APPLICATION OF WEAKLY P PROPERTIES GIVING INFINITELY MANY NEW CHARACTERIZATIONS OF T_1 AND T_2 SPACES

CHARLES DORSETT

Department of Mathematics Texas A&M University-Commerce Commerce, Texas 75429 USA e-mail: charles.dorsett@tamuc.edu

Abstract

Within this paper, the important separation axioms of T_0 , T_1 , and T_2 are further investigated with infinitely many new characterizations of T_1 and T_2 given using T_0 , R_0 , R_1 , and known weakly *P* properties.

1. Introduction and Preliminaries

In the study of topology each of T_0 , T_1 , and T_2 have an important role. The T_0 separation axiom is precisely the topological property separating metrizable spaces and pseudometrizable spaces, the T_1 separation axiom is precisely the topological property requiring singleton sets to be closed, and the T_2 separation axiom is the

Received May 20, 2016

© 2016 Scientific Advances Publishers

²⁰¹⁰ Mathematics Subject Classification: 54D10, 54D35.

Keywords and phrases: lower topological properties, $T_0\mbox{-}\mathrm{identification}$ spaces, weakly P properties.

CHARLES DORSETT

topological property guaranteeing uniqueness of convergence. As a result of the importance of the T_i separation axioms; i = 0, 1, 2, in 1961 [1], Davis was interested in topological properties R_i weaker than T_{i+1} , which together with T_i , is equivalent to T_{i+1} ; i = 0, 1.

The R_0 axiom was introduced in 1943 [6] and rediscovered by Davis in 1961.

Definition 1.1. A space (X, T) is R_0 iff for each closed set C and each $x \notin C$, $C \cap Cl(\{x\}) = \phi$.

Definition 1.2. A space (X, T) is R_1 iff for $x, y \in X$ such that $Cl(\{x\}) \neq Cl(\{y\})$, there exist disjoint open sets U and V such that $x \in U$ and $y \in V$ [1].

Theorem 1.1. A space is T_{i+1} iff it is $(R_i \text{ and } T_i), i = 0, 1,$ respectively [1].

In 1975 [5], Dunham used T_0 -identification spaces to once again give a direct connection between T_2 and R_1 .

 T_0 -identification spaces were introduced in 1936 [7].

Definition 1.3. Let (X, T) be a space, let R be the equivalence relation on X defined by xRy iff $Cl(\{x\}) = Cl(\{y\})$, let X_0 be the set of Requivalence classes of X, let $N : X \to X_0$ be the natural map, and let Q(X, T) be the decomposition topology on X_0 determined by (X, T)and the natural map N. Then $(X_0, Q(X, T))$ is the T_0 -identification space of (X, T) [7].

Theorem 1.2. A space (X, T) is weakly Hausdorff iff its T_0 -identification space is Hausdorff [5].

Within the 1975 paper [5], it was shown that weakly Hausdorff and R_1 are equivalent separation axioms.

90

In the 1936 paper [7], it was shown that a space is pseudometrizable iff its T_0 -identification space is metrizable. Thus the question: "Could the process used to further characterize pseudometrizable and R_1 using T_0 -identification space be generalized to further characterize other topological properties?" arose leading to the introduction and investigation of weakly P properties [2].

Definition 1.4. A topological property P is a weakly P property iff a space (X, T) has property P iff its T_0 -identification space $(X_0, Q(X, T))$ has property P [2].

Since for each space (X, T) its T_0 -identification space is T_0 [7], then for a topological property P to even be considered for a weakly Pproperty, $(P \text{ and } T_0)$ must exist. In this paper, for a topological property P for which $(P \text{ and } T_0)$ exist, P_0 is conveniently used in place of $(P \text{ and } T_0)$.

Thus, for a weakly P property Q, a space has property Q iff its T_0 -identification space has property $Q_0 = (Q \text{ and } T_0)$, allowing weakly P and weakly P_0 to be used interchangeably.

