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Abstract 

Let an ODE ( ) ,0,, =′yyzF  where F is analytic in .nn CCC ××  The singular 

locus is the set ( ).det y
FVS
′∂

∂=  We are interested in the algebraic conditions 

for singular solutions to happen. 

First we deal with the analytic case: the graph of a singular solution is 
embedded in S. We recall that such a solution may occur only when the 
differential ideal generated by ( )yyzF ′,,  is not reducible. The existence of 
singular solutions is not generic and we show a relationship with the theory of 
differential-algebraic equations by Rabier and Rheinboldt [9]. This is also the 
adaptation to holomorphic differential equations of a result from Fukuda and 
Fukuda [2]. 

On the other hand, the Ritt-Raudenbusch theorems, related to the 
decomposition of differential ideals, give the algebraic conditions to get singular 
solutions for polynomial differential systems. This also indicates the non 
genericity of singular solutions existence. 
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Introduction 

In classical differential algebra, we can read many papers on 
differential polynomials ([11, 7, 13]). However, the pendulum equation 

,0sin =θ+θ l
g&&   (1) 

is not a polynomial in any sense. So the polynomial differential algebra 
does not allow to treat many equations that the physicists are naturally 
led to write. We will discuss the existence of singular solutions for 
systems of complex non-linear ODEs. 

1. Notations and Basic Results on  
Regular/Singular Solutions 

In this paper, the equation considered is a complex non-autonomous 
n-dimensional non-linear system of ODEs 

( ) ,0,, =′yyzF   (2) 

0>n  is an integer. dzdyy =′  is the first derivative of the vector-map 

( ).,,, 21 nyyyy K=  The map nF C→Ω:  is analytic over the open set 

.nn CCC ××⊂Ω  

When we deal with geometric instead of differential objects, we may 
use the variable ( )npppp ,,, 21 K=  for .y′  

Definition 1.1 (Jacobian). Let nn CC →Φ :  be a differentiable map 
of the complex variables .,,1 npp K  The Jacobian matrix of Φ  is the 

square matrix 

( ) (( )) ,,1 nji
j
i

pM ≤≤∂
Φ∂

=Φ  

and we shall call the Jacobian of Φ  the determinant 

( ) ( ).detJac def Φ=Φ M  
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For the Equation (2), we use the same notation: 

( ) ( ) (( )) .det,,Jac ,1 nji
j
i

p
FpyzF ≤≤∂
∂

=  

1.1. General solution 

What the general solution of a non-linear ODE means has been 
discussed by several authors (see [11], [2] and more recently [5]). We 
recall this concept in the context of analytic differential equations: 

Definition 1.2 (Regular point). Using the previous notations, a 
regular point of system (2) is any value ( )000 ,, pyz  such that F is 
defined in an open neighbourhood of ( )000 ,, pyz  and that ( ) ( ,Jac 0zF  

) .0, 00 ≠py  

Definition 1.3 (Solution). Any map ( ),zYz a  holomorphic in a 
domain1 ,C⊂U  is a solution of (2) whenever 

( ) ( )( ) .0,,, =′∈∀ zYzYzFUz  

Consider a regular point ( )000 ,, pyz  of system (2): there is exactly 
one solution of the differential system (2) passing through ( ).,, 000 pyz  It 
is sufficient to apply the implicit function theorem (to isolate p) in a 
neighbourhood of the regular point, then integrate the locally equivalent 
system using the standard Cauchy theory on explicit ODEs (see, e.g., 
Chapter 2 in Hille’s book [4]). 

Upon analytic continuation process, the unique solution defined in a 
neighbourhood of 0z  can be extended to a maximal open set, while still 
being solution of (2). 

Definition 1.4 (Maximal solution). There is thus only one maximal 
solution at ( ) :,, 000 pyz  the one defined in the maximal open set in ,C  
containing 0z  and satisfying 

( ) ( )( )., 0000 pzYyzY =′=  

                                                      
1A domain is a non-empty open and connected set of .C  
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Definition 1.5 (Regular solution). At any regular point there is 
exactly one maximal solution. It is said to be a regular solution. 

Definition 1.6 (General solution). The set of all the regular solutions 
of (2) define the general solution of (2). 

