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Abstract 

When only a small sample is available, it is well known that the empirical 
distribution contains scarce information about the shape of the hazard function 
as well as about the far-right tail of the “parent” probability density. So, the 
probabilistic analysis of the mechanisms that lead to the involved random 
variable can be a decisive factor to identify the appropriate distribution model. 
In this context, three recurrent degradation mechanisms (“simple degradation”, 
“stress-strength”, and “latent-defensive-attempts”) which lead exactly to the 
inverse Weibull survival time are identified and mathematically formulated. 
They are derived as first passage time distributions. Then, the proposed 
mechanism approach, applied to the proper identification of this relatively 
unknown survival model, is illustrated by means of two real world examples. 

1. Introduction 

It is well-known that individuals, even belonging to the same 
population, vary in their susceptibilities to potential hazards and that 
such variability reflects intrinsic heterogeneity as well as differences in 
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exposures. In these cases, the unimodal shape of the hazard rate is found 
and explained as suggested in (Aalen [1]). Specifically, the high-risk 
individuals die at beginning of the life time t and give rise to a rising 
hazard rate. Then, the hazard rate starts to decline because only the low-
risk individuals survive. For instance, sometimes this happens for cancer 
patients, when the longer the patients live beyond a certain time, the 
higher are their chances to survive. In general, the intrinsic human 
heterogeneity that gives rise to their different susceptibilities to toxicants 
is proved, as instance, by observations that: not all workers exposed to 
benzidine develop urinary bladder cancer; not all humans are equally 
susceptible to air pollutants; the individual-to-individual variability in 
disease susceptibility is associated with a variety of genetic factors (Olin 
et al. [25]). 

In general, sample sizes in excess of 200-300 are required to reliably 
distinguish between distributional forms of the survival time (see, e.g., 
Haas [13]). Viceversa, when only small samples are available, the 
knowledge of the main mechanisms that lead to a specific survival time 
can supplement or even prevail over the usual statistical procedures 
exploited to identify the corresponding distribution model (Baker [3]; 
Slud & Suntornchost [26]). To be effective, these mechanisms must 
represent different possible interactions between the above discussed 
intrinsic heterogeneity and differences in exposures. Moreover, they can 
support the degradation analysis and monitoring as shown by Lu and 
Meeker [22] and by Gebraeel et al. [9]. In fact, in absence of observed 
injuries or failures, degradation analysis is an alternate approach that 
uses a sequence of degradation measures – suggested by a degradation 
model – to assess the lifetime distribution (Bian & Gebraeel [5]). 

In this context, the paper provides the mathematical models of three 
typical generative mechanisms, of the inverse Weibull random variable, 
found in biometry and reliability: “simple degradation”, “stress-strength”, 
and “latent-defensive-attempts”. So, the paper helps exploiting the inverse 
Weibull model to give correct answers for these specific hazard problems, 
for which it is the natural interpretative stochastic model. 
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For the proposed degradation mechanisms, the inverse Weibull model 
is derived as first passage time distribution function. The used approach 
is along the lines shown by Ballani et al. [4] and Glen [11] in their 
stimulating papers. 

Doubtless, the inverse Weibull random variable is not as widely 
known as the Weibull, for instance, and so it is seldom identified. 
Moreover, the inverse Weibull model is referred to by many different 
names like “complementary Weibull” (Drapella [7]), “reciprocal Weibull” 
(Lu & Meeker [22]; Mudholkar & Kollia [23]), “Fréchet-type” (Johnson et 
al. [16]; Harlow [14]), and “inverse Weibull” (Johnson et al. [15]; Murthy 
et al. [24]). 

Obviously, the inverse of the inverse Weibull data follows a Weibull 
distribution. So the parameter estimates of the inverse Weibull 
distribution can be easily obtained by applying to its reciprocal data the 
same standard procedures implemented in packages for the Weibull 
model (Murthy et al. [24]). 

