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Abstract 

For some one-dimensional discrete-time autonomous population models, local 
stability implies global stability of the positive equilibrium point. One of the 
known techniques is the enveloping method. In this paper, we present a survey 
on the enveloping method to study global stability of single periodic population 
models. In the other words, we present the conditions in which “individual 
enveloping” implies “periodic enveloping” in some one-dimensional periodic 
population models. 
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1. Introduction 

One-dimensional models are an appropriate mathematical tool to 
model the behaviour of populations with non-overlapping generations. 
This subject has been intensely investigated by different researchers. 

An autonomous population model is a difference equation of the form 

( ) ,, 0
+∈= Znxfx nn  

where the map f is a continuous function from the nonnegative reals to 

the nonnegative reals and there is a unique positive number ,∗x  the 

equilibrium point, such that 

( ) ,00 =f  

( ) ,0for ∗<<> xxxxf  

( ) ,for ∗== xxxxf  

( ) .for ∗>< xxxxf  

Furthermore, the map f is bounded on [ ].,0 ∗x  Notice that these 

conditions correspond to the usual assumptions in population dynamics. 

After normalization, we can always assume that .1=∗x  In [8], we 

can find a complete study for the local properties of .∗x  In general, it is 

much more complicated to investigate the global stability of .∗x  The 
following result found in [10, Corollary 2.4] and [19, Theorem 2.1, pp. 47] 
gives a condition on global stability. 

Theorem 1.1. Let ∗x  be a fixed point of a continuous map f on the 

compact interval [ ]., ba  Then ∗x  is globally asymptotically stable relative 

to the interval ( )ba,  if and only if ( ) xxf >2  for ∗< xx  and ( ) xxf <2  

for ,∗> xx  for all ( )., bax ∈  
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In the other words, a continuous population model is globally stable if 
and only if it has no cycles of minimal period 2. This result was noticed 
much earlier by Coppel in 1955 [1]. 

Theorem 1.2. Let [ ] R⊆= baI ,  and IIf →:  be a continuous 

map. If f has no points of prime period two, then every orbit under the 
map f converges to a fixed point. 

Unfortunately, this global stability condition may be difficult to test. 
Moreover, it seems that there is no obvious connection between the local 
stability conditions and the global stability conditions. 

In a series of papers [2, 3, 4, 5], Cull and his collaborators embarked 
in the theory that “enveloping” implies global stability. A function ( )xh  

envelops a function ( )xf  if and only if 

(i) ( ) ( )xfxh >  for all ( );1,0 =∈ ∗xx  

(ii) ( ) ( )xfxh <  for 1=> ∗xx  such that ( ) 0>xh  and ( ) .0>xf  

Combining this definition with Theorem 1.1 and Theorem 1.2, one 
has the following result: 

Theorem 1.3 ([5]). If ( )xf  is enveloped by ( ),xg  and ( )xg  is globally 

stable, then ( )xf  is globally stable. 

Hence, the enveloping function plays a central rule in this theory.    
In [4], Cull presented the following result concerning the enveloping 
function. 

Theorem 1.4. Let ( )xh  be a monotone decreasing function which is 

positive on ( )1,0 >hx  and so that ( )( ) .xxhh =  Assume that ( )xf  is a 

continuous function such that 

( ) ( ) ( ),1,0onxfxh >  

( ) ( ) ( ),,1 hxonxfxh <  
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( ) ( ),1,0onxxf >  

( ) ( ),,1 ∞< onxxf  

( ) .10 >> xwheneverxf  

Then for all ( ) .1lim,0 => ∞→ xfx n
n  

The preceding theorem shows the importance of the enveloping 
function in global stability. So, the challenge will be to find the 
appropriate enveloping. Surprisingly or not, the following Möbius 
transformation may help in finding the appropriate enveloping. 

Theorem 1.5 ([4]). If ( )xf  is enveloped by a linear fractional function 

of the form ( ) ( ) [ ),1,0,12
1 ∈α

−α−α
α−= x

xxh  then ( )xf  is globally stable. 

Since there are many options for enveloping in the preceding 
theorem, it is necessary to adjust each particular model with the 
enveloping in the set of parameters. Hence, this task is not easy. 

