INSIGHTS GAINED FROM WEAKLY P PROPERTIES INTO EQUIVALENCES OF SEPARATION AXIOMS

CHARLES DORSETT

Department of Mathematics
Texas A&M University-Commerce
Commerce, Texas 75429
USA
e-mail: charles.dorsett@tamuc.edu

Abstract

In 1975, it was proven that a space is R_1 iff its T_0-identification space is Hausdorff. The 1975 work motivated the introduction and investigation of weakly P_0 properties, which led to the introduction and investigation of weakly P_1 and weakly P_2 properties. Within recent papers, it was established that in weakly P_1 spaces T_0 and T_1 are equivalent, and in weakly P_2 spaces T_0, T_1, and T_2 are equivalent. Within this paper, infinitely many topological properties, in addition to weakly P_1 or weakly P_2, are given for each weakly P_1 or weakly P_2 for which each of T_0 and T_1 or T_2 are equivalent, including the least of all such topological property in each of the two cases.

1. Introduction and Preliminaries

T_0-identification spaces were introduced in 1936 [11].

Definition 1.1. Let (X, T) be a space, R be the equivalence relation on X defined by xRy iff $Cl(\{x\}) = Cl(\{y\})$, X_0 be the set of R equivalence

2010 Mathematics Subject Classification: 54A05, 54B15, 54D10.
Keywords and phrases: topological properties, T_0-identification spaces, weakly P.
Received July 15, 2016
classes of X, $N : X \to X_0$ be the natural, and $Q(X, T)$ be the decomposition topology on X_0 determined by (X, T) and the natural map N. Then $(X_0, Q(X, T))$ is the T_0-identification space of (X, T) [11].

Within the 1975 paper [10], weakly Hausdorff was characterized using T_0-identification spaces.

Theorem 1.1. A space (X, T) is weakly Hausdorff iff its T_0-identification space is Hausdorff [10].

In the 2015 paper [2], the question of whether T_0-identification spaces could be used to uniquely define other weakly P properties behaving in the same manner as weakly Hausdorff led to the introduction and investigation of weakly Po properties.

Definition 1.2. Let P be a topological property for which $Po = (P$ and $T_0)$ exists. Then (X, T) is weakly Po iff its T_0-identification space $(X_0, Q(X, T))$ has property P. A topological property Po for which weakly Po exists is called a weakly Po property [2].

In the 2015 paper [2], it was proven that for a topological property P for which weakly Po exists, weakly Po is a unique, topological property. In addition, since for each space (X, T), $(X_0, Q(X, T))$ is T_0 [11], then, as given in the 2015 paper [2], a space is weakly Po iff its T_0-identification space has property Po.

Within the 1975 paper [10], it was proven that weakly Hausdorff is equivalent to the R_1 separation axiom, which was introduced in 1961 [1].

Definition 1.3. A space (X, T) is R_1 iff for $x, y \in X$, such that $\text{Cl}(\{x\}) \neq \text{Cl}(\{y\})$, there exist disjoint open sets U and V such that $x \in U$ and $y \in V$ [1].

In the 1961 paper [1], the following characterizations of T_2 were given: For a space (X, T), the following are equivalent: (a) (X, T) is T_2, (b) (X, T) is $(R_1$ and T_1), and (c) (X, T) is $(R_1$ and T_0).
Also, within the 1961 paper [1], the R_0 separation axiom was rediscovered and used to further characterize T_1 spaces.

Definition 1.4. A space (X, T) is R_0 iff for each open set O and each $x \in O$, $\text{Cl}(\{x\}) \subseteq O$.

In the 1961 paper [1], it was shown that R_1 implies R_0 and a space is T_1 iff it is $(R_0$ and T_0).

Within weakly Po properties, the T_0 separation axiom has a major role. Thus the question of what would happen if T_0 in the definition of weakly Po properties was replaced by T_1 or by T_2 arose leading to the introduction and investigation of weakly $P1$ and weakly $P2$ properties.

Definition 1.5. Let P be a topological property for which $P1 = (P$ and T_1) exists. Then a space (X, T) is weakly $P1$ iff its T_0-identification space $(X_0, Q(X, T))$ has property $P1$ [3].

Definition 1.6. Let P be a topological property for which $P2 = (P$ and T_2) exists. Then a space (X, T) is weakly $P2$ iff its T_0-identification space $(X_0, Q(X, T))$ has property $P2$ [4].