The remainder of the paper is organized as follows. The next section 
gives a brief summary of the peculiar statistical properties of the inverse 
Weibull model. Section 3 shows the three typical models of mechanisms 
of failure that lead exactly to the inverse Weibull distribution. In Section 
4, the inverse Weibull model is compared with other commonly-known 
distributions and it is shown that a pure empirical fitting of a model to 
the inverse Weibull data can lead to wrong prognoses. In Section 5, two 
classical discriminant criteria and their probability of success are 
discussed. Then, two applicative examples to demonstrate the use of the 
proposed generative mechanisms – when only tiny data sets are available 
– are shown in Section 6. 

2. Statistical Properties 

The probability density function of the inverse Weibull random 
variable T, with scale parameter a and shape parameter b, is (see Figure 1): 

( ) ( ) ( ) { ( ) } .0,,0,exp1 >≥−= −+− batatatabtf bb   (1) 
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It is skewed and unimodal with mode at ( ){ } .1 1 abbt b
m +=  The k-th 

moment of the inverse Weibull random variable is { } ( )baTE kkk −Γ= 11  

and it exists if k.>b  Then the mean { } ( ) ( )baT 111 −Γ=E  and the 

variance { } ( ) { ( ) ( )}bbaT 11211Var 22 −Γ−−Γ=  follow. 

The most distinctive feature of the inverse Weibull model is its heavy 
right tail, being its probability density infinitesimal of lower order than 
the negative exponential as t goes to infinity. 

 

Figure 1. Probability density (ogive-shaped) and distribution functions 
(S-shaped) of the inverse Weibull model ( ).3,2,1,1 == ba  

The distribution function ( )tF  (see Figure 1), the survival function 

( ),tR  and the hazard rate ( )th  (see Figure 2) are easily derived from (1): 
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The hazard rate is infinitesimal as t goes to infinity. It is unimodal and 
belongs to the UBT (upside-down bathtub shaped hazard) class (Glaser 
[10]) with only one change point. We found that the abscissa of the 
change point is (Figure 2): 

( ) ( ) ,11exp1111
11 b

m bbbbWbbat 














 





 −−+−++=

−
 (4) 

where ( )⋅W  is the Lambert function (i.e., the “product logarithm” function 

for any argument value in the interval [ )).,1 ∞− e  It can be easily 

shown that an algebraic approximation of this important abscissa is 
(Figure 2): 

( )[ ].112
~ 11 bb
m ba

bt −++=  (5) 

 

Figure 2. Hazard rates of the inverse Weibull model for 3,2,1=b  

( )1=a  and abscissas 18.1,07.1,627.0 321 === ttt  of the respective 

global maxima (the approximate formula (5) gives: ,12.1~,750.0~
21 == tt  

).18.1~
3 =t  
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The mean residual life ( ,MRLR  also called the life expectancy of the 

R fraction of items lived longer than Rt ) is 

( ) ( ) ( ) ( )
{ ( ) }

,1,
exp1

,1111 >−
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=−=

−

−−∞+

∫ bt
at
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R

b
R

b
R

tR
R

R
 

(6) 

being ( )bbtab −−−Γ ,11  the lower incomplete gamma function. The 

RMRL  function of the inverse Weibull model is bathtub-shaped. The 

RMRL  decreases from the initial value ( )TE  (as t goes to 0) to its 

minimum at the change point 0t  and then increases infinitely as t goes to 

infinity. Being ( ) ( ) ( ) 1−= thtmdttdm  (e.g., see Lai & Xie [17], Chapter 4), 

the change point 0t  must necessarily solve the equation ( ) ( ) .1=thtm  In 

practice, this peculiar RMRL  shape can be found, for example, in some 

biometry problems when the longer the patient’s survival time from his 
tumor ablation the better his prognosis. 