Eduardo Liz [18] tried to simplify this process. He studied enveloping 
function for models of the form ( )nnn xfxx +=+1  and uses Schwarzian 

derivative of f. He was able to characterize when local stability implies 
global stability in certain one-dimensional population models. His results 
are based in the following proposition: 

Proposition 1.6 ([18]). Let f to be a population model defined as 

before and suppose that f is a 3C  map that has at most one critical point 

.cx  If ( ) 1≤′ ∗xf  and ( ) 0<xSf  for all ,cxx ≠  then ∗x  is a globally 

stable fixed point of f, where S f is the Schwarzian derivative of f given by 

( ) ( )
( )

( )
( ) .2

3 2








′
′′

−
′
′′′

= xf
xf

xf
xfxSf  

Later on, Rubió-Massegú and Mañosa in [20] brings up the 
importance of the enveloping function since the enveloping implies the 
existence of a global Lyapunov function. Thus, the global asymptotically 
stability can be seen as a consequence of an invariant principle. 
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Recently, Wrigth [24] extended the previous idea of enveloping to 
periodic discrete models. It has been shown that under certain conditions 
the periodic system is globally stable, namely, if the sequence of maps 
have the same common fixed point and there exists a decreasing 
enveloping h with ( ) xxhh =D  such that h envelops all the maps, then 

the periodic equation is globally stable. 

Our main objective in this paper is to provide a survey on the theory 
of enveloping method used to show global stability in one-dimensional 
periodic population models. 

In Section 2, we present some preliminaries concerning the general 
theory of non-autonomous periodic difference equations. In the next 
section, we present the principal results in the field of periodic equations, 
i.e., we give the condition for which individual enveloping implies 
periodic enveloping for mappings. The next section is devoted to 
applications. We illustrate the results in several well known models in 
population dynamics as is the cases of the periodic Ricker model, the 
periodic generalized Beverton-Holt model and the periodic logistic model. 
A mixing population models are studied as well. 

We believe that the tools presented in this survey may be used as a 
tutorial in some undergraduate project. It gives the primary ideas of 
global stability and can be viewed as an open door to study global 
stability in other kind of models, either in one dimension or in higher 
dimension as well. 

2. Periodic Systems 

A difference equation is called non-autonomous if it is governed by 
the rule 

( ) ,,1
+

+ ∈= Znxfx nnn   (2.1) 

where Xx ∈  and X is a topological space. Here the orbit of a point 0x  is 

generated by the composition of the sequence of maps 

.,,, 210 …fff  
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Explicitly, 

( ),001 xfx =  

( ) ( ),001112 xffxfx D==  

#  

( ),00111 xffffx nnn DD…DD −+ =  

#  

If the sequence of maps is periodic, i.e., ,npn ff =+  for all 

…,2,1,0=n  and some positive integer ,1>p  then we talk about non-

autonomous periodic difference equations. Systems where the sequence of 
maps is periodic, model population with fluctuation habitat, and they are 
commonly called periodically forced systems. 

Throughout this paper, we work with non-autonomous periodic 
difference equation in which p is the minimal period of Equation (2.1) 
and .R=X  

Notice that the non-autonomous periodic difference equation (2.1) 
does not generate a discrete (semi)dynamical system [14] as it may not 
satisfy the (semi)group property. One of the most effective ways of 
converting the non-autonomous difference equation (2.1) into a genuine 
discrete (semi)dynamical system is the construction of the associated 
skew-product system as described in a series of papers by Elaydi and 
Sacker [11, 13, 14, 15]. It is noteworthy to mention that this idea was 
originally used to study non-autonomous differential equations by Sacker 
and Sell [22]. 

Definition 2.1. An ordered set of points { }110 ,,, −= rr xxxC …  is an 

r-periodic cycle in X if 

( ) ( ) ( ) .,mod1mod
+

++ ∈= Znxxf riipnri  

In particular, 

( ) ,20,1 −≤≤= + rixxf iii  
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and 

( ) ( ) .11,mod1mod −≤≤−= + ptrxxf rtrtt  

It should be noted that the r-periodic cycle rC  in X generates an        

s-periodic cycle on the skew-product ( { })110 ,,, −=× pfffYYX …  of the 

form 

lsC = {( ) ( ) ( )( ( ) )},,,,,,, mod1mod11100 psrs fxfxfx −−"  

where [ ]prlcms ,=  is the least common multiple of r and p. 