The continued investigation of weakly $P1$ properties [5] has revealed that for weakly $P1$ spaces, T_0 and T_1 are equivalent and for weakly $P2$ spaces, T_0, T_1, and T_2 are all equivalent [6]. Thus, the question of whether there are additional topological properties for which T_0 and T_1 are equivalent and for which T_0, T_1, and T_2 are all equivalent arises. The equivalences given above were not expected, but, in this case, as is often true, discoveries lead to additional questions for consideration and hopefully resolution. Below for each weakly $P1$ property and for each weakly $P2$ property, infinitely many related topological properties are given in which the equivalences above hold.
2. Related Topological Properties for a Weakly $P1$ and Weakly $P2$ Property Preserving the Equivalences

Confronted by a new problem, mathematicians are trained to search for a way to relate the new problem to an already solved problem and, if successful, use the solution of the solved problem to aid in the solution of the new problem. For the cited new problems above, there are solved problems that can be applied to greatly aid in their resolution.

Within the 2016 paper [7], the following result was proven: “Let Q be a topological property for which weakly Q_0 exists and let $S = \{S_0| S$ is a topological property, S_0 exists, and S_0 implies $Q_0\}$. Then (weakly $Q_0)o \in S$, for each weakly Po property W such that Wo implies Q_0, (weakly $Wo)o \in S$, each element of S implies weakly Q_0, and there exists the topological property $Q_{min} = ((weakly Q_0)$ or “not-T_0”), where “not-T_0” is the negation of T_0, weaker than weakly Q_0 such that $(Q_{min})o \in S$.

In the weakly $P1$ paper [3], it was shown that for a weakly $P1$ property $Q1$, $Q1$ is a weakly Po property, i.e., $Q1 = (Q1)o$, which is combined with the results above to quickly establish the following useful results in the resolution of the new problems above.

Corollary 2.1. Let Q be a topological property for which weakly $Q1$ exists and let $S(Q1) = \{S_0| S$ is a topological property, S_0 exists, and S_0 implies $Q1\}$. Then $S(Q1) = \{S_0| S$ is a topological property, S_0 exists, and S_0 implies $(Q1)o\}$.

Corollary 2.2. Let Q be a topological property for which weakly $Q1$ exists and let $S(Q1) = \{S_0| S$ is a topological property, S_0 exists, and S_0 implies $Q1\}$. Then (weakly $Q1)o \in S(Q1)$, for each weakly Po property W such that Wo implies $Q1$, (weakly $Wo)o \in S(Q1)$, each element of $S(Q1)$ implies weakly $Q1$, and there exists the topological property $(Q_{min})1 = ((weakly Q1)$ or “not-T_0”) weaker than weakly $Q1$ such that $(Q_{min})1)o \in S(Q1)$.
Also, in the 2016 paper [7], it was established that for a topological property for which weakly P_0 exists, P_{\min} is the least topological property for which a space has property P_0 iff it has property $(P_{\min}$ and $T_0)$, giving the next result.

Corollary 2.3. Let P be a topological property for which weakly P_1 exists. Then $(P_{\min})_1$ is the least topological property for which a space has property P_1 iff it has properties $(P_{\min}$ and $T_0)$.

Within the second 2016 paper [8], for a weakly P_0 property Q_0, the special role played by Q_{\min} was used to give infinitely many topologically distinct, non-weakly P_0 topological properties weaker than weakly Q_0 and stronger than Q_{\min}, which together with T_0, are equivalent to Q_0, which will be combined with the results above to extend the 2016 result [8] to weakly P_1 properties.

Let m and n represent natural number greater than or equal to 2.

Definition 2.1. Let $A(n)$ represent a set with n distinct elements, X be a set containing the elements of $A(n)$, and $T(A(n))$ be the topology on X defined by $T(A(n)) = \{B \subseteq X \mid A(n) \subseteq B \text{ or } B = \emptyset\}$ [8].

Definition 2.2. A space (X, T) has property $T(n)$ iff there exists a subset $A(n)$ of X such that $T = T(A(n))$ [8].

In the 2016 paper [8], it was shown that each $T(n)$ space is “not-T_0” and not a weakly P_0 property, that $Q(n) = (\text{weakly } Q_0 \text{ or } T(n))$ is a topological property weaker than weakly Q_0 and stronger than Q_{\min} such that a space has property Q_0 iff it has property $(Q(n)$ and T_0), and that for $m < n$, $Q(m)$ and $Q(n)$ are distinct topological properties, which is combined with the results above to give the next result.
Corollary 2.4. For each n and each weakly P_1 property Q_1, $Q(n)\downarrow = (\text{weakly } Q_1 \text{ or } T(n))$ is a non-weakly P_1 topological property weaker than weakly Q_1 and stronger than $(Q_{\min})\downarrow$ such that a space has property Q_1 iff it has property $((Q(n)\downarrow) \text{ and } T_0)$.