1.2. Singular solutions 

Definition 1.7 (Singular locus). The set of points ( ) Ω∈pyz ,,  such 

that 

( ) ( ) ,0,,Jac =pyzF   (3) 

is the singular locus of Equation (2). We note it .S  

Example 1.1. The 1-dimensional differential problem 

,22 yzy +=′  

has the singular locus { }.0=p  

The 3-dimensional problem defined near ( ) ( )1,0,0,0,,, 321 =yyyz  

( ) ( )












+=−′−+′

−=′+′

=−′+′

+−

,cossin312

,2

,0

1121
2

3

2
2

3
2

2

3
2
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2
1

32

yzzyyyzy

yzyey

yyyyy

yy  

yields the Jacobian matrix 

( )

( )

.

1

20sin3

40

02

,,

2
3

3
12

3
2

21
2
1

32
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Its singular locus is defined by the analytic equation 

( ) [ ( )] .0sin12
1

2,,Jac 1222
3

2
1

31
32

=−−
+

=
+−

yyzp
p

eypypyz
yy

 

The singular locus is either empty, or an analytic sub-variety of nn CCC ××  
defined as the zero set of a locally meromorphic map. 

Definition 1.8 (Singular solution [2], p. 42). A singular solution Y of 
Equation (2) is thus a differentiable map ( )zYz a  defined in an open 

set U of C  such that both following conditions hold: 

( ) ( )( ) ( ) ( ) ( )( ) .0,,Jacand0,,, =′=′∈∀ zYzYzFzYzYzFUz  (4) 

By this definition, we see that the graph 

( ) ( )( ){ },,, UzzYzYz ∈′  

of any singular solution is embedded in .S  

Example 1.2. Let us again mention the pendulum equation (1). 
Readily, we have the first integral 

( ) .cos2,
2

θ−θ=θθ l
gF

&
&  

The differential ideal { }F  is not irreducible: it contains by simple 

differentiation 

( ) .0sin =θ+θθ l
g&&&  

Thus is it worth studying the singular solutions such that ?0=θ&  Is 
there a chance to get an envelope ,k=θ  where k  is a constant? 

1.3. Regular vs singular solutions 

We have the 

Lemma 1.1. The general solution as defined in 1.6 does not contain 
any singular solution of (2). 
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Proof. As the graph of a singular solution is embedded in ,S  it does 
not contain any regular point.   

Here a common question arises: it is well-known that, e.g., for some 
Clairaut equations (Fukuda [2], Example 1.4 (i), p. 44 ), there is a contact 
between a singular solution and a regular solution. Actually, a regular 
solution ( )zY  may contain some singular points, where Y is still 

holomorphic. At least two differentiable solutions (one regular and one 
singular) get tangent at a precise point. Nevertheless 

Lemma 1.2. Let ( )zYz a  be a regular solution, defined in a domain 

U and 

( ) ( )( ){ }UzzYzYz ∈′= ,,G  

its graph. The set GSI  is empty or made of isolated points. 

Proof. Suppose that in ,G  there is an accumulation of singular points 

near a point ( ) .,, G∈∗∗∗ pyz  By continuity, this implies that in the 

neighbourhood of ( ),,, ∗∗∗ pyz  we have 

( ) ( ) ,0,,Jac =pyzF  

so that Y is a singular solution.   

2. Generic Differential Equations 

We recall in this part, that a generic differential equation cannot 
have any singular solution (see Thom [15]). The main reason is that the 
augmented system (4) is simply overdetermined. 

2.1. On singular solutions existence 

The genericity is the argument used in Fukuda’s paper [2], in the 
context of smooth real differential equations. One of the main ideas is the 
use of the Malgrange preparation theorem to set the non-linear 
differential equation in a reduced form, in order to have locally (however 
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generically) a discrete/finite covering: in the case of polynomials the 
solutions set has finitely many branches, above a regular point. The 
singular solutions are proved to be entirely embedded into the singular 
locus (Fukuda [2], Corollary 1.8): this is also the case considering analytic 
differential equations, whatever the base field ( ).or.,i.e CR  

The generic impossibility of singular solution is clear following the 
way Rabier and Rheinboldt define the so-called index of differential-
algebraic equations (see [9]). The system (4) satisfied by a singular 
solution is made of 1+n  equations: 

( )

( ) ( )





=′

=′

.0,,Jac

,0,,

yyzF

yyzF
 

Let us suppose the existence of a singular solution of graph 
( ) ( )( ),,, zyzyzz ′a  where z belongs to a domain U. By elimination and 

eventually restricting z to a non-empty open set ,1 UU ⊂  in case 

Equations (4) are multivalued in ,y′  at least one additional analytic 
equation can be obtained, which is independent on :y′  

