INSIGHTS GAINED FROM WEAKLY *P* PROPERTIES INTO EQUIVALENCES OF SEPARATION AXIOMS

CHARLES DORSETT

Department of Mathematics Texas A&M University-Commerce Commerce, Texas 75429 USA e-mail: charles.dorsett@tamuc.edu

Abstract

In 1975, it was proven that a space is R_1 iff its T_0 -identification space is Hausdorff. The 1975 work motivated the introduction and investigation of weakly Po properties, which led to the introduction and investigation of weakly P1 and weakly P2 properties. Within recent papers, it was established that in weakly P1 spaces T_0 and T_1 are equivalent, and in weakly P2 spaces T_0 , T_1 , and T_2 are equivalent. Within this paper, infinitely many topological properties, in addition to weakly P1 or weakly P2, are given for each weakly P1or weakly P2 for which each of T_0 and T_1 or T_0 , T_1 , and T_2 are equivalent, including the least of all such topological property in each of the two cases.

1. Introduction and Preliminaries

 T_0 -identification spaces were introduced in 1936 [11].

Definition 1.1. Let (X, T) be a space, R be the equivalence relation on X defined by xRy iff $Cl(\{x\}) = Cl(\{y\})$, X_0 be the set of R equivalence $\overline{2010 \text{ Mathematics Subject Classification: 54A05, 54B15, 54D10.}$

Keywords and phrases: topological properties, T_0 -identification spaces, weakly P. Received July 15, 2016

@ 2016 Scientific Advances Publishers

classes of $X, N: X \to X_0$ be the natural map, and Q(X, T) be the decomposition topology on X_0 determined by (X, T) and the natural map N. Then $(X_0, Q(X, T))$ is the T_0 -identification space of (X, T) [11].

Within the 1975 paper [10], weakly Hausdorff was characterized using T_0 -identification spaces.

Theorem 1.1. A space (X, T) is weakly Hausdorff iff its T_0 -identification space is Hausdorff [10].

In the 2015 paper [2], the question of whether T_0 -identification spaces could be used to uniquely define other weakly P properties behaving in the same manner as weakly Hausdorff led to the introduction and investigation of weakly Po properties.

Definition 1.2. Let *P* be a topological property for which $Po = (P \text{ and } T_0)$ exists. Then (X, T) is weakly *Po* iff its T_0 -identification space $(X_0, Q(X, T))$ has property *P*. A topological property *Po* for which weakly *Po* exists is called a weakly *Po* property [2].

In the 2015 paper [2], it was proven that for a topological property P for which weakly Po exists, weakly Po is a unique, topological property. In addition, since for each space $(X, T), (X_0, Q(X, T))$ is T_0 [11], then, as given in the 2015 paper [2], a space is weakly Po iff its T_0 -identification space has property Po.

Within the 1975 paper [10], it was proven that weakly Hausdorff is equivalent to the R_1 separation axiom, which was introduced in 1961 [1].

Definition 1.3. A space (X, T) is R_1 iff for $x, y \in X$, such that $Cl(\{x\}) \neq Cl(\{x\})$, there exist disjoint open sets U and V such that $x \in U$ and $y \in V$ [1].

In the 1961 paper [1], the following characterizations of T_2 were given: For a space (X, T), the following are equivalent: (a) (X, T) is T_2 , (b) (X, T) is $(R_1 \text{ and } T_1)$, and (c) (X, T) is $(R_1 \text{ and } T_0)$.

Also, within the 1961 paper [1], the R_0 separation axiom was rediscovered and used to further characterize T_1 spaces.

Definition 1.4. A space (X, T) is R_0 iff for each open set O and each $x \in O, Cl(\{x\}) \subseteq O$.

In the 1961 paper [1], it was shown that R_1 implies R_0 and a space is T_1 iff it is $(R_0 \text{ and } T_0)$.

Within weakly Po properties, the T_0 separation axiom has a major role. Thus the question of what would happen if T_0 in the definition of weakly Po properties was replaced by T_1 or by T_2 arose leading to the introduction and investigation of weakly P1 and weakly P2 properties.

Definition 1.5. Let *P* be a topological property for which $P1 = (P \text{ and } T_1)$ exists. Then a space (X, T) is weakly *P*1 iff its T_0 -identification space $(X_0, Q(X, T))$ has property *P*1 [3].

Definition 1.6. Let *P* be a topological property for which $P2 = (P \text{ and } T_2)$ exists. Then a space (X,T) is weakly *P*2 iff its T_0 -identification space $(X_0, Q(X, T))$ has property *P*2 [4].

