SOME OPERATIONS ON \mathbb{B}^{-1}-CONVEX SETS

ILKNUR YESILCE* and GABIL ADILOV

Faculty of Science and Letters
Mersin University
Ciftlikkoy Campus
33343, Mersin
Turkey
e-mail: ilknuryesilce@gmail.com
Faculty of Education
Akdeniz University
Dumlupinar Boulevard 07058
Campus, Antalya
Turkey
e-mail: gabiladilov@gmail.com

Abstract

\mathbb{B}^{-1}-convexity is an abstract convexity type. \mathbb{B}^{-1}-convex sets are examined in various studies. Also, the applications of \mathbb{B}^{-1}-convexity on mathematical economy are introduced in some new papers. In this article, some operations on \mathbb{B}^{-1}-convex sets are proved.

2010 Mathematics Subject Classification: 52A01, 52A20.
Keywords and phrases: abstract convexity, \mathbb{B}^{-1}-convexity, \mathbb{B}^{-1}-convex sets.
*Corresponding author.
Received May 24, 2016

1. Introduction

Recently, abstract convexity which has many applications to the mathematical economy, operation research, inequality theory is a popular area in mathematics ($[5,6,7]$). Besides, \mathbb{B}^{-1}-convexity is an abstract convexity type. \mathbb{B}^{-1}-convex sets are examined in various studies ($[1,2,3,4,8]$). Also, the applications of \mathbb{B}^{-1}-convexity on mathematical economy are introduced in [3]. In this article, some operations on \mathbb{B}^{-1}-convex sets are proved.

In Section 2, we give definitions and recall some properties of \mathbb{B}^{-1}-convex set and \mathbb{B}^{-1}-convex hull. In Section 3, we establish some new operations on \mathbb{B}^{-1}-convex sets.

2. \mathbb{B}^{-1}-Convexity and Operations on \mathbb{B}^{-1}-Convex Sets

For $r \in \mathbb{Z}^{-}$, the map $x \rightarrow \varphi_{r}(x)=x^{2 r+1}$ is a homeomorphism from $K=\mathbb{R} \backslash\{0\}$ to itself; $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \rightarrow \Phi_{r}(\boldsymbol{x})=\left(\varphi_{r}\left(x_{1}\right), \varphi_{r}\left(x_{2}\right), \ldots\right.$, $\left.\varphi_{r}\left(x_{n}\right)\right)$ is homeomorphism from K^{n} to itself.

For a finite nonempty set $A=\left\{\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \ldots, \boldsymbol{x}^{(\boldsymbol{m})}\right\} \subset K^{n}$ the Φ_{r}-convex hull (shortly r-convex hull) of A, which we denote $\operatorname{Co}^{r}(A)$ is given by

$$
\operatorname{Co}^{r}(A)=\left\{\Phi_{r}^{-1}\left(\sum_{i=1}^{m} t_{i} \Phi_{r}\left(\boldsymbol{x}^{(i)}\right)\right): t_{i} \geq 0, \sum_{i=1}^{m} t_{i}=1\right\} .
$$

Thus, we can define \mathbb{B}^{-1}-polytopes as follows:
Definition 2.1 ([1]). The Kuratowski-Painleve upper limit of the sequence of sets $\left\{\mathrm{Co}^{r}(A)\right\}_{r \in \mathbb{Z}^{-}}$, denoted by $\mathrm{Co}^{-\infty}(A)$, where A is a finite subset of K^{n}, is called \mathbb{B}^{-1}-polytope of A.

Next, we give the definition of \mathbb{B}^{-1}-convex sets.
Definition 2.2 ([1]). A subset U of K^{n} is called a \mathbb{B}^{-1}-convex if for all finite subsets $A \subset U$ the \mathbb{B}^{-1}-polytope $\operatorname{Co}^{-\infty}(A)$ is contained in U.

We denote by $\wedge_{i=1}^{m} \boldsymbol{x}^{(i)}$ the greatest lower bound with respect to the coordinate-wise order relation of $\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \ldots, \boldsymbol{x}^{(\boldsymbol{m})} \in \mathbb{R}^{n}$, that is;

$$
\wedge_{i=1}^{m} \boldsymbol{x}^{(i)}=\left(\min \left\{x_{1}^{(1)}, x_{1}^{(2)}, \ldots, x_{1}^{(m)}\right\}, \ldots, \min \left\{x_{n}^{(1)}, x_{n}^{(2)}, \ldots, x_{n}^{(m)}\right\}\right),
$$

where $x_{j}^{(i)}$ denotes j-th coordinate of the point $\boldsymbol{x}^{(i)}$.
The definition of \mathbb{B}^{-1}-polytope can be expressed in the following form in $\mathbb{R}_{++}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{i}>0, i=1,2, \ldots, n\right\}$.

