
1
2

(
∂u j

∂xi
+

∂ui

∂x j

)
(2.71)

This measure of strain is based on consideration of a length segment in reference
configuration and its finite deformation in the current configuration. Such a measure is
obviously not possible for the internal rotations as these do not exist in the reference
configuration. Thus, in the finite deformation, finite strain internal polar non-classical
continuum theories the explicit forms of internal rotations derived from JJJJJJJJJ through RRRRRRRRR

or aJJJJJJJJJ remain the same as in the case of infinitesimal theory.

2.6.3.Strain gradients and rotation gradients

In subsequent sections of this paper we shall see that internal rotation gradients
play an essential role in the constitutive theories for such solids. In [66], the author
shows a relationship between the gradients of the rotations in terms of gradients of
the strain tensor and the rotation tensor. Based on these and other similar works, it
is argued and mostly accepted that the continuum theories that incorporate rotation
gradients are same as those that are derived using strain gradients in the conservation
and balance laws. The purpose of the material that follows is: (i) first to establish a
relationship between the gradients of internal rotations and the gradients of the strain
tensor (similar to [66]) and (ii) secondly, to demonstrate, using these relations, that the
continuum theories based on rotation gradients and those based on strain gradients are
in fact not the same. The resulting theories from the two approaches describe different
physics. For simplicity, consider a two dimensional state of deformation in x1x2-plane.
The displacement gradient tensor [dJ] (covariant basis, Lagrangian description) in this
case is

[dJ] =
∂{u1,u2}
∂{x1,x2}

= [ds J]+ [daJ] (2.72)
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[ds J] and [daJ] being symmetric and antisymmetric tensors.

[daJ] =

 0
1
2

(
∂u1

∂x2
− ∂u2

∂x1

)
1
2

(
∂u2

∂x1
− ∂u1

∂x2

)
0

=

 0 Θx3

−Θx3 0

 (2.73)

in which
Θx3 =

1
2

(
∂u1

∂x2
− ∂u2

∂x1

)
= Θ3 (2.74)

is the rotation about the x3 axis. Gradients of Θx3 with respect to x1 and x2 are

Θ3,1 =
1
2

(
∂ 2u1

∂x1∂x2
− ∂ 2u2

∂x2
1

)
Θ3,2 =

1
2

(
∂ 2u1

∂x2
2
− ∂ 2u2

∂x1∂x2

) (2.75)

For small deformation, the strain measures are

ε11 =
∂u1

∂x1

ε22 =
∂u2

∂x2

ε12 = ε21 =
1
2

(
∂u1

∂x2
+

∂u2

∂x1

) (2.76)

Substituting from (2.76) into (2.75) we can obtain

Θ3,1 =
∂ε11

∂x2
− ∂ε12

∂x1

Θ3,2 =
∂ε12

∂x2
− ∂ε22

∂x1

(2.77)

In (2.77), the gradients Θ3,1 and Θ3,2 of rotation Θx3 are completely expressed in
terms of the gradients of ε11 and ε22 with respect to x2 and x1 and ε12 with respect to
x1 as well as x2.

Remarks

(1) From (2.77) we note that gradients of Θx3 are functions of ∂ε11/∂x2 , ∂ε22/∂x1,
∂ε12/∂x1 and ∂ε12/∂x2 but are not dependent on ∂ε11/∂x1 and ∂ε22/∂x2. This
is expected due to the fact that ∂ε11/∂x1 and ∂ε22/∂x2 are gradients of the elon-
gations per unit length in x1 and x2 directions, hence cannot possibly contribute
to the gradients of rotations.



22 K. S. SURANA et al.

(2) Considerations of Θ3,1 and Θ3,2 in the polar theory is identically equivalent to
replacing these by the right side of the expressions in (2.77). As long as this
condition is satisfied, the polar theory based on rotation gradients is the same as
the polar theory based on strain gradients. We keep in mind that ∂ε11/∂x1 and
∂ε22/∂x2 are not part of the expressions of rotation gradients in (2.77).

(3) A polar theory based on strain gradients must consider εi j,k, i.e., gradients of
all six strains with respect to x1, x2 and x3. Thus, at the onset, it is clear that
the strain gradient polar theory for the 2D case will also consider ∂ε11/∂x1 and
∂ε22/∂x2 in the derivation in addition to the other strain gradients that appear in
(2.77). This undoubtedly brings in different physics than what is described by
(2.77). If we consider three dimensional case (i.e., R3) then we would find that
additionally ∂ε33/∂x3 will appear in this strain gradient polar theory but will be
absent in the definitions of the gradients of rotations.

(4) The consideration of the gradients of the internal rotations in the constitutive
theories is supported by the entropy inequality (shown in subsequent section),
while there is no rationale for the consideration of the strain gradients in the
constitutive theories.

3.Conservation and balance laws

In this section we present conservation and balance laws. We assume the solid
matter to be homogeneous, isotropic with finite deformation. The elastic solid matter
can have dissipation mechanism as well as fading memory. Based on the assumption
of thermodynamic equilibrium during deformation we consider: (i) conservation of
mass, (ii) balance of linear momenta, (iii) balance of angular momenta, (iv) balance of
moments of moments or couples, (v) first law of thermodynamics (energy equation),
and (vi) second law of thermodynamics (entropy inequality).