3. Physical Models of Mechanisms of Failure 

3.1. “Simple degradation” mechanism 

Let ( )tY  be a system damage accumulation index which is modelled 

by a non-decreasing and right-continuous stochastic process on the range 
[ )∞,0  of the run time t. If D is the threshold (maximum, positive) value 

for ( ),tY  then, the first passage time T of ( )tY  over D has distribution 

function ( ) ( ) ( ){ }.DtYPtTPtF ≥=≤=  Let, for every t, the distribution 

function of ( )tY  be reasonably fitted by a Weibull model with constant 

shape parameter and scale parameter u, function of t, modelled by a 
generic power law: 

( ) ,0,,; >= kk htttu h   (7) 
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then, the life-to-failure of the system has the inverse Weibull distribution 
function. In fact, consider a Weibull random variable ( )tY  with probability 

density function: 

( ) ( ) { ( )} [ ( ){ } ] ,0,,0;exp1 >≥−= − uvytuytuytuvyg vv   (8) 

where v, the shape parameter, is constant (since characteristic of the 
involved phenomenon) and ( ),tu  the scale parameter, is the drift function (7). 

The first passage time T of ( )tY  over D has distribution function: 

( ) ( ){ } ( ) [ ( ){ } ].exp1
0

vD
tuDdyygDtYPtF −=−=≥= ∫  (9) 

Substituting ( ) httu k=  back into the previous relationship, we obtain: 

( ) [ {( ) } ],exp 1 vhhtDtF −−= k   (10) 

and, on setting ( ) hDa 1k=  and ,vhb =  the inverse Weibull distribution 

function follows. 

This mechanism is found in many prosthesis corrosion phenomena 
that give rise to failures only when they reach a threshold deepness D. 
The mechanism is found also in many biologic degenerative phenomena 
(i.e., gradual degradation of organs and cells) where the loss of function 
appears when the degradation level ( )tY  reaches a threshold value. 

Besides, this mechanism is found when tumors spread potential 
metastases with a dissemination probability proportional to their size 
( ).tY  Hence, a tumor size greater than a given threshold value D causes 

a rate of occurrence of metastases which is really first increasing and 
then decreasing (see Le Cam & Neyman [19], p. 253) like the inverse 
Weibull one. 

It should be mentioned that a linear function of t degradation index, 
( ),tY  that gives rise to an inverse Gaussian distribution, has been 

considered by Lee and Tang ([21]) that analogously defined the failure 
time as first-passage of ( )tY  over a constant threshold. 
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3.2. “Stress-strength” mechanism 

Let the stress ( )tS  (in the broad sense) be modelled by a stationary 

and right continuous stochastic process on the range [ )∞,0  of the run 

time t. Let the distribution function of ( )tS  be reasonably fitted by a 

Weibull distribution independent of t. Let the strength ( ),tZ  that opposes 

( ),tS  be a decreasing function of time t that can be modelled by a generic 

power law: 

( ) .0,,; >= − kk htttZ h   (11) 

Then, the first passage time T of ( )tS  over ( )tZ  has distribution function 

( ) ( ) ( ) ( ){ }tZtSPtTPtF ≥=≤=  of inverse Weibull type. In fact, if, for 

every t, the stress ( )tS  is a Weibull random variable with probability 

density function: 

( ) ( ) { ( ) } ,0,,0,exp1 >≥−= − vusususuvsg vv   (12) 

it follows: 

( ) ( ) ( ){ }
( )

( ) [ ( ){ } ].exp1
0

vtZ
utZdssgtZtSPtF −=−=≥= ∫  (13) 

By substituting ( ) httZ −= k  back into the previous relationship, it 

follows: 

( ) [ {( ) } ],exp 1 vhhthutF −−=   (14) 

and by renaming ( ) hhua 1=  and ,vhb =  the inverse Weibull 

distribution is obtained. 

This mechanism is found in patients with a decreasing vital strength 
following (11) (e.g., because they are subject to intensive and prolonged 
chemotherapy) and subject to a cancer having a random virulence or 
gravity S. In these cases, an hazard rate which increases first quickly 
and then decreases gradually, is sometimes surprisingly observed (see 
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Carter et al. [6], p. 79). The decline of the hazard rate depends on the fact 
that, for some individuals, the probability ( ) ( ){ }tZtSP ≥  is low because 
the aggressiveness of the carcinoma is constantly low (12). That causes a 
sort of natural selection of the patients that explains the peculiar shape 
of the mean residual life function (6) and complies with the above 
empirical observation that the longer the patients live the higher are 
their chances to survive. 

