SOME OPERATIONS ON \mathbb{B}^{-1} -CONVEX SETS

ILKNUR YESILCE* and GABIL ADILOV

Faculty of Science and Letters Mersin University Ciftlikkoy Campus 33343, Mersin Turkey e-mail: ilknuryesilce@gmail.com Faculty of Education Akdeniz University Dumlupinar Boulevard 07058 Campus, Antalya Turkey e-mail: gabiladilov@gmail.com

Abstract

 \mathbb{B}^{-1} -convexity is an abstract convexity type. \mathbb{B}^{-1} -convex sets are examined in various studies. Also, the applications of \mathbb{B}^{-1} -convexity on mathematical economy are introduced in some new papers. In this article, some operations on \mathbb{B}^{-1} -convex sets are proved.

© 2016 Scientific Advances Publishers

²⁰¹⁰ Mathematics Subject Classification: 52A01, 52A20.

Keywords and phrases: abstract convexity, \mathbb{B}^{-1} -convexity, \mathbb{B}^{-1} -convex sets.

^{*}Corresponding author.

Received May 24, 2016

1. Introduction

Recently, abstract convexity which has many applications to the mathematical economy, operation research, inequality theory is a popular area in mathematics ([5, 6, 7]). Besides, \mathbb{B}^{-1} -convexity is an abstract convexity type. \mathbb{B}^{-1} -convex sets are examined in various studies ([1, 2, 3, 4, 8]). Also, the applications of \mathbb{B}^{-1} -convexity on mathematical economy are introduced in [3]. In this article, some operations on \mathbb{B}^{-1} -convex sets are proved.

In Section 2, we give definitions and recall some properties of \mathbb{B}^{-1} -convex set and \mathbb{B}^{-1} -convex hull. In Section 3, we establish some new operations on \mathbb{B}^{-1} -convex sets.

2. \mathbb{B}^{-1} -Convexity and Operations on \mathbb{B}^{-1} -Convex Sets

For $r \in \mathbb{Z}^-$, the map $x \to \varphi_r(x) = x^{2r+1}$ is a homeomorphism from $K = \mathbb{R} \setminus \{0\}$ to itself; $\mathbf{x} = (x_1, x_2, \dots, x_n) \to \Phi_r(\mathbf{x}) = (\varphi_r(x_1), \varphi_r(x_2), \dots, \varphi_r(x_n))$ is homeomorphism from K^n to itself.

For a finite nonempty set $A = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(m)}\} \subset K^n$ the Φ_r -convex hull (shortly *r*-convex hull) of A, which we denote $Co^r(A)$ is given by

$$Co^{r}(A) = \left\{ \Phi_{r}^{-1} \left(\sum_{i=1}^{m} t_{i} \Phi_{r}(\mathbf{x}^{(i)}) \right) : t_{i} \ge 0, \sum_{i=1}^{m} t_{i} = 1 \right\}.$$

Thus, we can define \mathbb{B}^{-1} -polytopes as follows:

Definition 2.1 ([1]). The Kuratowski-Painleve upper limit of the sequence of sets $\{Co^r(A)\}_{r\in\mathbb{Z}^-}$, denoted by $Co^{-\infty}(A)$, where A is a finite subset of K^n , is called \mathbb{B}^{-1} -polytope of A.

101

Next, we give the definition of \mathbb{B}^{-1} -convex sets.

Definition 2.2 ([1]). A subset U of K^n is called a \mathbb{B}^{-1} -convex if for all finite subsets $A \subset U$ the \mathbb{B}^{-1} -polytope $Co^{-\infty}(A)$ is contained in U.

We denote by $\bigwedge_{i=1}^{m} \mathbf{x}^{(i)}$ the greatest lower bound with respect to the coordinate-wise order relation of $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(m)} \in \mathbb{R}^{n}$, that is;

$$\bigwedge_{i=1}^{m} \boldsymbol{x}^{(i)} = \left(\min \left\{ x_1^{(1)}, x_1^{(2)}, \dots, x_1^{(m)} \right\}, \dots, \min \left\{ x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(m)} \right\} \right)$$

where $x_{i}^{(i)}$ denotes *j*-th coordinate of the point $x^{(i)}$.