Since (pseudometrizable and T_0) = metrizable, then, long before the definition of weakly P properties, pseudometrizable was the first known weakly P property with pseudometrizable = weakly (pseudometrizable) = weakly (pseudometrizable)o = weakly (metrizable) and R_1 was the second known weakly P property with R_1 = weakly R_1 = weakly $(R_1)o$ = weakly T_2 . Within the initial weakly P paper [2], it was shown that R_0 is another weakly P property with R_0 = weakly R_0 = weakly $(R_0)o$ = weakly T_1 .

Below, properties of weakly P properties are applied giving infinitely many new characterizations of the T_1 and T_2 separation axioms showing R_i in Theorem 1.1 is not unique; i = 0, 1, respectively.

2. Infinitely Many New Characterizations of T_1 Spaces

Within a 2016 paper [3], the following results were proven.

Theorem 2.1. Let Q be a topological property for which weakly Qo exists and let $S = \{So \mid S \text{ is a topological property, So exists, and So implies <math>Qo\}$. Then (weakly $Qo \circ \in S$, for each weakly Po property W such that Wo implies Qo, (weakly $Wo \circ \in S$, each element of S implies weakly Qo, and there exists a topological property $Q_{min} = ((weakly Qo) \circ (weakly Qo) \circ (w$

Theorem 2.2. Let Q and S be as in Theorem 1.2. Then $Q_{min} = ((weakly Q_0) or "not <math>T_0$ ") is the least topological property P weaker than weakly Q_0 such that $P_0 \in S$ [3]. Clearly, by the definition of Q_{min} given above, Q_{min} is weaker than weakly Q_0 and thus Q_{min} is the least element of S.

Applying these results to the question above gives the following answer.

Replacing Q in the Theorems above by R_0 gives the next two results.

Corollary 2.1. Let $S = \{So | S \text{ is a topological property, So exists, and So implies <math>T_1\}$. Then $(R_0)o = T_1 \in S$, for each weakly Po property W such that Wo implies T_1 , (weakly Wo) $o \in S$, each element of S implies T_1 , $(R_0)_{min} = (R_0 \text{ or "not-}T_0")$ is weaker than R_0 , $(R_0)_{min}$ is the least element of S, and $(((R_0)_{min}) \text{ and } T_0) = T_1$.

Theorem 2.3. $(R_0)_{min}$ is the least topological property W such that $(W \text{ and } T_0) = T_1$ and, thus R_0 is not unique in the statement of Theorem 1.1.

Proof. Let *W* be a topological property such that $(W \text{ and } T_0) = T_1$. Then $W_0 \in S$, as given in Corollary 2.1, and $(R_0)_{\min}$ is weaker than or equal to *W*.

Motivated by Theorems 2.1 and 2.2 above, within a follow up 2016 paper [4] attention was then turned to the question: "Are there topological properties Q between weakly P_0 and P_{\min} for which a space has property P_0 iff it has property (Q and T_0)?", which led to the definitions and results below.

Below m and n are used to represent natural numbers greater than or equal to 2.

Definition 2.1. Let A(n) represent a set with n distinct elements, let X be a set containing A(n), and let T(A(n)) be the topology on X defined by $T(A(n)) = \{B \subseteq X \mid A(n) \subseteq B \text{ or } B = \phi\}$ [4].

Definition 2.2. A space (X, T) has property T(n) iff there exists a subset A(n) of X such that T = T(A(n)) [4].

Theorem 2.4. T(n) is a topological property, for each T(n) space (X, T), (X, T) is "not- T_0 ", and T(n) is not a weakly Po property [4].

Theorem 2.5. Let m be less than n. Then T(m) and T(n) are topologically distinct topological properties [4].

Theorem 2.6. Let Q be a topological property for which weakly Qo exists. Then Q(n) = (weakly Qo or T(n)) is a topological property weaker than weakly Qo and stronger than Q_{min} such that a space has property Qo iff it has property $(Q(n) \text{ and } T_0)$ [4].

Theorem 2.7. Let m < n. Then Q(m) and Q(n) are distinct topological properties [4]. Replacing Q in Theorem 2.6 by R_0 gives the following new characterization of T_1 spaces.

