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Abstract 

Each of the separation properties 2,1,0, =iTi  at a point p is given in the 

topological category of closure spaces. Furthermore, the relationships between 
these properties of the category are studied. 

1. Introduction 

Despite the fact that closure operators had been used in calculus first 
([27] and [29]), they have been used in other fields of mathematics such 
as logic ([24] and [30]), algebra ([12], [13], and [28]), and topology ([26] 
and [14]). 

In 1940, Birkhoff observed that the collection of closed sets of a 
closure space forms a complete lattice [13]. Since his work, the 
interrelation between closures and complete lattices has been 
investigated by many authors and a general treatment of this subject can 
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be found in [21]. Another motivation for considering closures is Birkhoff ’s 
work on association of closures to binary relations in his book [13]. By 
using similar ideas, Aumann worked on contact relations with 
application to social sciences [4] or Ganter and Wille worked on formal 
contexts with application to data analysis and knowledge representation 
[22]. 

In recent years, closure operators are used in quantum logic and 
representation theory of physical systems [2], [3]. 

A closure space ( )C,X  is a pair, where X is a set and C  is a subset of 

the power set ( )XP  satisfying the conditions that X and 0/  belong to C  

and that C  is closed for arbitrary unions. A function ( ) ( )DC ,,: YXf →  

between closure spaces ( )C,X  and ( )D,Y  is said to be continuous if 

( ) C∈− Df 1  whenever .D∈D  Cls is the construct with closure spaces as 

objects and continuous maps as morphisms [17]. 

Another isomorphic description is obtained by means of a closure 
operator [13]. The closure operation ( ) ( )XPXPcl →:  associated with a 

closure space ( )C,X  is defined in the usual way by ( C∈∀⇔∈ CclAx  

),0: /≠⇒∈ ACCx I  where XA ⊂  and .Xx ∈  This closure need not 

be finitely additive, but it does satisfy the conditions ( ⇒⊂/=/ BAcl ,00  

) ,, clAAclBclA ⊂⊂  and ( ) clAclAcl =  whenever A and B are subsets of 

X. Continuity is then characterized in the usual way [17]. 

Finally, closure spaces can also be equivalently described by means of 
neighbourhood collections of the points. These neighbourhood collections 
satisfy the usual axioms, except for the fact that the collections need not 
be filters. So in a closure space ( )C,X  the neighbourhood collection of a 

point x is a non empty stack (in the sense that with every ( )xV N∈  also 

every W with WV ⊂  belongs to ( )),xN  where every N∈V  contains x 

and ( )xN  satisfies the open kernel condition [17]. 
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The notions of “closedness” and “strong closedness” in set based 
topological categories are introduced by Baran [5], [6] it is shown in [8] 
that these notions form an appropriate closure operator in the sense of 
Dikranjan and Giuli [18] in some well-known topological categories. 
Moreover, various generalizations of each of 4,3,2,1,0, =iTi  

separation properties for an arbitrary topological category over Set, the 
category of sets are given and the relationship among various forms of 
each of these notions are investigated by Baran in [5], [7], [9], and [10]. 

In the last decade, complete objects in the category of 0T  closure 

spaces is characterized by Deses et al. [17] and a cartesian closed 
topological hull and quasitopos hull of the construct Cls of closure spaces 
is constructed by Claes et al. (see [15] and [16]). 

Recently, in [11], the characterization of each of the various notions 
of connected and 2,1,0, =iTi  closure spaces are given and examined 

how these generalizations are related. 

The main goal of this paper is to study each of the separation 
properties 2,1,0, =iTi  at a point p in the topological category of closure 

spaces. In addition, we will investigate the relationships between 
separation properties at a point p in this category. 

2. Preliminaries 

Recall, [1], that a functor Set→E:U  is said to be topological, or 
that E  is a topological category over Set, the category of sets, if U is 
concrete (i.e., faithful and amnestic (i.e., if ( ) idfU =  and f is an 

isomorphism, then idf = )), has small (i.e., set) fibers, and is such that 

every U-source has an initial lift or, equivalently, is such that each U-
sink has a final lift. 