The definition of \mathbb{B}^{-1} -polytope can be expressed in the following form in $\mathbb{R}_{++}^n = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_i > 0, i = 1, 2, \ldots, n\}.$

Theorem 2.1 ([1]). For all nonempty finite subsets $A = \{x^{(1)}, x^{(2)}, ..., x^{(m)}\} \subset \mathbb{R}^n_{++}$, we have

$$Co^{-\infty}(A) = \lim_{r \to -\infty} Co^{r}(A) = \begin{cases} m \\ \bigwedge_{i=1}^{m} t_{i} \boldsymbol{x}^{(i)} : t_{i} \geq 1, \min_{1 \leq i \leq m} t_{i} = 1 \end{cases}.$$

By Theorem 2.1, we can reformulate the above definition for subsets of \mathbb{R}^{n}_{++} .

Theorem 2.2 ([1]). A subset U of \mathbb{R}^{n}_{++} is \mathbb{B}^{-1} -convex if and only if for all $\mathbf{x}^{(1)}, \mathbf{x}^{(2)} \in U$ and all $\lambda \in [1, \infty)$ one has $\lambda \mathbf{x}^{(1)} \wedge \mathbf{x}^{(2)} \in U$.

The following properties of \mathbb{B}^{-1} -convexity are given in [2]:

Theorem 2.3. (a) The empty set, K^n , as well as the singletons are \mathbb{B}^{-1} -convex;

(b) if $\{S_{\lambda} : \lambda \in \Lambda\}$ is an arbitrary family of \mathbb{B}^{-1} -convex sets, then $\bigcap_{\lambda} S_{\lambda}$ is \mathbb{B}^{-1} -convex;

(c) if $\{S_{\lambda} : \lambda \in \Lambda\}$ is a family of \mathbb{B}^{-1} -convex sets such that $\forall \lambda_1, \lambda_2 \in \Lambda$, $\exists \lambda_3 \in \Lambda \text{ such that } S_{\lambda_1} \bigcup S_{\lambda_2} \subset S_{\lambda_3}, \text{ then } \bigcup_{\lambda} S_{\lambda} \text{ is } \mathbb{B}^{-1}$ -convex.

Given a set $S \subset K^n$, the intersection of all the \mathbb{B}^{-1} -convex subsets of K^n containing S is called the \mathbb{B}^{-1} -convex hull of S and is denoted by $\mathbb{B}^{-1}[S]$.

The theorem related to properties of \mathbb{B}^{-1} -convex hull is given in [2].

Theorem 2.4. The following properties hold: (a) $\mathbb{B}^{-1}[\emptyset] = \emptyset$, $\mathbb{B}^{-1}[K^n] = K^n$, for all $x \in K^n$, $\mathbb{B}^{-1}[\{x\}] = \{x\}$; (b) For all $S \subset K^n$, $S \subset \mathbb{B}^{-1}[S]$ and $\mathbb{B}^{-1}[\mathbb{B}^{-1}[S]] = \mathbb{B}^{-1}[S]$; (c) For all $S_1, S_2 \subset K^n$, if $S_1 \subset S_2$, then $\mathbb{B}^{-1}[S_1] \subset \mathbb{B}^{-1}[S_2]$; (d) For all $S \subset K^n$, $\mathbb{B}^{-1}[S] = \bigcup \{\mathbb{B}^{-1}[A] : A \text{ is a finite subset of } S\}$; (e) A subset $S \subset K^n$ is \mathbb{B}^{-1} -convex if and only if for all finite subset A of S, $\mathbb{B}^{-1}[A] \subset S$.

3. Other Operations on \mathbb{B}^{-1} -Convex Sets

It can be seen that in \mathbb{R}^{n}_{++} for a finite set A, $Co^{-\infty}(A)$ is a \mathbb{B}^{-1} -convex set from the following theorem:

Theorem 3.1. If A is a finite subset of \mathbb{R}^{n}_{++} , then $Co^{-\infty}(A)$ is \mathbb{B}^{-1} -convex.

Proof. Let $A = \left\{ \boldsymbol{x}^{(1)}, \, \boldsymbol{x}^{(2)}, \, \dots, \, \boldsymbol{x}^{(m)} \right\} \subset \mathbb{R}^n_{++}, \, \boldsymbol{x} = \wedge_{j=1}^m \rho_j \boldsymbol{x}^{(j)},$ $\boldsymbol{y} = \wedge_{j=1}^m \eta_j \boldsymbol{x}^{(j)}$ with $(\rho_1, \rho_2, \dots, \rho_m), (\eta_1, \eta_2, \dots, \eta_m) \in [1, +\infty)^m$ and $\min\{\rho_1, \rho_2, \dots, \rho_m\} = \min\{\eta_1, \eta_2, \dots, \eta_m\} = 1;$ both \boldsymbol{x} and \boldsymbol{y} are two elements of $Co^{-\infty}(A)$.