Thus, there are infinitely many non-weakly P_1 topological properties W weaker than weakly Q_1 and stronger than $(Q_{\min})\downarrow$ such that a space has property Q_1 iff it has property $(W \text{ and } T_0)$.

In the first 2016 paper [7], it was shown that for a weakly Po property Q_0, $Q_{(\min,\max)} = (\text{weakly } Q_0)$ and “not-T_0”) also plays a special role: $Q_{(\min,\max)}$ is the least topological property weaker than Q_0 and stronger than weakly Q_0 such that a space is Q_0 iff it is $(Q_{(\min,\max)} \text{ and } T_0)$. Combining this result with those above give the following result.

Corollary 2.5. Let Q be a topological property for which weakly Q_1 exists. Then $(Q_{(\min,\max)})\downarrow = (\text{weakly } Q_1) \text{ and } \{\text{not-T_0}\}$ is the least topological property weaker than Q_1 and stronger than weakly Q_1 such that a space is Q_1 iff it is $(Q_{(\min,\max)}\downarrow \text{ and } T_0)$.

Within the second 2016 paper [8], for each weakly Po property Q_0, $Q(1, n)$ was defined and used to give infinitely many more topological properties, which together with T_0, are equivalent to Q_0.

Definition 2.3. Let Q be a topological property for which weakly Q_0 exists. A space (X, T) is $Q(1, n)$ iff it is weakly Q_0, there exist n distinct elements a_1, \cdots, a_n all of whose closures are equal, and for all other $x \in X$, $Cl(\{x\}) = Cl(\{y\})$ iff $x = y$ [8].

In the 2016 paper [8], for a weakly Po property Q_0, it was shown that $Q(1, n)$ exists, $Q(1, n)$ is weaker than Q_0 and stronger than $Q_{(\min,\max)}$, $Q_0 = (Q(1, n) \text{ and } T_0)$, and for each Q_0 space (Y, S) there are infinitely
many topologically spaces all with topologically distinct topological properties that are weaker than Q_0 and stronger than $Q_{(\min, \max)}$, which together with T_0, equals Q_0 and all having a T_0-identification space homeomorphic to (Y, S).

Definition 2.4. Let Q be a topological property for which weakly Q_1 exists. A space (X, T) is $(Q(1, n))l$ if it is weakly Q_1, there exist n distinct elements a_1, \ldots, a_n all of whose closures are equal, and for all other $x \in X$, $\text{Cl}(\{x\}) = \text{Cl}(\{y\})$ iff $x = y$.

Corollary 2.6. Let Q be a topological property for which weakly Q_1 exists. Then $(Q(1, n))l$ exists, $(Q(1, n))l$ is weaker than Q_1 and stronger than $(Q_{(\min, \max)})l$, $Q_1 = ((Q(1, n))l$ and $T_0)$, and for each Q_1 space (Y, S), there are infinitely many topologically spaces all with topologically distinct topological properties that are weaker than Q_1 and stronger than $(Q_{(\min, \max)})l$, which together with T_0, equals Q_1 and all having a T_0-identification space homeomorphic to (Y, S).

As indicated in the paper [8], if (Y, S) has property Q_0, where Q_0 is a weakly P_0 property, with p or more elements, then $Q(1, n)$ can be extended to $Q(p, n_1, \ldots, n_p)$ that behaves in the same manner as $Q(1, n)$ and can be used to give many more topological properties weaker than Q_0 and stronger than $Q_{(\min, \max)}$, which together with T_0, is equivalent to Q_0. In the same manner as above, each of these new topological properties can be used to give a topological property weaker than Q_1 and stronger than $(Q_{(\min, \max)})l$, which together with T_0, is equivalent to Q_1.

Theorem 2.1. Let P be a topological property such that $(P$ and $T_0)$ exists. Then $(P$ and $T_0)$ implies P_1 iff T_0 and T_1 are equivalent.
Proof. Suppose \((P \text{ and } T_0)\) implies \(P_1\). Thus, if \((X, T)\) is a \(P\) space with property \(T_0\), then \((X, T)\) has property \(P_1\), which implies \((X, T)\) is \(T_1\). Since \(T_1\) implies \(T_0\), then \(T_0\) and \(T_1\) are equivalent.