The derivations are presented in Lagrangian description using contravariant first
Piola-Kirchhoff stress tensor (σσσσσσσσσ∗)[0] derived using contravariant Cauchy stress tensor
and the contravariant first Piola-Kirchhoff moment tensor (mmmmmmmmm∗)[0] derived using Con-
travariant Cauchy moment tensor. These choices of first Piola-Kirchhoff stress and mo-
ment measures are preferred in the derivation due to simplicity of the final equations
in the balance laws. The final expressions can be transformed into any desired consis-
tent measures. The reason for choosing contravariant stress and moment descriptions
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are well known [61, 62] as these conform to the physics of deformation. Due to La-
grangian description JJJJJJJJJ is obviously the correct choice (compared to J̄JJJJJJJJ) for Jacobian of
deformation.

3.1.Conservation of mass

The derivation of the continuity equation from conservation of mass remains same
as for non-polar continuum. Following [61] we can obtain the following continuity
equation in Lagrangian description

ρ
0
(xxxxxxxxx) = |J|ρ(xxxxxxxxx, t) (3.1)

ρ
0
(xxxxxxxxx) is the density in the reference configuration and ρ(xxxxxxxxx, t) is the Lagrangian de-

scription of the density of a material point at x̄xxxxxxxx in the current configuration.

3.2.Balance of linear momenta

For a deforming volume of matter the rate of change of linear momenta must be
equal to the sum of all other forces actying on it. This is Newton’s second law applied
to a volume of matter. This derivation is same as that in classical continuum theory.
Thus, following [61] we can write (for finite deformation) the following using first
and second Piola-Kirchhoff stress tensors (σσσσσσσσσ∗)[0] and σσσσσσσσσ [0] derived using contravariant
Cauchy stress tensor.

ρ
0

Dvvvvvvvvv
Dt
−ρ

0
FFFFFFFFFb−∇∇∇∇∇∇∇∇∇ ········· (σσσσσσσσσ∗)[0] = 0

or ρ
0

D{v}
Dt
−ρ

0
{Fb}− [(σ∗)[0]]T{∇}= 0

or ρ
0

Dvi

Dt
−ρ

0
Fb

i −
∂ (σ∗)

[0]
ji

∂x j
= 0

or ρ
0

D{v}
Dt
−ρ

0
{Fb}−

[
[J][σ [0]]T

]
{∇}= 0


(3.2)

In Lagrangian description D
Dt =

∂

∂ t holds. vvvvvvvvv = vvvvvvvvv(xxxxxxxxx, t) are velocities and FFFFFFFFFb are body
forces per unit mass. Equations (3.2) are momentum equations in x1, x2, and x3 direc-
tions.
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3.3.Balance of angular momenta

The principle of balance of angular momenta for an internal polar non-classical
continuum can be stated as follows: the time rate of change of total moment of mo-
mentum for an internal polar continuum is equal to the vector sum of the moments of
external forces and the moments. Thus, due to surface stress P̄PPPPPPPP, surface moment m̄mmmmmmmm (per
unit area), body force F̄FFFFFFFFb (per unit mass), and the momentum ρ̄v̄vvvvvvvvdV̄ for an elemental
mass ρ̄dV̄ in the current configuration (using Eulerian description) we can write the
following.

D
Dt

∫
V̄ (t)

x̄xxxxxxxx× ρ̄v̄vvvvvvvvdV̄ =
∫

∂V̄ (t)

(x̄xxxxxxxx× P̄PPPPPPPP−M̄MMMMMMMM)dĀ+
∫

V̄ (t)

x̄xxxxxxxx× ρ̄F̄FFFFFFFFb dV̄ (3.3)

We consider each term in (3.3) individually.

D
Dt

∫
V̄ (t)

x̄xxxxxxxx× ρ̄v̄vvvvvvvvdV̄ =
D
Dt

∫
V̄ (t)

ε i jkx̄iv̄ jρ̄ dV̄

=
D
Dt

∫
V

ε i jkxiv jρ0
dV

=
∫
V

ρ
0
ε i jk

(
D
Dt

(xiv j)

)
dV

=
∫
V

ρ
0
ε i jk

(
viv j + xi

Dv j

Dt

)
dV

(3.4)

∫
∂V̄ (t)

(x̄xxxxxxxx× P̄PPPPPPPP−M̄MMMMMMMM)dĀ =
∫

∂V̄ (t)

(
x̄xxxxxxxx× (σ̄σσσσσσσσ (0))T ········· n̄nnnnnnnn− (m̄mmmmmmmm(0))T ········· n̄nnnnnnnn

)
dĀ

=
∫

∂V̄ (t)

x̄xxxxxxxx× (σ̄σσσσσσσσ (0))T ········· n̄nnnnnnnndĀ−
∫

∂V̄ (t)

(m̄mmmmmmmm(0))T ········· n̄nnnnnnnndĀ

=
∫

∂V

xxxxxxxxx× ((σσσσσσσσσ∗)[0])T ·········nnnnnnnnndA−
∫

∂V

((mmmmmmmmm∗)[0])T ·········nnnnnnnnndA

=
∫

∂V

(
ε i jkxi (σ

∗)
[0]
m j nm− (m∗)[0]mk nm

)
dA

Using divergence theorem



INTERNAL POLAR THEORY FOR FINITE DEFORMATION . . . 25

∫
∂V̄ (t)

(x̄xxxxxxxx× P̄PPPPPPPP−M̄MMMMMMMM)dĀ =
∫
V

(
ε i jk
(
xi (σ

∗)
[0]
m j

)
,m−

(
(m∗)[0]mk

)
,m

)
dV

=
∫
V

(
ε i jk

(
δim (σ∗)