We have to see that $Co^{-\infty}(\{\mathbf{x}, \mathbf{y}\}) \subset Co^{-\infty}(A)$. Let $u \in Co^{-\infty}(\{\mathbf{x}, \mathbf{y}\})$; there exists $(\mu_1, \mu_2) \in [1, +\infty)^2$ with $\min\{\mu_1, \mu_2\} = 1$ such that $u = \mu_1 \mathbf{x} \wedge \mu_2 \mathbf{y}$.

$$u = \mu_1 \begin{pmatrix} m \\ \wedge \\ j=1 \end{pmatrix} \langle \mu_2(\wedge_{j=1}^m \eta_j \boldsymbol{x}^{(j)}) = \bigwedge_{j=1}^m \min\{\mu_1 \rho_j, \mu_2 \eta_j\} \boldsymbol{x}^{(j)}.$$

To conclude the proof, just notice that $\min_{1 \le j \le m} \{ \min\{\mu_1 \rho_j, \mu_2 \eta_j \} \} = 1.$

Remark 3.1. For an arbitrary finite set $A \subset \mathbb{R}^{n}_{++}$, its \mathbb{B}^{-1} -convex hull $\mathbb{B}^{-1}[A]$ is a \mathbb{B}^{-1} -convex set and $A \subset \mathbb{B}^{-1}[A]$. From the definition of \mathbb{B}^{-1} -convex set and $A \subset \mathbb{B}^{-1}[A]$, we have $Co^{-\infty}(A) \subset \mathbb{B}^{-1}[A]$.

Also the set $Co^{-\infty}(A)$ is \mathbb{B}^{-1} -convex and $A \subset Co^{-\infty}(A)$.

Since \mathbb{B}^{-1} -convex hull of A is the smallest \mathbb{B}^{-1} -convex set containing A, we obtain that $\mathbb{B}^{-1}[A] = Co^{-\infty}(A)$.

Theorem 3.2. Let $L \subset \mathbb{R}^n_{++}$ and denote by $\langle L \rangle$ be the family of nonempty finite subsets of L, then

$$\mathbb{B}^{-1}[L] = \bigcup_{A \in \langle L \rangle} Co^{-\infty}(A).$$

Proof. Clearly, from (d) of Theorem 2.4, we have $\mathbb{B}^{-1}[L] = \bigcup \{\mathbb{B}^{-1} [A] : A \in \langle L \rangle \}$ and we have shown above that $\mathbb{B}^{-1}[A] = Co^{-\infty}(A)$ for $A \subset \mathbb{R}^n_{++}$.

Acknowledgements

The authors wish to thank Akdeniz University, Mersin University and TUBITAK (The Scientific and Technological Research Council of Turkey).

References

- G. Adilov and I. Yesilce, B⁻¹-convex sets and B⁻¹-measurable maps, Numerical Functional Analysis and Optimization 33(2) (2012), 131-141.
- [2] G. Adilov and I. Yesilce, On generalization of the concept of convexity, Hacettepe Journal of Mathematics and Statistics 41(5) (2012), 723-730.
- [3] W. Briec and Q. B. Liang, On some semilattice structures for production technologies, European Journal of Operational Research 215 (2011), 740-749.
- [4] S. Kemali, I. Yesilce and G. Adilov, B-convexity, B⁻¹-convexity, and their comparison, Numerical Functional Analysis and Optimization 36(2) (2015), 133-146.
- [5] A. Rubinov, Abstract Convexity and Global Optimization, Kluwer Academic Publishers, Boston-Dordrecht-London, 2000.
- [6] I. Singer, Abstract Convex Analysis, John Wiley & Sons, New York, 1997.
- [7] M. L. J. Van De Vel, Theory of Convex Structures, North Holland Mathematical Library, 50, North-Holland Publishing Co., Amsterdam, 1993.
- [8] G. Tinaztepe, I. Yesilce and G. Adilov, Separation of \mathbb{B}^{-1} -convex sets by \mathbb{B}^{-1} -measurable maps, Journal of Convex Analysis 21(2) (2014), 571-580.