To distinguish these two cycles, the r-periodic cycle rC  on X is called 

an r-geometric cycle (or simply r-periodic cycle when there is no 

confusion), and the s-periodic cycle lsC  on YX ×  is called an s-complete 
cycle. Notice that either ,pr <  or pr =  or .pr >  

Define the composition operator Φ  as follows: 

.11 iiin
i
n fff DD…D +−+=Φ  

When 0=i  we write 0
nΦ  as .nΦ  

As a consequence of the above remarks it follows that the s-complete 

cycle lsC  is a fixed point of the composition operator .i
sΦ  In the other 

words, we have that 

( ) .modmod riri
i
s xx =Φ  

If the sequence of maps { } 0, ≥ifi  is a parameter family of maps one-to-

one in the parameter, then by [9], we have that pix mod  is a fixed point of 

.pΦ  

3. Enveloping in Periodic Models 

In this section, we present the idea of enveloping method in periodic 
single species of population models. 
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In population dynamics, it is common to work with a parameter 
family of maps. If we are working with a certain population model, we 

can always rescale the positive fixed point to .1=∗x  Hence, under this 
scenario, a parameter family of maps will have the same positive fixed 
point. Having in mind this idea, we point out a first assumption: 

H1. Let { }…,,, 210 fff=F  to be a set of 1C  population models such 

that ( ) ,11 =if  for all .,2,1,0 …=i  Assume that the composition 

( ) ( ),011 xfffx pp DD…D−=Φ  

is continuous in a subset of the nonnegative reals. Further, in order to 
guaranty periodicity of the equation 

( ),1 nnn xfx =+  

we also require that the maps on F  are periodic with period p, i.e., 
,npn ff =+  for all n. 

A natural question arises in the field of periodic difference equations: 
is the composition of population models a population model? 

The answer of this question, in general, is negative, it depends on the 
individual maps. In Figure 1, we present a concrete example, where 

( )














>

<≤+−

<≤

=

,1if1

,16.0if5.45.3

,6.00if4

0

xx

xx

xx

xf  

and 

( )














>

<≤+−

<≤

=

.1if1

,15.0if2

,5.00if3

1

xx

xx

xx

xf  
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Figure 1. This example shows that the composition of population models 
may not be a population model. 

Observe that the maps of F  are increasing in certain interval. Hence, 
one can show the following proposition: 

Proposition 3.1. Under hypothesis H1, the composition map ( )xpΦ  

is increasing in ( ),,0 Φc  for certain positive value .Φc  Moreover, there exists 
∗
ΦΦ < xx  such that ( ) ( ),xfx ip >Φ  for all ( ) { }1,,1,0,,0 −∈∈ Φ pixx …  

with ( ) .∗
Φ

∗
Φ =Φ xxp  

Proof. It follows from our hypothesis that each individual map if  is 

increasing on ( ),,0 ic  for some 0>ic  (eventually the map if  can be 

increasing in all the domain). Since the composition of monotone 
mappings is a monotone map, it follows that there exists ,0>Φc  the 

minimum of the critical values of ,pΦ  such that ( )xpΦ  is an increasing 

function on ( ).,0 Φc  
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Since each one of the individual maps if  is increasing on ( )ic,0  and 

the origin is an unstable fixed point of all the maps, we have that 
( ) ,10 >′if  for all { }.1,,1,0 −∈ pi …  Taking the derivative of the 

composition map, we have 

( ) ( ( )) ( ( )) ( )( ) ( )xfxffxfxfx ppppp 0012211 ′×′××Φ′×Φ′=Φ′ −−−− …  

  ( )( ).
1

0
xf ii

p

i
Φ′= ∏

−

=

 

Hence, at the origin, we have 

( ) ( )( ) ( ) { }.1,,1,0,000
1

0
−∈′>>Φ′=Φ′ ∏

−

=

piff iii

p

i
p …  

This implies that there exists a positive number ∗
ΦΦ < xx  such that 

( ) ( ) ( ) { }.1,,1,0,,0allfor, −∈∈>Φ Φ pixxxfx ip …  

  

The next assumption will be in the enveloping function. First, let us 
observe the following example where it is shown that “individual 
enveloping” do not implies “periodic enveloping”. 