[0]
m j + xi

(
(σ∗)

[0]
m j

)
,m

)
−
(
(m∗)[0]mk

)
,m

)
dV

=
∫
V

(
ε i jk

(
(σ∗)

[0]
i j + xi

(
(σ∗)

[0]
m j

)
,m

)
−
(
(m∗)[0]mk

)
,m

)
dV

(3.5)

And

∫
V̄ (t)

x̄xxxxxxxx× ρ̄F̄FFFFFFFFb dV̄ =
∫

V̄ (t)

ε i jkx̄iF̄b
j ρ̄ dV̄ =

∫
V

ε i jkxiFb
j ρ

0
dV (3.6)

Substituting (3.4), (3.5), and (3.6) into (3.3)

∫
V

ρ
0
ε i jk

(
viv j + xi

Dv j

Dt

)
dV =

∫
V

(
ε i jk

(
(σ∗)

[0]
i j + xi

(
(σ∗)

[0]
m j

)
,m

)
−
(
(m∗)[0]mk

)
,m

)
dV +

∫
V

ε i jkxiFb
j ρ

0
dV (3.7)

We note that

ε i jkviv j = 0 (3.8)

Hence, (3.7) reduces to

∫
V

ε i jkxi

(
ρ

0

Dv j

Dt
−ρ

0
Fb

j −
(
(σ∗)

[0]
m j

)
,m

)
dV +

∫
V

(
−
(
(m∗)[0]mk

)
,m + ε i jk (σ

∗)
[0]
i j

)
dV = 0

(3.9)
Using balance of linear momenta (3.2) in (3.11) we obtain

∫
V

(
−
(
(m∗)[0]mk

)
,m + ε i jk (σ

∗)
[0]
i j

)
dV = 0 (3.10)

Since the volume V is arbitrary
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(
(m∗)[0]mk

)
,m− ε i jk (σ

∗)
[0]
i j = 0

or ∇∇∇···∇∇∇···∇∇∇···(mmmmmmmmm∗)[0]−εεε ::::::::: (σσσσσσσσσ∗)[0] = 0

or
[
(m∗)[0]

]T
{∇}− ε :::::::::

[
(σ∗)[0]

]T
= 0

(3.11)

3.4.Balance of moment of moments

In this derivation we have two choices. In the first we proceed with the fundamental
statement in Eulerian description (neglecting inertial terms) [1] for moments of the
moments given by

∫
V̄

x̄xxxxxxxx× (ε ::::::::: σ̄σσσσσσσσ
(0))dV̄ −

∫
∂V̄

x̄xxxxxxxx×M̄MMMMMMMM dĀ = 0 (3.12)

In (3.12) we transform all integrals for V̄ and ∂V̄ to V and ∂V and all measures to
Lagrangian description to obtain the final results. In the second approach we proceed
with final outcome of the balance of moments of moments in Eulerian description and
then transform it to Lagrangian description, i.e., we begin with [1]

ε i jkm̄(0)
i j = 0 (3.13)

from which we conclude that m̄mmmmmmmm(0) or its Lagrangian description mmmmmmmmm(0) is symmetric.
Using

[
m[0]]T = |J|[J]−1[m(0)]T [JT ]−1 (3.14)

and
[
(m∗)[0]

]T
= |J|

[
m(0)]T [JT ]−1 (3.15)

we conclude that if mmmmmmmmm(0) is symmetric, then mmmmmmmmm[0], the second Piola-Kirchhoff moment
tensor, is symmetric as well, however (mmmmmmmmm∗)[0] is not symmetric.

3.5.First law of thermodynamics

The sum of work and heat added to a deforming volum,e of matter must result in
the increase of the energy of the system. Expressing this as a rate equation in Eulerian
description we can write [61]

DĒt

Dt
=

DQ̄
Dt

+
DW̄
Dt

(3.16)
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Ēt , Q̄, and W̄ are total energy, heat added, and work done. These can be written as

DĒt

Dt
=

D
Dt

∫
V̄ (t)

ρ̄

(
ē+

1
2

v̄vvvvvvvv ········· v̄vvvvvvvv− F̄FFFFFFFFb ········· ūuuuuuuuu
)

dV̄ (3.17)

DQ̄
Dt

=−
∫

∂V̄ (t)

q̄qqqqqqqq ········· n̄nnnnnnnndĀ (3.18)

DW̄
Dt

=
∫

∂V̄ (t)

(
P̄PPPPPPPP ········· v̄vvvvvvvv+M̄MMMMMMMM ········· tΘ̄ΘΘΘΘΘΘΘΘ

)
dĀ (3.19)

where ē is specific internal energy, F̄FFFFFFFFb is body force vector, q̄qqqqqqqq is rate of heat. In (3.17)
we have neglected rotary intertia. This is consistent with the assumptions used in the
conservation law in subsection 3.1. We expand integrals in (3.17)–(3.19). Following
[61] we can show the following.