3.3. “Latent-defensive-attempts” mechanism 

Suppose that a system is subject to a life attack (e.g., a disease or 
failure) Φ  and the physiological latent defensive attempt ∆  is repeated 
according to the homogeneous Poisson process on [ )∞,0  with intensity 

function .β  Let ( )Φ>∆  be the event “success of a defensive attempt,” 

that is the exceedance of ∆  over .Φ  If the probability ( ) ( )Φ>∆= PtPS  
depends on the incubation time t (but not on the number of previously 
occurred defensive actions) according to a generic power law decreasing 
function: 

( ) ,,0,1;
1
hthttP h

S kkk ≥>>= −   (15) 

then, the exceedance time T, of ∆  over ,Φ  has survival function 
( ) ( ) ( ){ }Φ>∆∆=>= ∩PtTPtR  of inverse Weibull type. In fact, 

suppose that the random variable ,aN  that counts the physiological 
defensive attempts ∆  against the disease/failure ,Φ  follows the Poisson 
law: 

( ) {( ) } ( );exp! tntnNP a
n

aa a β−β==  

,0,,2,1,0 >β= …an  (16) 

then, the probability of survival to time t is: 

( ) ( ) ( ) ( ) ( ) { ( ) }2
2

11exp!2exp hh tttttttR −− −−β−β+β−β= kk  

( ) ( ) { ( ) } ( ( ) ).exp111exp!3
13

3
−−− β−−=+−−β−β+ hh tttt kk "  (17) 
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This equation expresses simply that the survival implies one successful 
defensive attempt, or two defensive attempts not both unsuccessful, or 
three defensive attempts not all unsuccessful, and so on. Then, on setting 

1−= hb  and ( ) ,1 ba −β= k  the inverse Weibull survival function 

follows. 

This mechanism is found when the immune system works randomly 
against antigens, and its effectiveness decreases as the disease lasts (see 
Le Cam & Neyman [19], p. 15). An example of this mechanism is reported 
in (Lee [20]) where the survival times of insects exposed to a new 
insecticide are studied. In this case, the effectiveness of the immune 
response of the insects decreases very slowly over time. Moreover, the 
lack of memory of the immune system of insects, discussed in (Vilmos & 
Kurucz [29]), allows modelling their defensive attempts, against the toxic 
substance, according to the homogeneous Poisson process. 

4. Comparing the Inverse Weibull with other  
Commonly-known Distributions 

In order to better understand the peculiarities of the inverse Weibull 
model and to compare them with those of the other commonly-known 
distributions, the chart proposed in (Glen [11]; Vargo et al. [28]) can be 
very useful. In Figure 3, this chart is drawn including the inverse 
Weibull together with the other few models having upside-down bathtub 
(UBT) shaped hazard function. 
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Figure 3. Coefficient of variation 2γ  against skewness 3γ  for various 

hazard models. 

In this chart, the coefficient of variation µσ=γ2  is plotted against 

skewness {( ) } 33
3 σµ−=γ XE  for five alternative distribution models. 

Skewness is used to comparatively measure the tendency for one of their 
tails to be heavier than the other. The plot usually includes all possible 
pairs ( )32, γγ  that a model can attain. The set of values that the inverse 

Weibull ( )32, γγ  pairs can assume fall to the left of those of all the other 

models, helping to fill a gap on the extreme left of the chart. Since it 
occupies a small part of the chart, the inverse Weibull model confirms the 
fact that only peculiar data, corresponding to a small subset of the 
allowable moment pairs, can be modelled by it. 

However, a pure empirical fitting of a model to the inverse Weibull 
data can lead to wrong model, and its effect on the estimated 
characteristics, such as the mean residual life RMRL  (6), can be quite 

severe. For example, Figure 4 shows that although the Cdfs of two 
models (inverse Weibull and log-logistic fitted to the same data) are quite 
close to each other, their RMRL  (6) functions are rather different. So, 
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despite the fact the two models are both fitted to the same data and 
appear very close in Figure 4, the effect on critical prognoses of the mis-
specification is remarkable. 