Example 3.2. Let ( ) ( )xxexf −= 15.1
0  and ( ) ( )xxexf −= 12.1

1  and 

assume that ,2 nn ff =+  for all n. It is clear that F∈10 , ff  and =+1nx  

( )nn xf  is a 2-periodic difference equation. 

Each one of the maps 0f  and 1f  is enveloped by the map 

( ) ( ).12 xxexg −=  The map ( )xg  is a globally asymptotically stable 

population model since it is enveloped by the decreasing fractional 
function ( ) =xh x−2  (for more details, see [5]). Moreover, from Theorem 

1.3, one can conclude that the individual maps ( ) 1,0, =ixfi  are globally 

stable since they are envelop by ( ).xg  
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To study the dynamics of the 2-periodic difference equation, we study 
the dynamics of the map 

( ) ( )
( )

.
15.12.15.17.2

012
xxexxexffx

−−−==Φ D  

Plotting the graph of ( )x2Φ  one can conclude that there exists a positive 

value ∗
Φ=< xa 1  such that 

( ) ( ) ( ),,0allfor,12
2 axxex x ∈>Φ −  

and 

( ) ( ) ( ).1,allfor,12
2 axxex x ∈<Φ −  

Consequently, ( )x2Φ  is not enveloped by ( ).xg  However, the individual 

maps 0f  and 1f  are enveloped by ( ).xg  Hence, we can not conclude 

stability of ( )x2Φ  from the individual enveloping ( ).xg  In Subsection 

4.1, we will show that ( )x2Φ  is also enveloped by ( ) xxh −= 2  and 

consequently from Theorem 1.5 it is globally stable. 

We remind that the main goal in this field is to find certain class of 
maps where individual enveloping implies periodic enveloping. Due the 
preceding examples, we have to guarantee: (i) the composition of 
population models is a population model and (ii) the individual 
enveloping is also an enveloping for the composition map, i.e., we have to 
guarantee that the composition map has two fixed points, the origin and 

a positive fixed point ( ) xxx p >Φ∗
Φ ,  if ( )∗

Φ∈ xx ,0  and ( ) xx p <Φ  if 

,∗
Φ> xx  and there exits an enveloping for a sequence of the individual 

maps if  that envelops the composition map. These observations 

motivates the second assumption: 
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H2. There exits a decreasing envelop h such that ( )xh  envelops all 

the maps in the set F  and ( ) .xxhh =D  

The following proposition may help us in the construction of an 
envelop. We will omit the prove since the result follows directly by 
symmetry. 

Proposition 3.3. Let h to be an enveloping of a population model f in 
the conditions of hypothesis H2. Consider the graph of f and the curve, 

,fS  obtained from the graph of f by symmetry with respect to the diagonal 

.xy =  Then, the graph of h lies between the graph of f and the curve fS  

everywhere, with the exception of the fixed point .1=∗x  

We are now ready to present the main result in this field. It states 
the conditions in which individual enveloping implies periodic 
enveloping. An alternative proof may be found in [24]. 

Theorem 3.4. Under hypotheses H1 and H2, the composition map 
( )xpΦ  is a globally asymptotically stable population model. 

Proof. The prove follows by induction. We will show the result for 
the composition of two maps ( )2=p  and the proof for the general case 

( )2>p  may be obtained in a suitable way. 

Combining H1 and H2 it follows from Theorem 1.4 that ( ),xfi  

…,2,1,0=i  is a sequence of globally asymptotically stable population 

models. 

Since ( ) 00 =if  and ( ) ,11 =if  for all …,2,1,0=i  it follows that 

( ) 00 =Φ p  and ( ) .11 =Φ p  The uniqueness of 1=∗
Φx  will follow in the 

following arguments. 

Let us first study the composition map ( ) ( ).012 xffx D=Φ  Since 

( ) 112 =Φ  we split the prove into two cases: 10- << xI  and .1- >xII  
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Case I. If ,10 << x  either ( ) 10 >xf  or ( ) 10 << xfx  (recall that 

( ) xxf >0  when ( )1,0∈x ). 