D
Dt

∫
V̄ (t)

ρ̄

(
ē+

1
2

v̄vvvvvvvv ········· v̄vvvvvvvv− F̄FFFFFFFFb ········· ūuuuuuuuu
)

dV̄ =
∫
V

(
ρ

0

De
Dt

+ρ
0
vvvvvvvvv ········· Dvvvvvvvvv

Dt
−FFFFFFFFFb ·········vvvvvvvvv

)
dV (3.20)

Using
q̄qqqqqqqq ········· n̄nnnnnnnndĀ = qqqqqqqqq ·········nnnnnnnnndA ; ρ̄ dV̄ = ρ

0
dV ; dV̄ = |J|dV (3.21)

−
∫

∂V̄ (t)

q̄qqqqqqqq ········· n̄nnnnnnnndĀ =−
∫

∂V

qqqqqqqqq ·········nnnnnnnnndA =−
∫
V

∇∇∇ ···qqq∇∇∇ ···qqq∇∇∇ ···qqqdV ; Divergence theorem (3.22)

Using contravariant Cauchy stress tensor and contravariant Cauchy moment tensor and
first Piola-Kirchhoff stress and moment tensors we can derive the following [61].

P̄PPPPPPPP ········· v̄vvvvvvvvdĀ =
(

vvv···vvv···vvv···
(
(σσσσσσσσσ∗)[0]

)T
)
···nnn···nnn···nnn dA =

(
vvv···vvv···vvv···
(
(σσσσσσσσσ∗)[0]

)T
)
·········dAAAAAAAAA (3.23)

M̄MMMMMMMM ········· tΘ̄ΘΘΘΘΘΘΘΘdĀ =
(

t
ΘΘΘΘΘΘΘΘΘ ·········
(
(mmmmmmmmm∗)[0]

)T
)
···nnn···nnn···nnn dA =

(
t
ΘΘΘΘΘΘΘΘΘ ·········
(
(mmmmmmmmm∗)[0]

)T
)
·········dAAAAAAAAA (3.24)

Thus we can write the following for (3.16).
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V

(
ρ

0

De
Dt

+ρ
0
vvvvvvvvv ········· Dvvvvvvvvv

Dt
−FFFFFFFFFb ·········vvvvvvvvv

)
dV =

−
∫
V

∇∇∇ ···qqq∇∇∇ ···qqq∇∇∇ ···qqqdV +
∫

∂V

(
vvv···vvv···vvv···
(
(σσσσσσσσσ∗)[0]

)T
)
·········dAAAAAAAAA+

∫
∂V

(
t
ΘΘΘΘΘΘΘΘΘ ·········
(
(mmmmmmmmm∗)[0]

)T
)
·········dAAAAAAAAA (3.25)

Using divergence theorem for integrals over ∂V

∫
V

(
ρ

0

De
Dt

+ρ
0
vvvvvvvvv ········· Dvvvvvvvvv

Dt
−FFFFFFFFFb ·········vvvvvvvvv

)
dV

−
∫
V

∇∇∇ ···qqq∇∇∇ ···qqq∇∇∇ ···qqqdV +
∫
V

∇∇∇···∇∇∇···∇∇∇···
(

vvv···vvv···vvv···
(
(σσσσσσσσσ∗)[0]

)T
)

dV +
∫
V

∇∇∇···∇∇∇···∇∇∇···
(

t
ΘΘΘΘΘΘΘΘΘ ·········
(
(mmmmmmmmm∗)[0]

)T
)

dV (3.26)

Following [61] we can also show that

∇∇∇···∇∇∇···∇∇∇···
(

vvv···vvv···vvv···
(
(σσσσσσσσσ∗)[0]

)T
)
= vvv···vvv···vvv···

(
∇∇∇···∇∇∇···∇∇∇···(σσσσσσσσσ∗)[0]

)
+(σ∗)

[0]
ji

∂vi

∂x j
(3.27)

and ∇∇∇···∇∇∇···∇∇∇···
(

t
ΘΘΘΘΘΘΘΘΘ ·········
(
(mmmmmmmmm∗)[0]

)T
)
= t

ΘΘΘΘΘΘΘΘΘ ·········
(

∇∇∇···∇∇∇···∇∇∇···(mmmmmmmmm∗)[0]
)
+(m∗)[0]ji

∂ tΘxi

∂x j
(3.28)

Substituting (3.27) and (3.28) into (3.26)

∫
V

(
ρ

0

De
Dt

+ρ
0
vvvvvvvvv ········· Dvvvvvvvvv

Dt
−FFFFFFFFFb ·········vvvvvvvvv

)
dV

=−
∫
V

∇∇∇ ···qqq∇∇∇ ···qqq∇∇∇ ···qqqdV +
∫
V

(
vvv···vvv···vvv···
(

∇∇∇···∇∇∇···∇∇∇···(σσσσσσσσσ∗)[0]
)
+(σ∗)

[0]
ji

∂vi

∂x j
+ t

ΘΘΘΘΘΘΘΘΘ ·········
(

∇∇∇···∇∇∇···∇∇∇···(mmmmmmmmm∗)[0]
)
+(m∗)[0]ji

∂ tΘxi

∂x j

)
dV

(3.29)

Moving all terms to the left side and regrouping

∫
V

ρ
0

vvv···vvv···vvv···
(

Dvvvvvvvvv
Dt
−FFFFFFFFFb−∇∇∇···∇∇∇···∇∇∇···(σσσσσσσσσ∗)[0]

)
dV

+
∫
V

(
ρ

0

De
Dt

+∇∇∇ ···qqq∇∇∇ ···qqq∇∇∇ ···qqq− (σ∗)
[0]
ji

∂vi

∂x j
− (m∗)[0]ji

∂ tΘxi

∂x j
− t

ΘΘΘΘΘΘΘΘΘ ·········
(

∇∇∇···∇∇∇···∇∇∇···(mmmmmmmmm∗)[0]
))

dV = 0

(3.30)
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Using (3.2) (balance of linear momenta), (3.30) reduces to