Theorem 2.1 ([1]). For all nonempty finite subsets $A=\left\{\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \ldots\right.$, $\left.\boldsymbol{x}^{(\boldsymbol{m})}\right\} \subset \mathbb{R}_{++}^{n}$, we have

$$
C o^{-\infty}(A)=\lim _{r \rightarrow-\infty} C^{r}(A)=\left\{\begin{array}{l}
\left.\wedge_{i=1}^{m} t_{i} x^{(i)}: t_{i} \geq 1, \min _{1 \leq i \leq m} t_{i}=1\right\} . ~ . ~
\end{array}\right. \text {. }
$$

By Theorem 2.1, we can reformulate the above definition for subsets of \mathbb{R}_{++}^{n}.

Theorem 2.2 ([1]). A subset U of \mathbb{R}_{++}^{n} is \mathbb{B}^{-1}-convex if and only if for all $\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)} \in U$ and all $\lambda \in[1, \infty)$ one has $\lambda \boldsymbol{x}^{(1)} \wedge \boldsymbol{x}^{(2)} \in U$.

The following properties of \mathbb{B}^{-1}-convexity are given in [2]:

Theorem 2.3. (a) The empty set, K^{n}, as well as the singletons are \mathbb{B}^{-1}-convex;
(b) if $\left\{S_{\lambda}: \lambda \in \Lambda\right\}$ is an arbitrary family of \mathbb{B}^{-1}-convex sets, then $\bigcap_{\lambda} S_{\lambda}$ is \mathbb{B}^{-1}-convex;
(c) if $\left\{S_{\lambda}: \lambda \in \Lambda\right\}$ is a family of \mathbb{B}^{-1}-convex sets such that $\forall \lambda_{1}, \lambda_{2} \in \Lambda$, $\exists \lambda_{3} \in \Lambda$ such that $S_{\lambda_{1}} \bigcup S_{\lambda_{2}} \subset S_{\lambda_{3}}$, then $\bigcup_{\lambda} S_{\lambda}$ is \mathbb{B}^{-1}-convex.

Given a set $S \subset K^{n}$, the intersection of all the \mathbb{B}^{-1}-convex subsets of K^{n} containing S is called the \mathbb{B}^{-1}-convex hull of S and is denoted by $\mathbb{B}^{-1}[S]$.

The theorem related to properties of \mathbb{B}^{-1}-convex hull is given in [2].
Theorem 2.4. The following properties hold:
(a) $\mathbb{B}^{-1}[\emptyset]=\emptyset, \mathbb{B}^{-1}\left[K^{n}\right]=K^{n}$, for all $x \in K^{n}, \mathbb{B}^{-1}[\{x\}]=\{x\}$;
(b) For all $S \subset K^{n}, S \subset \mathbb{B}^{-1}[S]$ and $\mathbb{B}^{-1}\left[\mathbb{B}^{-1}[S]\right]=\mathbb{B}^{-1}[S]$;
(c) For all $S_{1}, S_{2} \subset K^{n}$, if $S_{1} \subset S_{2}$, then $\mathbb{B}^{-1}\left[S_{1}\right] \subset \mathbb{B}^{-1}\left[S_{2}\right]$;
(d) For all $S \subset K^{n}, \mathbb{B}^{-1}[S]=\bigcup\left\{\mathbb{B}^{-1}[A]: A\right.$ is a finite subset of $\left.S\right\}$;
(e) A subset $S \subset K^{n}$ is \mathbb{B}^{-1}-convex if and only if for all finite subset A of $S, \mathbb{B}^{-1}[A] \subset S$.

3. Other Operations on \mathbb{B}^{-1}-Convex Sets

It can be seen that in \mathbb{R}_{++}^{n} for a finite set $A, \operatorname{Co}^{-\infty}(A)$ is a \mathbb{B}^{-1}-convex set from the following theorem:

Theorem 3.1. If A is a finite subset of \mathbb{R}_{++}^{n}, then $\operatorname{Co}^{-\infty}(A)$ is \mathbb{B}^{-1}-convex.

Proof. Let $A=\left\{\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \ldots, \boldsymbol{x}^{(\boldsymbol{m})}\right\} \subset \mathbb{R}_{++}^{n}, \boldsymbol{x}=\wedge_{j=1}^{m} \rho_{j} \boldsymbol{x}^{(j)}$, $\boldsymbol{y}=\wedge_{j=1}^{m} \eta_{j} \boldsymbol{x}^{(\boldsymbol{j})}$ with $\left(\rho_{1}, \rho_{2}, \ldots, \rho_{m}\right),\left(\eta_{1}, \eta_{2}, \ldots, \eta_{m}\right) \in[1,+\infty)^{m}$ and $\min \left\{\rho_{1}, \rho_{2}, \ldots, \rho_{m}\right\}=\min \left\{\eta_{1}, \eta_{2}, \ldots, \eta_{m}\right\}=1 ;$ both \boldsymbol{x} and \boldsymbol{y} are two elements of $\mathrm{Co}^{-\infty}(A)$.