If ( ) ,10 >xf  then ( ) ( )( ) ( ) ( ).00101 xhxfxffxff <<=D  Since h is 

decreasing and ( ) ( ),1 yhyf >  for all ,1>y  we have that 

( ) ( ) ( ).010 xffxfhxhhx DDD <<=  

If ( ) ,10 << xfx  then ( ) ( ).0 xhxfh <D  But, since ( ) ,10 <xf  we have 

( ) ( ) ( ).001 xhxfhxff << DD  On the other hand, ( ) ( ).010 xffxfx D<<  

Case II. Let 1>x  and assume first ( ) .10 0 << xf  This implies that 

( ) ( ) ( ).001 xhxfxff >>D  In order to prove that ( ) ,01 xxff <D  we notice 

that 

( ) ( ) ( ).010 xffxfhxhhx DDD >>=  

When ( ) ,10 >> xfx  we have that ( ) ( )xhxfh >0D  and consequently 

( ) ( ) ( ).001 xhxfhxff >> DD  Since ( ) ,10 >xf  it follows that ( ) >> xfx 0  

( ).01 xff D  

We have shown that ( )x2Φ  is a population model and the enveloping 

function h envelops the composition map .2Φ  Consequently, from 

Theorem 1.4, the map ( )x2Φ  is a globally asymptotically stable 

population model. 

  

It will be beneficial, in certain cases, to have the contrapositive of this 
theorem which we write in the following corollary: 

Corollary 3.5. If 110 ,,, −pfff …  are population models and the 

composition map pΦ  is not a population model, then it can not exist an 

enveloping h, in the conditions of hypothesis H2, such that h envelops all 
the individual population models. 
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4. Applications 

In this section, we illustrate how the results apply to some one-
dimensional periodic population models. We present a family of Ricker 
maps, a family of Beverton-Holt models, quadratic models, mixing 
models, and harvesting models. 

4.1. Ricker model 

Let us consider the periodic difference equation given by the 
following equation: 

( ),1 nnn xRx =+  

where the sequence of maps ( )xRn  is given by 

( ) ( ) .,2,1,0,0,1 …=>= − nrxexR n
xr

n n   (4.1) 

The local stability condition { }…,1,0,20 ∈≤< nrn  of each 

individual population model ( )xRi  implies global stability of ( ),xRi  since 

each one of the individual maps ( ) { }…,1,0, ∈nxRn  is enveloped by 

( ) ,2 xxh −=  which is a fractional decreasing function with 21=α  (see 

Theorem 1.5). In the other words, 1=∗x  is a globally asymptotically 
stable fixed point of ( ) { }.,1,0, …∈nxRn  Notice that ( ) .xxhh =D  Thus, 

hypothesis H2 is satisfied. 
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Figure 2. An illustration of the “individual enveloping” (tiny curves) and 
the “composition enveloping” (solid curve) in the one-parameter family of 
a Ricker type map. In this case, individual enveloping implies periodic 
enveloping and consequently the global stability of the positive fixed 
point in the periodic equation. 

In order to have periodicity, we require that ,npn RR =+  for all 

,,2,1,0 …=n  i.e., the sequence of parameters satisfies pnn rr mod=  for 

all n. It is clear that the composition map 

( ) ( ),011 xRRRx pp DD…D−=Φ  

is continuous in .0
+R  Consequently, hypothesis H1 is satisfied. Hence, 

from Theorem 3.4, it follows that ( )xpΦ  is a globally asymptotically 

stable population model, i.e., the p-periodic Ricker difference equation is 
globally stable whenever ( ] .,2,1,0,2,0 …=∈ nrn  

Hence, in this family of population models, individual enveloping 
implies periodic enveloping. 
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In Figure 2 is represented a concrete example where ,8.10 =r  
,2.11 =r  and .5.02 =r  The composition map 0123 RRR DD=Φ  is 

represented by the solid curve. The dashed line is the enveloping function 
while the tiny curves are the individual population models. 