∫
V

(
ρ

0

De
Dt

+∇∇∇ ···qqq∇∇∇ ···qqq∇∇∇ ···qqq− (σ∗)
[0]
ji

∂vi

∂x j
− (m∗)[0]ji

∂ tΘxi

∂x j
− t

ΘΘΘΘΘΘΘΘΘ ·········
(

∇∇∇···∇∇∇···∇∇∇···(mmmmmmmmm∗)[0]
))

dV = 0 (3.31)

Since volume V is arbitrary, we have

ρ
0

De
Dt

+∇∇∇ ···qqq∇∇∇ ···qqq∇∇∇ ···qqq− (σ∗)
[0]
ji

∂vi

∂x j
− (m∗)[0]ji

∂ tΘxi

∂x j
− t

ΘΘΘΘΘΘΘΘΘ ·········
(

∇∇∇···∇∇∇···∇∇∇···(mmmmmmmmm∗)[0]
)
= 0 (3.32)

We note in the tΘΘΘΘΘΘΘΘΘ·········
(

∇∇∇···∇∇∇···∇∇∇···(mmmmmmmmm∗)[0]
)

or
.

ΘΘΘΘΘΘΘΘΘ·········
(

∇∇∇···∇∇∇···∇∇∇···(mmmmmmmmm∗)[0]
)

terms, ∇∇∇···∇∇∇···∇∇∇···(mmmmmmmmm∗)[0] can be substituted
from (3.11) thereby eliminating gradients of (mmmmmmmmm∗)[0] but introducing (σσσσσσσσσ∗)[0].

3.6.Second law of thermodynamics

If η̄ is entropy density in volume V̄ (t), h̄ is the entropy flux between V̄ (t) and the
volume of matter surrounding it, and s̄ is the source of entropy in V̄ (t) due to non-
contacting bodies then the rate of increase of entropy in volume V̄ (t) is at least equal
to that supplied to V̄ (t) from all contacting and non-contacting sources [61]. Thus

D
Dt

∫
V̄ (t)

η̄ρ̄ dV̄ ≥
∫

∂V̄ (t)

h̄dĀ+
∫

V̄ (t)

s̄ρ̄ dV̄ (3.33)

Using Cauchy’s postulate for h̄, i.e.,

h̄ =−Ψ̄ΨΨΨΨΨΨΨΨ ········· n̄nnnnnnnn (3.34)

D
Dt

∫
V̄ (t)

η̄ρ̄ dV̄ ≥−
∫

∂V̄ (t)

Ψ̄ΨΨΨΨΨΨΨΨ ········· n̄nnnnnnnndĀ+
∫

V̄ (t)

s̄ρ̄ dV̄ (3.35)

We need to transform (3.35) into Lagrangian description. This can be done using

Ψ̄ΨΨΨΨΨΨΨΨ ········· n̄nnnnnnnndĀ =ΨΨΨΨΨΨΨΨΨ ·········nnnnnnnnndA ; ρ̄ dV̄ = ρ
0

dV ; dV̄ = |J|dV (3.36)

Using (3.36) in (3.35)

D
Dt

∫
V

ηρ
0

dV ≥−
∫

∂V

ΨΨΨΨΨΨΨΨΨ ·········nnnnnnnnndA+
∫
V

sρ
0

dV (3.37)
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Using Gauss’s divergence theorem for the term over ∂V gives (noting that ΨΨΨΨΨΨΨΨΨ is a tensor
of rank one)

D
Dt

∫
V

ηρ
0

dV ≥−
∫
V

∇∇∇···∇∇∇···∇∇∇···ΨΨΨΨΨΨΨΨΨdV +
∫
V

sρ
0

dV (3.38)

or ∫
V

(
ρ

0

Dη

Dt
+∇∇∇···∇∇∇···∇∇∇···ΨΨΨΨΨΨΨΨΨ− sρ

0

)
dV ≥ 0 (3.39)

Since volume V is arbitrary

ρ
0

Dη

Dt
+∇∇∇···∇∇∇···∇∇∇···ΨΨΨΨΨΨΨΨΨ− sρ

0
≥ 0 (3.40)

Equation (3.40) is entropy inequality and is the most fundamental form resulting from
the second law of thermodynamics. A more useful form can be derived if we assume

ΨΨΨΨΨΨΨΨΨ =
qqqqqqqqq
θ

; s =
r
θ

(3.41)

where θ is absolute temperature, qqqqqqqqq is heat vector, and r is a suitable potential, then

∇∇∇ ···ΨΨΨ∇∇∇ ···ΨΨΨ∇∇∇ ···ΨΨΨ = Ψi,i =
qi,i

θ
−

qiθ,i

θ 2 =
qi,i

θ
− qigi

θ 2 =
∇∇∇ ···qqq∇∇∇ ···qqq∇∇∇ ···qqq

θ
− qqq ···gggqqq ···gggqqq ···ggg

θ 2 (3.42)

in which {g} = {∇θ} is the temperature gradient. Substituting for (3.41) and (3.42)
into (3.40) and multiplying throughout by θ

ρ
0

Dη

Dt
+(∇∇∇ ···qqq∇∇∇ ···qqq∇∇∇ ···qqq−ρ

0
r)− qqq ···gggqqq ···gggqqq ···ggg

θ
≥ 0 (3.43)