Corollary 2.2. $(R_0)(n) = ((R_0) \text{ or } T(n))$ is a topological property weaker than R_0 and stronger than $(R_0)_{min}$ such that a space has property T_1 iff it has property $((R_0)(n) \text{ and } T_0)$.

Combining Theorem 2.7 with Corollary 2.2 gives infinitely many new characterizations of T_1 spaces.

Within the paper [3], the following result was proven:

Theorem 2.8. Let Q be a weakly P property. Then $Q_{(min, max)} = ((weakly Q) and "not-<math>T_0$ ") is the least topological property weaker than Q_0 and stronger than weakly Q such that a space is Q_0 iff it is $(Q_{(min, max)} and T_0)$ [3].

Replacing Q in Theorem 2.8 by R_0 gives the following new characterization of T_1 .

Corollary 2.3. $(R_0)_{(min,max)} = (R_0 \text{ and "not} \cdot T_0")$ is the least topological property weaker than T_1 and stronger than R_0 such that a space is T_1 iff it is $((R_0)_{(min,max)} \text{ and } T_0)$.

After Theorem 2.8 in the paper [4], the following question was raised: "Are there topological properties W between Q_0 and $Q_{(\min, \max)}$ for which a space is Q_0 iff it has property (W and T_0)?" leading to the definitions and results below.

Definition 2.3. Let Q be a topological property for which weakly Q exists. A space (X, T) is Q(1, n) iff it is weakly Q, there exist n distinct elements a_1, \dots, a_n all of whose closures are equal, and for all other $x \in X$, $Cl(\{x\}) = Cl(\{y\})$ iff x = y [4].

Theorem 2.9. Let Q be a topological property for which weakly Qo exists. Then Q(1, n) exists and is a topological property [4].

Theorem 2.10. Let m < n. Then Q(1, m) and Q(1, n) are topologically distinct topological properties [4].

Theorem 2.11. Let Q be a topological property for which weakly Qo exists. Then Q(1, n) is weaker than Qo and stronger than $Q_{(min, max)}$, and Qo = $(Q(1, n) and T_0)$ [4].

Theorem 2.12. Let Q be a topological property for which weakly Qo exists. Then for each Qo space (Y, S), there are infinitely many topologically spaces all with topologically distinct topological properties that are weaker than Qo and stronger than $Q_{(min, max)}$, which together with T_0 , equals Qo and all having a T_0 -identification space homeomorphic to (Y, S) [4].

Replacing Q in Theorems 2.11 and 2.12 by R_0 gives more new characterizations of T_1 .

Corollary 2.4. $(R_0)(1, n)$ is weaker than T_1 and stronger than $(R_0)_{(min, max)}$ and $T_1 = ((R_0)(1, n) \text{ and } T_0)$.

Corollary 2.5. For each T_1 space (Y, S), there are infinitely many topologically spaces all with topologically distinct topological properties that are weaker than T_1 and stronger than $(R_0)_{(min, max)}$, which together with T_0 , equals T_1 and all having a T_0 -identification space homeomorphic to (Y, S).

Lastly within the paper [4], the question of whether, in certain case, Q(1, n) for a weakly *P* property *Q* could be extended to obtain even more characterization of *Q*₀ was addressed as given below.

If (Y, S) is a Qo space, where Q is a topological property for which weakly Q exists, having two or more elements, then to a selected elements a_1 in Y elements a_2, \dots, a_m could be added and to another selected element b_1 in Y elements b_2, \dots, b_n could be added, $m \leq n$, and used to define Q(2, m, n) that would behave in the same manner as Q(1, n). If (Y, S) has three or more elements, $Q(3, m, n, p), m \le n \le p$, could be defined that would behave the same manner as Q(1, n). This process could be continued for Y sufficiently large giving many more topologically distinct topological properties all behaving in the same manner as Q(1, n) [4]. Thus for T_1 spaces of sufficient size, $(R_0)(2, m, n)$, $(R_0)(3, m, n, p)$, etc. could be used to give many more topologically distinct topological properties all behaving in the same manner as $(R_0)(1, n)$.

Of all topological properties W such that $T_1 = (W \text{ and } T_0)$, weakly $R_0 = R_0$ is unique in that it is the only one for which weakly W exists.

