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Abstract 

convexity-1−B  is an abstract convexity type. convex-1−B  sets are examined in 

various studies. Also, the applications of convexity-1−B  on mathematical 
economy are introduced in some new papers. In this article, some operations on 

convex-1−B  sets are proved. 
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1. Introduction 

Recently, abstract convexity which has many applications to the 
mathematical economy, operation research, inequality theory is a 

popular area in mathematics ([5, 6, 7]). Besides, convexity-1−B  is an 

abstract convexity type. convex-1−B  sets are examined in various studies 

([1, 2, 3, 4, 8]). Also, the applications of convexity-1−B  on mathematical 

economy are introduced in [3]. In this article, some operations on 

convex-1−B  sets are proved. 

In Section 2, we give definitions and recall some properties of       

convex-1−B  set and convex-1−B  hull. In Section 3, we establish some 

new operations on convex-1−B  sets. 

2. Convexity1-−B  and Operations on Convex1-−B  Sets 

For ,−∈ Zr  the map ( ) 12 +=ϕ→ r
r xxx  is a homeomorphism from 

{ }0\R=K  to itself; ( ) ( ) ( ( ) ( ) ,,,,,, 2121 …… xxxxx rrrn ϕϕ=Φ→= xx  

( ))nr xϕ  is homeomorphism from nK  to itself. 

For a finite nonempty set ( ) ( ) ( ){ } nKA ⊂= mxxx ,,, 21 …  the 

convex-rΦ  hull (shortly r-convex hull) of A, which we denote ( )ACor  is 

given by 

( ) ( ( ) ) .1,0:
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Thus, we can define polytopes-1−B  as follows: 

Definition 2.1 ([1]). The Kuratowski-Painleve upper limit of the 

sequence of sets { ( )} ,−∈Zr
r ACo  denoted by ( ),ACo−∞  where A is a finite 

subset of ,nK  is called polytope-1−B  of A. 
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Next, we give the definition of convex-1−B  sets. 

Definition 2.2 ([1]). A subset U of nK  is called a convex-1−B  if for 

all finite subsets UA ⊂  the ( )ACo−∞− polytope-1B  is contained in U. 

We denote by ( )ix
m

i 1=
  the greatest lower bound with respect to the 

coordinate-wise order relation of ( ) ( ) ( ) ,,,, 21 nR∈mxxx …  that is; 

( ) ( ) ( ) ( ){ } ( ) ( ) ( ){ }( ),,,,min,,,,,min 21
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where ( )i
jx  denotes j-th coordinate of the point ( ).ix  

The definition of polytope-1−B  can be expressed in the following form 

in {( ) }.,,2,1,0:,,1 nixxx i
n

n
n …… =>∈=++ RR  

Theorem 2.1 ([1]). For all nonempty finite subsets { ( ) ( ) ,,, 21 …xx=A  

( )} ,n
++⊂ Rmx  we have 

( ) ( ) ( ) .1min,1:lim
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By Theorem 2.1, we can reformulate the above definition for subsets 

of .n
++R  

Theorem 2.2 ([1]). A subset U of n
++R  is convex-1−B  if and only if for 

all ( ) ( ) U∈21 , xx  and all [ )∞∈λ ,1  one has ( ) ( ) .21 U∈λ xx   

The following properties of convexity-1−B  are given in [2]: 
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Theorem 2.3. (a) The empty set, ,nK  as well as the singletons are 

;-1 convex−B  

(b) if { }Λ∈λλ :S  is an arbitrary family of convex-1−B  sets, then 

λλ
S∩  is ;-1 convex−B  

(c) if { }Λ∈λλ :S  is a family of convex-1−B  sets such that ,, 21 Λ∈λλ∀  

Λ∈λ∃ 3  such that ,321 λλλ ⊂ SSS ∪  then λλ
S∪  is .-1 convex−B  

Given a set ,nKS ⊂  the intersection of all the convex-1−B  subsets 

of nK  containing S is called the convex-1−B  hull of S and is denoted by 

[ ].1 S−B  

The theorem related to properties of convex-1−B  hull is given in [2]. 

Theorem 2.4. The following properties hold: 

(a) [ ] [ ] ,,00 11 nn KK =/=/ −− BB  for all { }[ ] { };, 1 xxKx n =∈ −B  

(b) For all [ ]SSKS n 1, −⊂⊂ B  and [ [ ]] [ ];111 SS −−− = BBB  

(c) For all ,, 21
nKSS ⊂  if ,21 SS ⊂  then [ ] [ ];2

1
1

1 SS −− ⊂ BB  

(d) For all [ ] { [ ] AASKS n :, 11 −− =⊂ BB ∪  is a finite subset of };S  

(e) A subset nKS ⊂  is convex-1−B  if and only if for all finite subset 

A of [ ] ., 1 SAS ⊂−B  

3. Other Operations on Convex-1−B  Sets 

It can be seen that in n
++R  for a finite set ( )ACoA −∞,  is a            

convex-1−B  set from the following theorem: 
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Theorem 3.1. If A is a finite subset of ,n
++R  then ( )ACo−∞  is        

.-1 convex−B  

Proof. Let ( ) ( ) ( ){ } ( ),,,,, 1
21 j

j
m
j

nA xxxxx m ρ=⊂= =++ R…   

( )jxy j
m
j η= =1  with ( ) ( ) [ )mmm ∞+∈ηηηρρρ ,1,,,,,,, 2121 ……  and        

{ ,min 1ρ } { } ;1,,,min,, 212 =ηηη=ρρ mm ……  both x and y are two 

elements of ( ).ACo−∞  

We have to see that { }( ) ( )., ACoCo −∞−∞ ⊂yx  Let { }( );, yx−∞∈ Cou  

there exists ( ) [ )221 ,1, ∞+∈µµ  with { } 1,min 21 =µµ  such that  

.21 yx µµ= u  

( ) ( ( ) ) { } ( ).,min 2111211
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To conclude the proof, just notice that { { }} .1,minmin 211 =ηµρµ≤≤ jjmj  

 

Remark 3.1. For an arbitrary finite set ,nA ++⊂ R  its convex-1−B  

hull [ ]A1−B  is a convex-1−B  set and [ ].1 AA −⊂ B  From the definition of 

convex-1−B  set and [ ],1 AA −⊂ B  we have ( ) [ ].1 AACo −−∞ ⊂ B  

Also the set ( )ACo−∞  is convex-1−B  and ( ).ACoA −∞⊂  

Since convex-1−B  hull of A is the smallest convex-1−B  set containing 

A, we obtain that [ ] ( ).1 ACoA −∞− =B  

Theorem 3.2. Let nL ++⊂ R  and denote by L  be the family of 

nonempty finite subsets of L, then 

[ ] ( ).1 ACoL
LA

−∞

∈

− = ∪B  
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Proof. Clearly, from (d) of Theorem 2.4, we have [ ] { 11 −− = BB ∪L  

[ ] }LAA ∈:  and we have shown above that [ ] ( )ACoA −∞− =1B  for 

.nA ++⊂ R   
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