Before ending this example, we notice that 111
0 <−∏ −

= i
p
i r  is the 

stability condition for the fixed point 1=∗x  under the action of the 
composition map .pΦ  

Finally, we should mention that Sacker [21] used a different method 
to show global stability of a similar periodic Ricker type model given by 

,1 nn xr
nn exx −

+ =  

in the parameter region .1,,2,1,0,20 −=≤< pnrn …  

4.2. Generalized Beverton-Holt model 

Let ( ) ,,2,1,0,1 …==+ nxBx nnn  where the map nB  is given by 

( )
( )

.
11 nc

n

n
n

x
xxB
−µ+

µ
=   (4.2) 

Assume that 1>µn  and ,20 ≤< nc  for all .,2,1,0 …=n  

The individual population map ( )xBn  has two fixed point, the origin 

and a positive fixed point given by .1=∗x  It is easily shown that the 
origin is an unstable fixed point since ( ) ,10 >µ=′ nnB  for all 

.,2,1,0 …=n  The condition of local stability of the positive fixed point 
is given by ( ) ,2 nnn cc ≤−µ  for all .,2,1,0 …=n  This condition implies 
global stability since each individual map ( ) …,2,1,0, =nxBn  is 
enveloped by 

( ) ,1
xxh =  

which is a decreasing fractional function with ( ) .xxhh =D  Hence, H2 is 

satisfied. 
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Let us assume now the periodicity of the map nB  by taking nqn µ=µ +  

and nrn cc =+  for some .,3,2,1, …=rq  This implies that =+ pnB ,nB  

where ( )., rqlcmp =  From the fact that ,1>nr  for all n, it follows that 

( ) 011 >−+ nc
n xr  whenever .+∈ Rx  Hence, the composition of the 

Beverton-Holt models is well defined and thus we have the continuity of 
the composition. Consequently, H1 is satisfied. It follows from Theorem 
3.4 that 

( ) ( ),011 xBBBx pp DD…D−=Φ  

is a globally asymptotically stable population model. Consequently, the    
p-periodic Beverton-Holt equation ( ) …,2,1,0,,1 === ++ nBBxBx npnnnn  

is globally stable whenever 1>µn  and .20 ≤< nc  

Notice that the condition of stability of the positive fixed point of pΦ  

is given by 

( ) ( ) .111
1

0

1

0
i

p

i
ii

p

i
c µ<−−µ+ ∏∏

−

=

−

=

 

We should mention that when ,1=nc  we have the classical 

Beverton-Holt model. In a series of papers [6, 7, 10, 11, 12, 13, 14, 15, 16, 
17, 23], the authors used a different method to study the global stability 
of the positive periodic cycle. 

In order to have a complete study of this model, it remains to study 
the cases where 2>nc  for all n, or a possible mixing case in the 

parameters ,nc  i.e., some of the parameters are less or equal than 2 and 

others are greater than 2. Under these scenarios, the individual 
enveloping is 

( ) ( )
( )









>
−−−
−−−

≤
=

.2if32
21

,2if2
1

n
nn
nn

n

cxcc
xcc

c
xh  
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We point out that, in certain cases is possible to find a common 
enveloping for all the p individual maps and hence global stability of the 
periodic equation. However, this is not the general case, as we show in 
the following concrete example. 

Let 5.7,7,1.1 010 ==µ=µ c  and .3.21 =c  Hence, the individual 

maps are given by 

( ) ( ) .
61
7and

1.01
1.1

3.215.00
x
xxf

x
xxf

+
=

+
=  

Both 0f  and 1f  are globally asymptotically stable population models with 

respect to the positive fixed point since they are enveloped by 

( ) ( ) ,7.03.0
3.03.1and5.45.5

5.55.6
10 x

xxhx
xxh

+
−=

−
−=  

respectively (see Figure 3). 

As is clearly shown in Figure 3 the composition map 
( ) ( )xffx 012 D=Φ   has 3 positive fixed points and consequently can not be 

globally stable. Clearly, 2Φ  is not a population model. From Corollary 3.5 

follows that it can not exist a decreasing enveloping h, with ( ) ,xxhh =D  

such that h envelops simultaneously 0f  and .1f  

Notice that, if that enveloping exits, then from Proposition 3.3, it lies 
between the graphs of 0f  and 1f  and the respective curves, 0fS  and ,1fS  

obtained from 0f  and 1f  by symmetry with respect to the diagonal 

.xy =  As it is clearly shown in Figure 3, there exits an interval 

] [ ] [6.1,5.1, ⊂ba  where such enveloping fails. 
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Figure 3. An example showing that there is no global stability in the      
2-periodic Beverton-Holt model, when 5.7,7,1.1 010 ==µ=µ c  and 