The continued investigation of weakly P1 properties [5] has revealed that for weakly P1 spaces, T_0 and T_1 are equivalent and for weakly P2spaces, T_0 , T_1 , and T_2 are all equivalent [6]. Thus, the question of whether there are additional topological properties for which T_0 and T_1 are equivalent and for which T_0 , T_1 , and T_2 are all equivalent arises. The equivalences given above were not expected, but, in this case, as is often true, discoveries lead to additional questions for consideration and hopefully resolution. Below for each weakly P1 property and for each weakly P2 property, infinitely many related topological properties are given in which the equivalences above hold.

2. Related Topological Properties for a Weakly *P*1 and Weakly *P*2 Property Preserving the Equivalences

Confronted by a new problem, mathematicians are trained to search for a way to relate the new problem to an already solved problem and, if successful, use the solution of the solved problem to aid in the solution of the new problem. For the cited new problems above, there are solved problems that can be applied to greatly aid in their resolution.

Within the 2016 paper [7], the following result was proven: "Let Q be a topological property for which weakly Qo exists and let $S = \{So | S \text{ is a}$ topological property, So exists, and So implies Qo}. Then (weakly $Qo)o \in S$, for each weakly Po property W such that Wo implies Qo, (weakly $Wo)o \in S$, each element of S implies weakly Qo, and there exists the topological property $Q_{\min} = ((\text{weakly } Qo) \text{ or "not-}T_0")$, where "not- $T_0"$ is the negation of T_0 , weaker than weakly Qo such that $(Q_{\min})o \in S"$. In the weakly P1 paper [3], it was shown that for a weakly P1 property Q1, Q1 is a weakly Po property, i.e., Q1 = (Q1)o, which is combined with the results above to quickly establish the following useful results in the resolution of the new problems above.

Corollary 2.1. Let Q be a topological property for which weakly Q1 exists and let $S(Q1) = \{So | S \text{ is a topological property, So exists, and So implies <math>Q1\}$. Then $S(Q1) = \{So | S \text{ is a topological property, So exists, and So implies <math>(Q1)o\}$.

Corollary 2.2. Let Q be a topological property for which weakly Q1 exists and let $S(Q1) = \{So | S \text{ is a topological property, So exists, and So implies <math>Q1\}$. Then (weakly Q1) $o \in S(Q1)$, for each weakly Po property W such that Wo implies Q1, (weakly Wo) $o \in S(Q1)$, each element of S(Q1) implies weakly Q1, and there exists the topological property $(Q_{\min})1 = ((weakly Q1) \text{ or "not-}T_0")$ weaker than weakly Q1 such that $((Q_{\min})1)o \in S(Q1)$.

Also, in the 2016 paper [7], it was established that for a topological property for which weakly Po exists, P_{\min} is the least topological property for which a space has property Po iff it has property (P_{\min} and T_0), giving the next result.

Corollary 2.3. Let P be a topological property for which weakly P1 exists. Then (P_{\min}) 1 is the least topological property for which a space has property P1 iff it has properties $((P_{\min})$ 1 and T_0).

Within the second 2016 paper [8], for a weakly Po property Qo, the special role played by Q_{\min} was used to give infinitely many topologically distinct, non-weakly Po topological properties weaker than weakly Qo and stronger than Q_{\min} , which together with T_0 , are equivalent to Qo, which will be combined with the results above to extend the 2016 result [8] to weakly P1 properties.

Let *m* and *n* represent natural number greater than or equal to 2.

Definition 2.1. Let A(n) represent a set with n distinct elements, X be a set containing the elements of A(n), and T(A(n)) be the topology on X defined by $T(A(n)) = \{B \subseteq X \mid A(n) \subseteq B \text{ or } B = \phi\}$ [8].

Definition 2.2. A space (X, T) has property T(n) iff there exists a subset A(n) of X such that T = T(A(n)) [8].

In the 2016 paper [8], it was shown that each T(n) space is "not- T_0 " and not a weakly Po property, that Q(n) = (weakly Qo or T(n)) is a topological property weaker than weakly Qo and stronger than Q_{\min} such that a space has property Qo iff it has property $(Q(n) \text{ and } T_0)$, and that for m < n, Q(m) and Q(n) are distinct topological properties, which is combined with the results above to give the next result.

CHARLES DORSETT

Corollary 2.4. For each *n* and each weakly P1 property Q1, Q(n)1 = ((weakly Q1) or T(n)) is a non-weakly P1 topological property weaker than weakly Q1 and stronger than $(Q_{\min})1$ such that a space has property Q1 iff it has property $((Q(n)1) \text{ and } T_0)$.