From energy equation (3.32) (after inserting ρ
0
r term) in contravariant basis

∇∇∇ ···qqq∇∇∇ ···qqq∇∇∇ ···qqq−ρ
0
r =−ρ

0

De
Dt

+(σ∗)
[0]
ji

∂vi

∂x j
+(m∗)[0]ji

∂ tΘxi

∂x j
+ t

ΘΘΘΘΘΘΘΘΘ ·········
(

∇∇∇···∇∇∇···∇∇∇··· (mmmmmmmmm∗)[0]
)

(3.44)

Substituting from (3.44) into (3.43)

ρ
0

Dη

Dt
+

(
−ρ

0

De
Dt

+(σ∗)
[0]
ji

∂vi

∂x j
+(m∗)[0]ji

∂ tΘxi

∂x j
+ t

ΘΘΘΘΘΘΘΘΘ ·········
(

∇∇∇···∇∇∇···∇∇∇··· (mmmmmmmmm∗)[0]
))
− qqq ···gggqqq ···gggqqq ···ggg

θ
≥ 0

(3.45)
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or

ρ
0

(
De
Dt
−θ

Dη

Dt

)
+

qqq ···gggqqq ···gggqqq ···ggg
θ
− (σ∗)

[0]
ji

∂vi

∂x j
− (m∗)[0]ji

∂ tΘxi

∂x j
− t

ΘΘΘΘΘΘΘΘΘ ·········
(

∇∇∇···∇∇∇···∇∇∇··· (mmmmmmmmm∗)[0]
)
≤ 0

(3.46)
Let Φ be the Helmholtz free energy density defined by

Φ = e−ηθ (3.47)

∴∴∴∴∴∴∴∴∴
De
Dt
−θ

Dη

Dt
=

DΦ

Dt
+η

Dθ

Dt
(3.48)

Substituting from (3.48) into (3.46) we obtain

ρ
0

(
DΦ

Dt
+η

Dθ

Dt

)
+

qqq ···gggqqq ···gggqqq ···ggg
θ
− (σ∗)

[0]
ji

∂vi

∂x j
− (m∗)[0]ji

∂ tΘxi

∂x j
− t

ΘΘΘΘΘΘΘΘΘ ·········
(

∇∇∇···∇∇∇···∇∇∇··· (mmmmmmmmm∗)[0]
)
≤ 0

(3.49)
We note that

(σ∗)
[0]
ji

∂vi

∂x j
= tr

([
(σ∗)[0]

]T [ .
J
]T) (3.50)

and

(m∗)[0]ji
∂ tΘxi

∂x j
= tr

([
(m∗)[0]

]T [Θ .
J
]T) (3.51)

3.7.Stress and moment decompositions, conjugate pairs, and the final form of the
conservation and balance laws

The energy equation (3.32) and the entropy inequality (3.49) in these forms are not
suitable for deciding on rate of work conjugate pairs that are essential for constitutive
theories. In order to determine these we must consider decomposition of stress tensor,
moment tensor, and the quantities associated with these in the energy equation and the
entropy inequality. Since (σσσσσσσσσ∗)[0] and (mmmmmmmmm∗)[0] both are non-symmetric we consider their
decomposition into symmetric and skew-symmetric tensors.

(σσσσσσσσσ∗)[0] = s(σσσσσσσσσ
∗)[0]+ a(σσσσσσσσσ

∗)[0] (3.52)

(mmmmmmmmm∗)[0] = s(mmmmmmmmm∗)
[0]+ a(mmmmmmmmm∗)

[0] (3.53)
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Hence

ε :::ε :::ε ::: (σσσσσσσσσ∗)[0] =ε :::ε :::ε :::
(

s(σσσσσσσσσ
∗)[0]+ a(σσσσσσσσσ

∗)[0]
)
=ε :::ε :::ε ::: a(σσσσσσσσσ

∗)[0] (3.54)

Since ε :::ε :::ε ::: s(σσσσσσσσσ
∗)[0] = 0 (3.55)

tr
([

(σ∗)[0]
]T [ .

J
]T)

= tr
([

(σ∗)[0]
][ .

J
])

= tr
([[

s(σ
∗)[0]

]
+
[

a(σ
∗)[0]

]][[
s

.
J
]
+
[

a
.
J
]])

= tr
([

s(σ
∗)[0]

][
s

.
J
])

+ tr
([

a(σ
∗)[0]

][
a

.
J
]) (3.56)

tr
([

(m∗)[0]
][

Θ
.
J
])

= tr
([[

s(m∗)
[0] ]+ [a(m∗)[0] ]][[Θs .

J
]
+
[

Θ
a

.
J
]])

= tr
([

s(m∗)
[0] ][Θ

s
.
J
])

+ tr
([

a(m∗)
[0] ][Θ

a
.
J
]) (3.57)

Using the balance of angular momenta, we can write

.
ΘΘΘΘΘΘΘΘΘ ·········
(

∇∇∇···∇∇∇···∇∇∇···(mmmmmmmmm∗)[0]
)
=

.
ΘΘΘΘΘΘΘΘΘ ·········
(
ε :::ε :::ε ::: a(σσσσσσσσσ

∗)[0]
)

(3.58)

A simple calculation shows that

.
ΘΘΘΘΘΘΘΘΘ ·········
(
ε :::ε :::ε ::: a(σσσσσσσσσ

∗)[0]
)
=−tr

([
a(σ

∗)[0]
][

a
.
J
])

(3.59)

Using (3.55), the balance of angular momenta becomes

∇∇∇···∇∇∇···∇∇∇···(mmmmmmmmm∗)[0]− ε :::ε :::ε ::: a(σσσσσσσσσ
∗)[0] = 0 (3.60)