.3.21 =c  In this case is not possible to find a decreasing enveloping that 
envelops simultaneously the individual population models 0f  and .1f  

4.3. Mixing models: Beverton-Holt acting with Ricker model 

Let us now consider that the sequence of maps is given by 

( )

( )

( )








−µ+

µ=

−

odd,isif
11

even,isif1

n
x

x

nxe
xf

n

n

c
n

n

xr

n  

where ,1,20 >µ≤< nnr  and 10 ≤< nc  for all n. Assume the 
periodicity of the parameters, i.e., ,, nrnnqn rr µ=µ= ++  and nsn cc =+  
for some positive integer q, r, and s. Hence, the equation ( )nnn xfx =+1  is 
p-periodic with ( ).,, srqlcmp =  Clearly, ( ) F∈xfn  and consequently H1 
is satisfied. 

Now, from Subsection 4.1, the sequence of maps ( ) …,1,0,2 =nxf n  
is enveloped by the decreasing function ( ) .2 xxh −=  It is easy to see that 

( )
( )

,
11 1212

12
12

+−µ+

µ
=

+

+
+ nc

n

n
n

x
xxf  



RAFAEL LUÍS and ELIAS RODRIGUES 82

1>µn  and …,5,3,1,10 =≤< ncn  is also enveloped by ( ) .2 xxh −=  

To see this observe that ( ) ( ) hhf n ,1112 =+  is decreasing and ( )xf n 12 +  is 

increasing since 

( ) ( ) ( )
( ( ) )

.0
11

11
2

12

2121212
12 12

12
>

−µ+

−−µµ+µ
=′

+

+

+

+++
+ n

n

c
n

c
nnnn

n
x

xcxf  

This implies that H2 is satisfied. Consequently, from Theorem 3.4 follows 
that 

( ) ( ),011 xfffx pp DD…D−=Φ  

is a globally asymptotically stable population model. Hence, the p-
periodic difference equation ( ) …,2,1,0,1 ==+ nxfx nnn  is globally 

stable. 

Finally, we determine the stability condition under composition 
operator, which is given by ( ) .11 <Φ′p  A forward computation shows 

that 

( )

( ) ( ( ) )

( ) ( ) ( ( ) )









µ
−µ−µ−

−

µ
−µ−µ−

=Φ′

+

+++−

=−

+

+++−

=

∏
∏

−

odd.isif111

even,isif11

1

12
12121221

01

12
12121221

0

2
1

2

pcrr

pcr

n
nnnn

np

n
nnnn

n
p p

p

 

Notice that a similar approach can be done in the case that we 
consider the even sequence of maps a Beverton-Holt type and the odd 
sequence of maps a Ricker-type model. 

4.4. Exponential and rational 

Let us consider the non-autonomous difference equation 

( ) ,
1
1

1 nn

n

xb
n

n
b

n
n

ea
xeax

+

+
=+  

where 20 ≤< nb  and ,0>na  for all .,2,1,0 …=n  This equation can 

be defined by the following map: 
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( ) ( ) .
1
1

xb
n

b
n

n n

n

ea
xeaxf

+

+
=  

It is easy to check that the conditions of local stability at the fixed point 

1=∗x  

( ) ,22 ≤− nb
nn eba  

implies global stability since each map nf  is enveloped by ( ) xxh −= 2  in 

.0
+R  

Let nqn aa =+  and ,nrn bb =+  for all .,2,1,0 …=n  Then the 

sequence of maps is p-periodic, where ( ),, rqlcmp =  i.e., the non-

autonomous equation ( )nnn xfx =+1  is p-periodic. Clearly, the periodic 

composition map ( )xpΦ  is continuous in +
0R  since 01 ≠+ xb

n nea  for all 

0≥x  and 20 ≤< nb  and ,0>na  for all .,2,1,0 …=n  

Since H1 and H2 are satisfied, from Theorem 3.4 follows the global 
stability in the non-autonomous periodic equation. 