 

Figure 4. Distribution function ( )tF  (S-shaped) and ( )RR tmMRL  

(bathtub-shaped) of the inverse Weibull (thick lines), log-logistic (thin 
lines) models fitted to the same pseudo random sample (from a parent 
inverse Weibull distribution). 

5. Estimates of the Correct Selection  
Probabilities P-AD and P-MLL 

It is well-known that comparisons among many survival distributions 
can be successfully made by using a goodness-of-fit statistic at its 
maximum likelihood value (e.g., see Glen & Leemis [12]) or by 
considering the difference of the maximized log-likelihoods (MLLs) and 
choosing the distribution with the largest value. Incidentally, in this 
paper, we chose the Anderson-Darling goodness-of-fit test (AD) 
(Anderson & Darling [2]; Stephens [27]) because it emphasizes the tails 
of the presumed (i.e., hypothetical) parent distribution. 
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With reference to pseudo random samples from parent inverse 
Weibull distribution, we found interesting to estimate the probability of 
correct selection between the inverse Weibull and log-logistic models. The 
probability was estimated in terms of the fraction of times (P-AD) that 
the fitted inverse Weibull model has the smaller Anderson-Darling 

statistic 2
nA  and the fraction of times (P-MLL) that the fitted inverse 

Weibull model has the larger maximized log-likelihood (MLL). To this 
end, we first found that for the inverse Weibull and log-logistic 

distributions both indices 2
nA  and MLL are pivotal quantities, that is 

independent of the hypothetical distribution parameters (intended as 
“arbitrary but determined” values). Then, for every combination of values 
a = (1, 2, 3), b = (1.1, 2.1, 3.1, 4.1, 5.1), and n = (10, 30, 50), we generated 
1000 pseudo random samples from the parent inverse Weibull 
distribution and computed P-AD, P-MLL and the fraction of times           
(P-AD&MLL) that the fitted inverse Weibull model has both the smaller 

Anderson-Darling statistic 2
nA  and the larger MLL. Thanks to the 

pivotal property of the 2
nA  and MLL indices, the conducted simulations 

gave 15 nearly identical results for each n. So, we have been able to 
evaluate a very reliable estimate of the probability of correct model 
selection (Table 1) based on the three examined criteria respectively. It is 
evident that the selection of the fitted model based upon the larger MLL 
has the highest probability of being correct. Moreover, the correct 
selection based on AD implies the correct selection based on MLL but not 
vice-versa. 

Table 1. Probability of correct model selection estimated by averaging 
15000 simulated results 

n P-AD P-MLL P-AD&MLL 

10 0.60 0.78 0.78 

30 0.77 0.88 0.88 

50 0.85 0.93 0.93 
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However, when the size of the available sample is less than 30, 
selecting the model purely on the basis of the empirical distribution 
implies an high probability of wrong selection. 

6. Real World Applicative Examples 

In this section, we provide two applicative examples to demonstrate 
the use of the generative mechanisms analytically shown before. These 
well known examples are highly representative of the critical real-world 
situations in which only tiny data sets are available, and so the 
probability of failure of pure statistical selection criteria could be very 
high (Table 1). Moreover, even though they involve very simple scientific 
knowledge they are effective applications of the proposed approach. 

6.1. Survival times of treated patients with Squamous carcinoma 

The dataset consists of survival times (in days) of 11 male patients 
affected by squamous carcinoma in the oropharynx and subjected to 
radiation therapy (see Ebrahimi [8], p. 413): 

167, 238, 296, 324, 351, 372, 374, 404, 541, 560, 943. 