Below the results above are used to give infinitely many new characterizations of T_2 .

3. Infinitely Many New Characterizations of T_2

In the 1961 paper [1], the following characterizations of T_2 were given: For a space (X, T), the following are equivalent: (a) (X, T) is T_2 , (b) (X, T) is R_1 and T_1 , and (c) (X, T) is R_1 and T_0 , which will be used along with the results above to give infinitely many new characterizations of the T_2 separation axiom.

Replacing Q in Theorems 2.1 and 2.2 above by R_1 gives the next two results.

Corollary 3.1. Let $S = \{So | S \text{ is a topological property, So exists, and So implies <math>T_2\}$. Then $(R_1)o = T_2 \in S$, for each weakly Po property W such that Wo implies T_2 , (weakly Wo) $o \in S$, each element of S implies T_2 , $(R_1)_{min} = (R_1 \text{ or "not-}T_0")$ is weaker than R_1 , $(R_1)_{min}$ is the least element of S, and $(((R_1)_{min}) \text{ and } T_0) = T_2$.

Corollary 3.2. $(R_1)_{min}$ is the least topological property W such that $(W \text{ and } T_0) = T_2$ and, thus R_1 is not unique in the statement of Theorem 1.1.

Replacing Q in Theorem 2.6 by R_1 gives the following new characterization of T_2 .

Corollary 3.3. $(R_1)(n) = ((R_1) \text{ or } T(n))$ is a topological property weaker than R_1 and stronger than $(R_1)_{min}$ such that a space has property T_2 iff it has property $((R_1)(n) \text{ and } T_0)$.

Combining Theorem 2.7 with Corollary 3.3 gives infinitely many new characterizations of T_2 spaces.

Replacing Q in Theorem 2.8 by R_1 gives the following new characterization of T_2 .

Corollary 3.4. $(R_1)_{(min,max)} = (R_1 \text{ and } "not - T_0")$ is the least topological property weaker than T_2 and stronger than R_1 such that a space is T_2 iff it is $((R_1)_{(min,max)} \text{ and } T_0)$.

Replacing Q in Theorems 2.11 and 2.12 by R_1 gives more new characterizations of T_2 .

Corollary 3.5. $(R_1)(1, n)$ is weaker than T_2 and stronger than $(R_1)_{(min, max)}$ and $T_2 = ((R_1)(1, n) \text{ and } T_0)$.

Corollary 3.6. For each T_2 space (Y, S), there are infinitely many topologically spaces all with topologically distinct topological properties that are weaker than T_2 and stronger than $(R_1)_{(min, max)}$, which together with T_0 , equals T_2 and all having a T_0 -identification space homeomorphic to (Y, S).

For T_2 spaces of sufficient size, $(R_1)(2, m, n), (R_1)(3, m, n, p)$, etc. could be used to give many more topologically distinct topological properties all behaving in the same manner as $(R_1)(1, n)$.

Of all topological properties W such that $T_2 = (W \text{ and } T_0)$, weakly $R_1 = R_1$ is unique in that it is the only one for which weakly W exists.

References

- A. Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Math. Monthly 68 (1961), 886-893.
- [2] C. Dorsett, Weakly P properties, Fundamental Journal of Mathematics and Mathematical Sciences 3(1) (2015), 83-90.
- [3] C. Dorsett, Weakly P corrections and new, fundamental topological properties and facts, Fundamental Journal of Mathematics and Mathematical Sciences 5(1) (2016), 11-20.
- [4] C. Dorsett, Infinitely many topological property characterizations for weakly P_o properties, Pioneer Journal of Mathematics and Mathematical Sciences 17(1) (2016), 23-31.
- [5] W. Dunham, Weakly Hausdorff spaces, Kyungpook Math. J. 15(1) (1975), 41-50.
- [6] N. Shanin, On separations in topological spaces, Akademiia Nauk. SSSR Comptes. Rendus (Doklady) 48 (1943), 110-113.
- [7] M. Stone, Application of Boolean algebras to topology, Mat. Sb. 1 (1936), 765-771.