( ) ,0,1 =yzG  

defining a set {( ) ( ) } :0,, 111 =×∈= yzGUyzV nC  the system is a 

non-linear differential-algebraic equation (DAE). So the singular solution 
graph is embedded in the codimension 2 set .1VIS  Supposing that the 

codimension value may be 1 only, is not generic: it would imply an 
algebraic condition relating ( )FF Jac,  and .1G  Following Rabier and 

Rheinboldt ([9], Theorem 5.1), we can define by induction a sequence 

132 ,,, +nGGG K  of analytic maps and a non-empty open set ,UU ⊂′  

such that 
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( ) ( )( )

( ) ( ) ( )( )

( )( )
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





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+==

=′

=′

′∈∀

.1,,1,0,

,0,,Jac

,0,,

,

nizyzG

zyzyzF

zyzyzF

Uz

i K

 

Thus generically we have 1+n  analytic equation in 1+n  unknowns: 
this yields an equation ( ) ,0=zg  where g is a nonzero analytic map. No 

singular solution can exist by this last condition.   

Corollary 2.1. The set of differential systems which do not contain 
any singular solution is dense among the analytic differential systems. 

In the literature, the case of singular solutions is mentioned often to 
find these which are envelopes of the general solution ([4, 1, 6, 14]). 

Corollary 2.2. Among the systems containing singular solutions, 
these such that singular solutions are envelopes of regular solutions are of 
codimension .1≥  

The codimension being 1≥  is the analytic condition formalizing the 
contact of order 1 when the general solution meets the singular locus   
(see [2]). In the other words, the set of differential systems with singular 
solutions not being envelopes are generic among these having singular 
solutions.   

Now let us reformulate the results in an algebraic way. 

2.2. Algebraic conditions to have singular solutions 

In the case of differential polynomials, the theory developed mainly 
by Raudenbusch, Ritt and Kolchin applies: any system F of such 
equations defines a radical differential ideal { }.F  The ring of differential 

polynomials is Noetherian for radical ideals: 

Theorem 2.1 (Ascending chain condition [10], p. 364). Any increasing 
sequence of radical differential ideals is stationnary. 

As corollary any radical differential ideal is decomposable into prime 
ideals: 
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Theorem 2.2 (Decomposition theorem for differential polynomials). 
Let I be a radical differential ideal of polynomials: I is a finite intersection 

,j
j

I PI=  

where the jP  are prime differential ideals (Raudenbusch [10], p. 365;    

Ritt [11], p. 42). 

In the original Raudenbusch’s paper I is said to be a perfect 
differential ideal. Omitting the primes that contain the other, one gets 
the list of essential components which is unique upon eventual 
reordering. Now in the finite list ,,, 21 KPP  some components have 

their manifold of maximal dimension (see Ritt [11], p. 53-54): they form 
the general solution. All the other, if existing, contain the equations of 
the singular solutions. They are defined as the singular components and 
contain the Jacobian of the initial system. 

As proved in Corollary 2.1, this last condition implies that polynomial 
differential systems containing a singular component cannot be generic. 
Unless a specific algebraic relation exists in the original equations, the 
condition that the Jacobian vanishes leads to the maximal ideal 
{ } { }yz,1 C=  and to an empty set of solutions. Clearly, the ideal { }1  

should not be taken into account when decomposing the ideal I. In the 
analytic case, we do not have such a nice and global decomposition, nor 
an easy definition of differential ideals associated to the differential 
system (2). 

Suppose that S  is non-empty and let ( )000 ,, pyz  be a point in .S  

The concept of generic point, from the theory of schemes, should help to 
understand what an irreducible differential system means: an irreducible 
system contains one generic point only (see [3]). 
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In R  or ,C  when an analytic differential system has singular 

solutions, it is made of a finite number of several irreducible components: 
a finite non-zero number of general systems of codimension 0 and a finite 
non-zero number of singular systems of codimension .1≥  Any solution of 
a singular system is the solution of at least one general system. 

3. Personal Conclusion 

Are the singular solutions a myth ? First they are non generic among 
the ordinary differential equations. Second point, when a system consists 
of the general solution and one or more singular components, these 
components are, roughly speaking, independent on the general 
component, since split by different prime ideals. The only case when a 
singular curve is the envelope of solutions of the general component may 
be seen as an algebraic coincidence or a curiosity. Does this really have 
any significant mathematical meaning? 
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