Clearly, the converse is true.

Corollary 2.7. Let \(Q\) be a topological property for which weakly \(Q_1\) exists. Then for each topological property \(P\) given above for which \((P \text{ and } T_0) = Q_1, T_0 \text{ and } T_1\) are equivalent.

Since for a topological property \(Q\) for which weakly \(Q_2\) exists, \(Q_2 = (Q_2)\circ [6]\), then each of the results above can be correctly restated by replacing weakly \(Q_1\) by weakly \(Q_2\) and \(Q_1\) by \(Q_2\) and since for a topological property \(P\) for which \((P \text{ and } T_0)\) exists, \((P \text{ and } T_0)\) implies \(P_2\) iff \(T_0, T_1,\) and \(T_2\) are equivalent, then there are infinitely many known topologically distinct topological properties for which each of \(T_0, T_1,\) and \(T_2\) are equivalent for each weakly \(P_2\) property.

Of the many topological properties \(P\) for which \((P \text{ and } T_0)\) exists and \(T_0\) and \(T_1\) are equivalent, is there a least such topological property and of the many topological properties \(P\) for which \((P \text{ and } T_0)\) exists and \(T_0, T_1,\) and \(T_2\) are equivalent, is there a least such topological property? These questions are resolved in the last section of this paper.

3. The Least Topological Properties
Preserving the Equivalences

Theorem 3.1. The least of all topological properties \(P\) for which \((P \text{ and } T_0)\) exists and \(T_0\) and \(T_1\) are equivalent is \((R_0 \text{ or } \text{“not-} T_0\text{”})\).

Proof. Let \(P_1 = \{S_0| S\}\) is a topological property, \(S_0\) exists, and \(S_0\) implies \(T_1\}\}. By the results above, \(((\text{weakly } T_1) \text{ or } \text{“not-} T_0\text{”})\) is the least topological property \(P\) for which a space has property \(T_1\) iff it is \((P \text{ and } T_0)\). Since weakly \(T_1 = \text{weakly } (R_0)\circ [2]\), then \(P = ((R_0) \text{ or } \text{“not-} T_0\text{”})\) is the
least of all topological properties P for which a space is T_1 iff it is $(P$ and $T_0)$). Thus $((R_0)$ or “not-T_0”) is the least topological property P for which $(P$ and $T_0)$ exists and T_0 and T_1 are equivalent.

Theorem 3.2. The least of all topological properties P for which $(P$ and $T_0)$ exists and T_0, T_1, and T_2 are equivalent is $((R_1)$ or “not-T_0”).

Proof. Let $\mathcal{P}_2 = \{S | S$ is a topological property, S exists, and S implies $T_2\}$. By the results above, $((\text{weakly } T_2)$ or “not-T_0”) is the least topological property P for which a space has property T_2 iff it is $(P$ and $T_0)$. Since weakly $T_2 = \text{weakly } (R_1)\circ [2]$, then $P = ((R_1)$ or “not-T_0”) is the least of all topological properties P for which a space is T_2 iff it is $(P$ and $T_0)$. Thus $((R_1)$ or “not-T_0”) is the least topological property P for which $(P$ and $T_0)$ exists and T_0 and T_1 are equivalent.

The last two results follow immediately from the results above.

Corollary 3.1. Let (X, T) be R_0. Then (X, T) is T_0 iff (X, T) is T_1.

Corollary 3.2. Let (X, T) be R_1. Then (X, T) is T_0 iff (X, T) is T_1 iff (X, T) is T_2.

Thus, knowledge of solved problems that are related to the problems above and then applying that knowledge has made difficult problems quickly solvable. In the 1961 paper [1], the focus was the separation axioms T_1 and T_2. The introduction and investigation of weakly P_0, weakly P_1, and weakly P_2 properties has changed the focus from T_1 and T_2 to R_0, R_1, and infinitely many new topological properties that add much and give greater insight into the working of mathematics. With the focus on T_1 and T_2 in 1961 [1], one characterization of T_1 was given and two characterizations of T_2 was given and, even though the knowledge
was available, use of R_0 and R_1 in the equivalence questions above were overlooked. However, as a result of the 1961 paper [1] and the 1975 paper [10], today infinitely many topological properties are known for which the equivalences above are true and infinitely many new characterizations of T_1 and T_2 have been discovered [9].

References