We have to see that $\operatorname{Co}^{-\infty}(\{\boldsymbol{x}, \boldsymbol{y}\}) \subset \operatorname{Co}^{-\infty}(A)$. Let $u \in \operatorname{Co}^{-\infty}(\{\boldsymbol{x}, \boldsymbol{y}\})$; there exists $\left(\mu_{1}, \mu_{2}\right) \in[1,+\infty)^{2}$ with $\min \left\{\mu_{1}, \mu_{2}\right\}=1$ such that $u=\mu_{1} \boldsymbol{x} \wedge \mu_{2} \boldsymbol{y}$.

$$
u=\mu_{1}\left(\bigwedge_{j=1}^{m} \rho_{j} \boldsymbol{x}^{(j)}\right) \wedge \mu_{2}\left(\wedge_{j=1}^{m} \eta_{j} \boldsymbol{x}^{(\boldsymbol{j})}\right)=\bigwedge_{j=1}^{m} \min \left\{\mu_{1} \rho_{j}, \mu_{2} \eta_{j}\right\} \boldsymbol{x}^{(\boldsymbol{j})}
$$

To conclude the proof, just notice that $\min _{1 \leq j \leq m}\left\{\min \left\{\mu_{1} \rho_{j}, \mu_{2} \eta_{j}\right\}\right\}=1$.

Remark 3.1. For an arbitrary finite set $A \subset \mathbb{R}_{++}^{n}$, its \mathbb{B}^{-1}-convex hull $\mathbb{B}^{-1}[A]$ is a \mathbb{B}^{-1}-convex set and $A \subset \mathbb{B}^{-1}[A]$. From the definition of \mathbb{B}^{-1}-convex set and $A \subset \mathbb{B}^{-1}[A]$, we have $C^{-\infty}(A) \subset \mathbb{B}^{-1}[A]$.

Also the set $C o^{-\infty}(A)$ is \mathbb{B}^{-1}-convex and $A \subset \operatorname{Co}^{-\infty}(A)$.
Since \mathbb{B}^{-1}-convex hull of A is the smallest \mathbb{B}^{-1}-convex set containing A, we obtain that $\mathbb{B}^{-1}[A]=C o^{-\infty}(A)$.

Theorem 3.2. Let $L \subset \mathbb{R}_{++}^{n}$ and denote by $\langle L\rangle$ be the family of nonempty finite subsets of L, then

$$
\mathbb{B}^{-1}[L]=\bigcup_{A \in\langle L\rangle} C o^{-\infty}(A)
$$

Proof. Clearly, from (d) of Theorem 2.4, we have $\mathbb{B}^{-1}[L]=\bigcup\left\{\mathbb{B}^{-1}\right.$ $[A]: A \in\langle L\rangle\}$ and we have shown above that $\mathbb{B}^{-1}[A]=\operatorname{Co}^{-\infty}(A)$ for $A \subset \mathbb{R}_{++}^{n}$.

Acknowledgements

The authors wish to thank Akdeniz University, Mersin University and TUBITAK (The Scientific and Technological Research Council of Turkey).

References

[1] G. Adilov and I. Yesilce, \mathbb{B}^{-1}-convex sets and \mathbb{B}^{-1}-measurable maps, Numerical Functional Analysis and Optimization 33(2) (2012), 131-141.
[2] G. Adilov and I. Yesilce, On generalization of the concept of convexity, Hacettepe Journal of Mathematics and Statistics 41(5) (2012), 723-730.
[3] W. Briec and Q. B. Liang, On some semilattice structures for production technologies, European Journal of Operational Research 215 (2011), 740-749.
[4] S. Kemali, I. Yesilce and G. Adilov, \mathbb{B}-convexity, \mathbb{B}^{-1}-convexity, and their comparison, Numerical Functional Analysis and Optimization 36(2) (2015), 133-146.
[5] A. Rubinov, Abstract Convexity and Global Optimization, Kluwer Academic Publishers, Boston-Dordrecht-London, 2000.
[6] I. Singer, Abstract Convex Analysis, John Wiley \& Sons, New York, 1997.
[7] M. L. J. Van De Vel, Theory of Convex Structures, North Holland Mathematical Library, 50, North-Holland Publishing Co., Amsterdam, 1993.
[8] G. Tinaztepe, I. Yesilce and G. Adilov, Separation of \mathbb{B}^{-1}-convex sets by \mathbb{B}^{-1}-measurable maps, Journal of Convex Analysis 21(2) (2014), 571-580.