4.5. Quadratic model 

Let ( ),1 nnn xLx =+  where ( ) ( ( )) ,11,0,11 





µ
+=∈−µ+=

n
nnn IxxxxL  

for all .,2,1,0 …=n  The local stability condition for each individual 

population model ( ) { }1,,1,0, −∈ pnxLn …  is given by .20 ≤µ< i  

Since the fractional function ( ) x
xxh 23

34
−
−=  envelops each map ( ),xLn  

{ }1,,1,0 −∈ pn …  it follows that ( )xLn  is a globally asymptotically 

stable population model whenever .20 ≤µ< i  Notice that ( ) .xxhh =D  

Hence H2 is satisfied. 

Let us now assume the periodicity of the difference equation by 
taking ,npn LL =+  for all ,,2,1,0 …=n  i.e., the sequence of 
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parameters are p-periodic. In order to guarantee the continuity of the 
composition operator, we construct the interval J as follows. Let I to be 
an interval given by 

.11,0
1

0






µ
+=

−

= n

p

n
I ∩  

The interval J is defined by 

( ).
1

0
ILJ n

p

i
∩
−

=

=  

Clearly, [ ] ( ) 11,1,0 =Φ⊇ pJ  and ( )xpΦ  is continuous for all .Jx ∈  

Hence H1 is satisfied. It follows from Theorem 3.4 that 

( ) ( ) ,,011 JxxLLLx pp ∈=Φ − DD…D  

is a globally asymptotically stable population model whenever ,20 ≤µ< n  

.,2,1,0 …=n  Consequently, 1=∗x  is a globally stable fixed point of 

the p-periodic difference equation ( ).1 nnn xLx =+  

4.6. Beverton-Holt with harvesting 

Let us consider the difference equation ( ),1 nnn xfx =+  where the 

sequence of maps nf  is given by 

( ) ( ) ( ) .allfor,10,1,111 ncrxxcxr
xrxf nnn

n
n

n <<>−−
−+

=  

In this model, we are taking x in the interval 

( ) ( ( ) )
( )

.
12

442,0 








−

−+−−
=

nn

nnnnn
n cr

crrcrI  

Clearly ( )xfn  is a population model for all .nIx ∈  Moreover, the 

extinction fixed point is unstable since ( ) 10 >+=′ nnn crf  for all 

.,2,1,0 …=n  The local stability condition for 1=∗x  is given by 
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.allfor,10 nr
rc

n
n

n
+

<<  

Since the fractional function ( ) x
xxh 58

811
−
−=  envelops each individual 

map ( ) ,,2,1,0, …=nxfn  it follows that ( )xfn  is a globally 

asymptotically stable population model whenever x belongs to the 

interior of nI  and .,2,1,0,10 …=
+

<< nr
rc

n
n

n  Notice that ( )xhh D  

.x=  

Let us now assume the periodicity of the parameters by taking 
,nqn rr =+  and nrn cc =+  for all .,2,1,0 …=n  Hence, the sequence of 

maps is p-periodic, where ( )., rqlcmp =  Define the interval J as follows: 

( ) .where,
1

0

1

0
n

p

n
n

p

n
IIIfJ ∩∩

−

=

−

=

==  

Since H1 and H2 are satisfied, it follows from Theorem 3.4 that 

( ) ( ) ,,011 Jxxfffx pp ∈=Φ − DD…D  

is a globally asymptotically stable population model whenever << nc0  

,1
n

n
r

r+  for all ,,2,1,0 …=n  i.e., 1=∗x  is a globally stable fixed point 

of the p-periodic Beverton-Holt equation with harvesting. 

5. Final Remarks 

In this survey, we have presented the conditions when individual 
enveloping implies periodic enveloping for certain periodic population 
models. In the other words, if a sequence of population models is 
enveloped by a common decreasing function h such that ( )( ) ,xxhh =  then 

the periodic equation is globally stable with respect to the positive 
equilibrium. 
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In population dynamics, this observation stats that, if each one of the 
individual population is globally stable with respect to the positive 
equilibrium, then the population with fluctuation habitat is also globally 
stable with respect to the positive equilibrium. A several examples are 
given in order to illustrate the results. 

Hence, in the case of certain periodic forced systems, local stability 
implies global stability with respect to the positive fixed point. 
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