Using (3.56), (3.57), (3.58), and (3.59) in the energy equation (3.32), we obtain

ρ
0

De
Dt

+∇∇∇ ···qqq∇∇∇ ···qqq∇∇∇ ···qqq− tr
([

s(σ
∗)[0]

][
s

.
J
])
− tr

([
a(σ

∗)[0]
][

a
.
J
])

− tr
([

s(m∗)
[0] ][Θ

s
.
J
])
− tr

([
a(m∗)

[0] ][Θ
a

.
J
])

+ tr
([

a(σ
∗)[0]

][
a

.
J
])

= 0 (3.61)

The fourth and last terms in (3.61) cancel and we obtain the final form of the energy
equation.
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ρ
0

De
Dt

+∇∇∇ ···qqq∇∇∇ ···qqq∇∇∇ ···qqq− tr
([

s(σ
∗)[0]

][
s

.
J
])
− tr

([
s(m∗)

[0] ][Θ
s

.
J
])
− tr

([
a(m∗)

[0] ][Θ
a

.
J
])

= 0
(3.62)

Also using (3.56), (3.57), (3.58), and (3.59) in the entropy inequality (3.49), we
obtain

ρ
0

(
DΦ

Dt
+η

Dθ

Dt

)
+

qqq ···gggqqq ···gggqqq ···ggg
θ
−tr
([

s(σ
∗)[0]

][
s

.
J
])
−tr
([

s(m∗)
[0] ][Θ

s
.
J
])
−tr
([

a(m∗)
[0] ][Θ

a
.
J
])
≤ 0

(3.63)
The last three terms in the energy equation and the entropy inequality define rate of
work conjugate pairs that are essential for deriving constitutive theories considered
in followup papers for thermoelastic solids and thermoviscoelastic solids with and
without memory including model problems and their solutions.

3.8.Final mathematical model

The final form of the conservation and balance laws: conservation of mass, bal-
ance of linear momenta, balance of angular momenta, balance of moments of mo-
ments or couples, first law of thermodynamics, and second law of thermodynamics in
Lagrangian description are given in the following.

ρ
0
= |J|ρ (3.64)

ρ
0

D{v}
Dt
−ρ

0
{Fb}− [(σ∗)[0]]T{∇}= 0 (3.65)

[
(m∗)[0]

]T
{∇}− ε :::ε :::ε :::

[
a(σ

∗)[0]
]T

= 0 (3.66)

[
(m∗)[0]

]
6=
[
(m∗)[0]

]T
(3.67)

ρ
0

De
Dt

+∇∇∇ ···qqq∇∇∇ ···qqq∇∇∇ ···qqq− tr
([

s(σ
∗)[0]

][
s

.
J
])
− tr

([
s(m∗)

[0] ][Θ
s

.
J
])
− tr

([
a(m∗)

[0] ][Θ
a

.
J
])

= 0
(3.68)
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ρ
0

(
DΦ

Dt
+η

Dθ

Dt

)
+

qqq ···gggqqq ···gggqqq ···ggg
θ
−tr
([

s(σ
∗)[0]

][
s

.
J
])
−tr
([

s(m∗)
[0] ][Θ

s
.
J
])
−tr
([

a(m∗)
[0] ][Θ

a
.
J
])
≤ 0

(3.69)

In this mathematical model, the dependent variables are (numbers in the parenthe-
ses indicate the number of dependent variables)

vi (3), s(σσσσσσσσσ
∗)[0] (6), a(σσσσσσσσσ

∗)[0] (3)

s(mmmmmmmmm∗)
[0] (6), a(mmmmmmmmm∗)

[0] (3), e (1), qqqqqqqqq (3)

Φ (1), η (1), θ (1) : Total of 28

(3.70)

In these dependent variables, Φ and η will be eliminated from the list of variables. Spe-
cific internal energy e is a function of ρ and θ , i.e., e = e(ρ,θ) for the most general
case of compressible solid matter, hence e is also eliminated from the list of dependent
variables. This leaves us with 25 dependent variables remaining in the mathematical
model. We have balance of linear momenta equations (3), balance of angular momenta
equations (3), energy equation (1), and from entropy inequality we have possible con-
stitutive theories for s(σσσσσσσσσ

∗)[0] (6), s(mmmmmmmmm∗)
[0] (6), a(mmmmmmmmm∗)

[0] (3), and qqqqqqqqq (3), a total of 25
equations, hence the mathematical model will have closure once we have constitu-
tive theories for s(σσσσσσσσσ

∗)[0], s(mmmmmmmmm∗)
[0], a(mmmmmmmmm∗)

[0], and qqqqqqqqq included with the conservation and
balance laws.

3.9.General Remarks

In this subsection we point out and discuss some important aspects and features of
the mathematical model consisting of conservation and balance laws presented in this
paper.

(1) The derivation is based on the assumption of finite deformation, i.e., the deformed
coordinates x̄xxxxxxxx are not the same as undeformed coordinates xxxxxxxxx.

(2) Since the mathematical model is in Lagrangian description and since the unde-
formed and the deformed configurations are not the same, an elementary tetrahe-
dron in the reference configuration experiences finite deformation in the current
configuration, hence correspondence rules are required for Cauchy stress measure
in the current configuration to a stress measure in the reference configuration. In
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the work presented in this paper we have used contravariant first Piola-Kirchhoff
stress tensor derived using contravariant Cauchy stress tensor in the current con-
figuration.