The data result from a clinical trial carried out by a Radiation 
Therapy Oncology Group. The degradation process can be interpreted as 
an example of the “stress-strength” mechanism presented in Subsection 
3.2. In fact, patients show a physical weakening over time as a 
consequence of the considerable toxic effects of the radiation treatment. 
Therefore, they exhibit a decreasing vital strength that can be modelled 
by a generic power law (11). The corresponding aggressiveness of the 
carcinoma appears to be a time independent random variable. So, it can 
be reasonably fitted by a Weibull model independent of t (12). In [8], the 
data are used to illustrate some nonparametric estimation methods and 
no specific distributional model is advanced. On the basis of the above 
considerations, we are in a position to hypothesize that the inverse 
Weibull model is appropriate. 
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The maximum likelihood estimates of the inverse Weibull parameters 

are 00329.0ˆ =a  and ;44.2ˆ =b  the 2
nA  is equal to 0.340, with p-value 

0.526. So, the hypothesis of the inverse Weibull model cannot be rejected, 
with a degree of belief higher than a pure “statistical confidence” being 
supported by a probabilistic/biological analysis. 

6.2. Survival times of skin grafts on burn patients 

Lawless ([18], p. 340) reported the following 11 survival times (in 
days) of poorly matched skin grafts on burn patients: 

11, 13, 15, 15, 17, 21, 26, 26, 29, 40, 43. 

The death of the skin graft is due to the immune system of the recipient 
that attacks the graft transplanted from donor. The mechanism is exactly 
the same of the attempts that the immune system repeatedly does 
(randomly and with decreasing efficacy and energy) to destroy infecting 
organisms such as bacteria and viruses. 

This is an example of the “latent-defensive-attempts” mechanism as 
the one described in Subsection 3.3. In fact, the immune system attempts 
can be modelled by the Poisson law (16) with success probability that 
decreases with the time t, according to a generic power law decreasing 
function (15). Then, the hypothesis of the inverse Weibull model seems to 
have good reasons. However, we consider also the Weibull model because 
it is the one supposed in ([18], p. 339). 

The maximum likelihood estimates of the inverse Weibull parameters 

are 0582.0ˆ =a  and ;68.2ˆ =b  the MLL = – 39.9; the =2
nA  31.0  (with     

p-value 0.776). The maximum likelihood estimates of the Weibull parameters 

are 45.2=β  and ;4.26=α  the MLL = – 40.6; the 372.02 =nA  (with       

p-value 0.450). It would seem that both models can be adopted even if 
they lead to very different critical prognoses. However, thank to the 
above careful probabilistic/biological analysis (and the comparison by 
means of the MLLs) the impasse can be overcame and the choice of the 
inverse Weibull model can be reasonably preferred. 
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7. Concluding Remarks 

● Although it is not always possible to achieve a closed-form 
expression of the distribution from a probabilistic generative mechanism 
(Lu & Meeker [22]), the inverse Weibull distribution is obtained from the 
proposed three models of degenerative phenomena exactly. The 
knowledge of these models can also be exploited to perform the 
“probabilistic degradation analysis” needed to asses the hazard rate 
model when few or even no failure or injury data are expected to be 
observed (Lu & Meeker [22]). 

● The comparison with the log-logistic model is shown. The log-
logistic model has been considered because: (a) it is the closest model 
which shares the upside-down bathtub (UBT) shaped hazard function;   
(b) it plays the role of a “frontier” (see Figure 3) separating the inverse 
Weibull model from many other alternative models on the ( )32, γγ  chart 

from (Glen [11]; Vargo et al. [28]); (c) it gives a clear example of a model 
that – even though very well fitted to inverse Weibull data – may be very 
misleading because it entails highly incorrect assessments concerning, 
for instance, the mean residual life. 

● The paper evaluates the probability of selecting the right model 
between the inverse Weibull and the log-logistic by choosing that one 
which minimizes the Anderson-Darling statistic or maximizes the 
likelihood. The paper shows that the two criteria have probabilities of 
correct selection that are respectively greater than 0.85 and 0.93 when 
the size of the available sample is greater than 50. Instead, when the size 
of the available sample is less than 30 (i.e., in a very frequent situation in 
the technological and biological fields) selecting the correct model purely 
on the basis of the empirical distribution remains a highly risky 
procedure, because the probabilities of wrong selection are respectively 
greater than 0.23 and 0.12. In these cases, the careful analysis of the 
generative mechanisms of the involved random variable can be a decisive 
factor. 
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