Thus, there are infinitely many non-weakly P1 topological properties W weaker than weakly Q1 and stronger than $(Q_{\min})1$ such that a space has property Q1 iff it has property (W and T_0).

In the first 2016 paper [7], it was shown that for a weakly Po property $Qo, Q_{(\min, \max)} = ((\text{weakly } Qo) \text{ and "not-}T_0")$ also plays a special role: $Q_{(\min, \max)}$ is the least topological property weaker than Qo and stronger than weakly Qo such that a space is Qo iff it is $(Q_{(\min, \max)})$ and T_0 . Combining this result with those above give the following result.

Corollary 2.5. Let Q be a topological property for which weakly Q1 exists. Then $(Q_{(\min, \max)})1 = ((weakly Q1) and "not-T_0")$ is the least topological property weaker than Q1 and stronger than weakly Q1 such that a space is Q1 iff it is $((Q_{(\min, \max)})1 and T_0)$.

Within the second 2016 paper [8], for each weakly Po property Qo, Q(1, n) was defined and used to give infinitely many more topological properties, which together with T_0 , are equivalent to Qo.

Definition 2.3. Let Q be a topological property for which weakly Qo exists. A space (X, T) is Q(1, n) iff it is weakly Qo, there exist n distinct elements a_1, \dots, a_n all of whose closures are equal, and for all other $x \in X$, $Cl(\{x\}) = Cl(\{y\})$ iff x = y [8].

In the 2016 paper [8], for a weakly *Po* property *Qo*, it was shown that Q(1, n) exists, Q(1, n) is weaker than *Qo* and stronger than $Q_{(\min, \max)}$, $Qo = (Q(1, n) \text{ and } T_0)$, and for each *Qo* space (Y, S) there are infinitely

many topologically spaces all with topologically distinct topological properties that are weaker than Qo and stronger than $Q_{(\min, \max)}$, which together with T_0 , equals Qo and all having a T_0 -identification space homeomorphic to (Y, S).

Definition 2.4. Let Q be a topological property for which weakly Q1 exists. A space (X, T) is (Q(1, n))1 iff it is weakly Q1, there exist n distinct elements a_1, \dots, a_n all of whose closures are equal, and for all other $x \in X$, $Cl(\{x\}) = Cl(\{y\})$ iff x = y.

Corollary 2.6. Let Q be a topological property for which weakly Q1 exists. Then (Q(1, n))1 exists, (Q(1, n))1 is weaker than Q1 and stronger than $(Q_{(\min, \max)})1$, Q1 = ((Q(1, n))1 and $T_0)$, and for each Q1 space (Y, S), there are infinitely many topologically spaces all with topologically distinct topological properties that are weaker than Q1 and stronger than $(Q_{(\min, \max)})1$, which together with T_0 , equals Q1 and all having a T_0 -identification space homeomorphic to (Y, S).

As indicated in the paper [8], if (Y, S) has property Qo, where Qo is a weakly Po property, with p or more elements, then Q(1, n) can be extended to $Q(p, n_1, \dots, n_p)$ that behaves in the same manner as Q(1, n) and can be used to give many more topological properties weaker than Qo and stronger than $Q_{(\min, \max)}$, which together with T_0 , is equivalent to Qo. In the same manner as above, each of these new topological properties can be used to give a topological property weaker than Q1 and stronger than $(Q_{(\min, \max)})$, which together with T_0 , is equivalent to Q1.

Theorem 2.1. Let P be a topological property such that (P and T_0) exists. Then (P and T_0) implies P1 iff T_0 and T_1 are equivalent.

CHARLES DORSETT

Proof. Suppose $(P \text{ and } T_0)$ implies P1. Thus, if (X, T) is a P space with property T_0 , then (X, T) has property P1, which implies (X, T) is T_1 . Since T_1 implies T_0 , then T_0 and T_1 are equivalent.

Clearly, the converse is true.

Corollary 2.7. Let Q be a topological property for which weakly Q1 exists. Then for each topological property P given above for which $(P \text{ and } T_0) = Q1, T_0 \text{ and } T_1 \text{ are equivalent.}$

Since for a topological property Q for which weakly Q2 exists, Q2 = (Q2)o [6], then each of the results above can be correctly restated by replacing weakly Q1 by weakly Q2 and Q1 by Q2 and since for a topological property P for which (P and T_0) exists, (P and T_0) implies P2 iff T_0 , T_1 , and T_2 are equivalent, then there are infinitely many known topologically distinct topological properties for which each of T_0 , T_1 , and T_2 are equivalent for each weakly P2 property.