(3) Stress tensor (σσσσσσσσσ∗)[0] is derived based on the assumption that force dF̄FFFFFFFF acting on
area dĀAAAAAAAA (area of the oblique plane of the deformed tetrahedron) is same as force dFFFFFFFFF

on dAAAAAAAAA (area of the oblique plane of the undeformed tetrahedron). When dF̄FFFFFFFF = dFFFFFFFFF ,
both dF̄FFFFFFFF and dFFFFFFFFF obviously have same magnitude of their components and the
same directions. This assumption allows dAAAAAAAAA and dĀAAAAAAAA to be different (thus allow
finite deformation), hence dPPPPPPPPP and dP̄PPPPPPPP to be different as well on dAAAAAAAAA and dĀAAAAAAAA.

(4) From the energy equation and entropy inequality we know that tr
([

(σ∗)[0]
]T [ .

JJJJJJJJJ
]T)

is the rate of work. We also note that [61]

tr
([

(σ∗)[0]
]T [ .

JJJJJJJJJ
]T)

= tr
([

σ
[0]]T [ .

ε [0]
]T) (3.71)

That is (σσσσσσσσσ∗)[0] and
.
JJJJJJJJJ as conjugate pair result in the same rate of work as σσσσσσσσσ [0] and

.
εεεεεεεεε [0] as conjugate pair. Even though the rate of work resulting from the two conju-
gate pairs is same, there are some important differences. Jacobian of deformation
JJJJJJJJJ is a measure of deformation physics and x̄xxxxxxxx 6= xxxxxxxxx implies finite deformation, how-
ever JJJJJJJJJ is not a measure of finite strain. On the other hand εεεεεεεεε [0] is a measure of finite
strain. Thus, our view is that the internal polar non-classical theory in this paper
is applicable for finite deformation but does not explicitly incorporate measure of
finite strains in derivation of the mathematical model.

(5) The internal rotations are due to JJJJJJJJJ, i.e., aJJJJJJJJJ are incorporated in the theory. This
feature as presented in this paper is not dependent on the choice of conjugate pair
for the rate of work.

4.Summary and conclusions

The development of internal polar non-classical continuum theory for isotropic,
homogeneous solid continua undergoing finite deformation is presented in this pa-
per. The Jacobian of deformation JJJJJJJJJ defining stretches and internal rotations has been
incorporated in its entirety in the derivation of conservation and balance laws. This
aspect is absent in the corresponding finite deformation theories based on classical
continuum mechanics. The theory presented in this paper considers contravariant first
Piola-Kirchhoff stress tensor as a measure of stress in the derivation of the theory for
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finite deformation in which x̄xxxxxxxx 6= xxxxxxxxx. The internal rotations at a material point (hence
the name internal polar) are completely defined by aJJJJJJJJJ or ∇∇∇∇∇∇∇∇∇×uuuuuuuuu, hence are not exter-
nal degrees of freedom at a material point. This theory is obviously non-classical as it
considers rotations at material points, though the rotations are internal resulting from

aJJJJJJJJJ. The physics due to aJJJJJJJJJ considered in this theory for finite deformation provides a
more complete thermodynamic framework than used currently.

Due to finite deformation contravariant Cauchy moment tensor m̄mmmmmmmm(0) (or mmmmmmmmm(0)) has
also been transformed to corresponding contravariant first Piola-Kirchhoff moment
tensor (mmmmmmmmm∗)[0]. (σσσσσσσσσ∗)[0], (mmmmmmmmm∗)[0], JJJJJJJJJ,

.
JJJJJJJJJ, ΘJJJJJJJJJ, and Θ

.
JJJJJJJJJ are various measures used in the deriva-

tion of the mathematical model. The derivation shows that:

(i) Cauchy stress tensor σσσσσσσσσ (0) (or σ̄σσσσσσσσ
(0)) is non-symmetric, hence (σσσσσσσσσ∗)[0] and σσσσσσσσσ [0] are

non-symmetric as well.

(ii) Cauchy moment tensor is symmetric due to balance of moment of moments,
hence mmmmmmmmm[0] is symmetric but (mmmmmmmmm∗)[0] is non-symmetric.

(iii) Conjugate pairs resulting in rate of work are decided using energy equation or
the entropy inequality.

(iv) The mathematical model has closure (as many equations as the number of vari-
ables) when the constitutive theories for s(σσσσσσσσσ

∗)[0], s(mmmmmmmmm∗)
[0], a(mmmmmmmmm∗)

[0], and qqqqqqqqq are
incorporated in the mathematical model.

The differences between gradients of internal rotations and the gradients of the
infinitesimal strain tensor are clearly demonstrated to point out that the theories that
utilize rotation gradients as used in this work (as warranted by the conservation and
balance laws) are not strain gradient theories. In fact there does not appear to be any
rational for ‘strain gradients’ in the conservation and balance laws. The work presented
in this paper is presents a more complete thermodynamic framework in which (i) Ja-
cobian of deformation JJJJJJJJJ representing true physics of deformation is incorporated in
its entirety and (ii) the deformation can be finite. The theory presented here is ob-
viously not a stress-couple theory or a micropolar theory. Furthermore, the theory is
inherently local, hence not capable of describing non-local phenomena. The thermo-
dynamic framework presented here is valid for internal polar non-classical isotropic
and homogeneous thermoelastic solids and thermoviscoelastic solids with and with-
out memory experiencing finite deformation. Constitutive theories describing various
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types of solids and model problems showing applications of the theory derived in this
paper will be presented in subsequent forthcoming papers.
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