Of the many topological properties P for which (P and T_0) exists and T_0 and T_1 are equivalent, is there a least such topological property and of the many topological properties P for which (P and T_0) exists and T_0 , T_1 , and T_2 are equivalent, is there a least such topological property? These questions are resolved in the last section of this paper.

3. The Least Topological Properties Preserving the Equivalences

Theorem 3.1. The least of all topological properties P for which $(P \text{ and } T_0)$ exists and T_0 and T_1 are equivalent is $(R_0 \text{ or "not-} T_0")$.

Proof. Let $\mathcal{P}1 = \{So \mid S \text{ is a topological property, So exists, and So implies <math>T_1\}$. By the results above, ((weakly T_1) or "not- T_0 ") is the least topological property P for which a space has property T_1 iff it is (P and T_0). Since weakly T_1 = weakly (R_0) o [2], then $P = ((R_0) \text{ or "not-} T_0$ ") is the

least of all topological properties P for which a space is T_1 iff it is $(P \text{ and } T_0)$. Thus $((R_0) \text{ or "not-} T_0")$ is the least topological property P for which $(P \text{ and } T_0)$ exists and T_0 and T_1 are equivalent.

Theorem 3.2. The least of all topological properties P for which $(P \text{ and } T_0)$ exists and T_0, T_1 , and T_2 are equivalent is $((R_1) \text{ or "not-} T_0")$.

Proof. Let $\mathcal{P}2 = \{So \mid S \text{ is a topological property, So exists, and So implies <math>T_2\}$. By the results above, ((weakly T_2) or "not- T_0 ") is the least topological property P for which a space has property T_2 iff it is (P and T_0). Since weakly T_2 = weakly (R_1) o [2], then $P = ((R_1) \text{ or "not-} T_0$ ") is the least of all topological properties P for which a space is T_2 iff it is (P and T_0). Thus ((R_1) or "not- T_0 ") is the least topological property P for which (P and T_0) exists and T_0 and T_1 are equivalent.

The last two results follow immediately from the results above.

Corollary 3.1. Let (X, T) be R_0 . Then (X, T) is T_0 iff (X, T) is T_1 .

Corollary 3.2. Let (X, T) be R_1 . Then (X, T) is T_0 iff (X, T) is T_1 iff (X, T) is T_2 .

Thus, knowledge of solved problems that are related to the problems above and then applying that knowledge has made difficult problems quickly solvable. In the 1961 paper [1], the focus was the separation axioms T_1 and T_2 . The introduction and investigation of weakly P_0 , weakly P_1 , and weakly P_2 properties has changed the focus from T_1 and T_2 to R_0 , R_1 , and infinitely many new topological properties that add much and give greater insight into the working of mathematics. With the focus on T_1 and T_2 in 1961 [1], one characterization of T_1 was given and two characterizations of T_2 was given and, even though the knowledge

CHARLES DORSETT

was available, use of R_0 and R_1 in the equivalence questions above were overlooked. However, as a result of the 1961 paper [1] and the 1975 paper [10], today infinitely many topological properties are known for which the equivalences above are true and infinitely many new characterizations of T_1 and T_2 have been discovered [9].

References

- A. Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Math. Monthly 68 (1961), 886-893.
- [2] C. Dorsett, Weakly P properties, Fundamental Journal of Mathematics and Mathematical Sciences 3(1) (2015), 83-90.
- [3] C. Dorsett, Weakly P1, weakly Po and T_0 -identification P properties, Fundamental Journal of Mathematics and Mathematical Sciences 6(1) (2016), 33-43.
- [4] C. Dorsett, Weakly P2 properties and related properties, Fundamental Journal of Mathematics and Mathematical Sciences 4(1) (2015), 11-21.
- [5] C. Dorsett, Additional weakly P1 properties and "not-(weakly P1)" properties, submitted.
- [6] C. Dorsett, Weakly P2 and weakly P1 properties, submitted.
- [7] C. Dorsett, Weakly P corrections and new, fundamental topological properties and facts, Fundamental Journal of Mathematics and Mathematical Sciences 5(1) (2016), 11-20.
- [8] C. Dorsett, Infinitely many topological property characterizations of weakly Po properties, Pioneer Journal of Mathematics and Mathematical Sciences 17(1) (2016), 23-31.
- [9] C. Dorsett, Application of weakly P properties giving infinitely many new characterizations of T_1 and T_2 spaces, Journal of Mathematical Sciences: Advances and Applications 39 (2016), 89-98.
- [10] W. Dunham, Weakly Hausdorff spaces, Kyungpook Math. J. 15(1) (1975), 41-50.
- [11] M. Stone, Application of Boolean algebras to topology, Mat. Sb. 1 (1936), 765-771.