The categorical terminology is that of [1]. 
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A closure space ( )C,X  is a pair, where X is a set and C  is a subset of 

the power set ( )XP  satisfying the conditions that X and 0/  belong to C  

and that C  is closed for arbitrary unions. A function ( ) ( )DC ,,: YXf →  

between closure spaces ( )C,X  and ( )D,Y  is said to be continuous if 

( ) C∈− Df 1  whenever .D∈D  Cls is the category with closure spaces as 

objects and continuous maps as morphisms [17]. 

Cls is a topological category [19] and Top, the category of topological 
spaces, is embedded in Cls as a full bicoreflective subconstruct [15]. 

Note that a source { ( ) ( ) }IiYXf iii ∈→ ,,,: CC  is initial in Cls iff 

=C { ( ) }iiii
Ii

UUfUXU C∈=⊂ −

∈
,: 1U  [23]. 

Similarly, an epi sink ( ) ( )CC ,,: XYf iii →  is final in Cls iff 

{ ⊂= UC ( ) ,: 1
ii UfX C∈−  for all }.Ii ∈  

In particular: 

(1) The embeddings YXf →:  are the injective maps such that a 
subset of X is open iff it is inverse image by f of an open set of Y. 

(2) Let ( ){ }iiX C,  be a collection of closure spaces and X be the 

product of the sets ,iX  i.e., .ii XX ∏=  The product structure on X is   

the class { ( ) }.,: 1
iiii

Ii
UUUXU CC ∈π=⊂= −

∈
U  

(3) ( )C,X  is a discrete space ( )XP=C  and it is an indiscrete space 

{ }.0, /= XC  

3. Separation Properties at p 

Let B be a set and .Bp ∈  Let BB p  be the wedge at p [5], i.e., two 

disjoint copies of B identified at p, or in other words, the pushout of 
Bp →1:  along itself (where 1 is a terminal object in Set). More 
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precisely, if 1i  and BBBi p→:2  denote the inclusions of B as the 

first and the second factor, respectively, the pipi 21 =  is a pushout 

diagram. A point x in BB p  will be denoted by ( )21 xx  if x is in the first 

(resp., the second) component of .BB p  Note that .21 pp =  

The principle p-axis map 2: XXXA pp →  is defined by ( ) =1xAp  

( )px,  and ( ) ( ).,2 xpxAp =  The skewed p-axis map 2: BBBS pp →  

is given by ( ) ( )xxxSp ,1 =  and ( ) ( ).,2 xpxSp =  The fold map at ,p  

BBB pp →∇ :  is given by ( ) xxip =∇  for 2,1=i  [5] or [6]. 

Note that the maps ,, pp SA  and p∇  are the unique maps arising 

from the above pushout diagram for which ( ) ,:, 2
1 BBpidiAp →=  

( ) ( ) ( ) ,:,,:,,:, 2
2

2
1

2
2 BBidpiSBBididiSBBidpiA ppp →=→=→=  

and ,2,1, ==∇ jidijp  respectively, where BBid →:  is the identity 

map and BBp →:  is the constant map at p. 

The infinite wedge product Bp
∞  is formed by taking countably many 

disjoint copies of B and identifying them at p. Let K××=∞ BBB  be the 

countable cartesian product of B. Define ∞∞∞ → BBA pp :  by 

( ) ( ),,,,,,, KK ppxppxA ip =∞  where ix  is the i-th component of the 

infinite wedge and x is in the i-th place in ( )KK ,,,,,, ppxpp  and 

BBpp →∇ ∞∞ :  by ( ) xxip =∞  for all i, [5] or [6]. 

Note, also, that the map ∞
pA  is the unique map arising from the 

multiple pushout of Bp →1:  for which ( )KK ,,,,,,, pidppppiA jp =∞  

,: ∞→ BB  where the identity map, id, is in the j-th place. 
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Let Set→E:U  be topological and X an object in E  with ( ) .BXU =  

Let M be a non-empty subset of B. We denote by MX  the final lift of 

the epi U-sink ( ) ( ) { },\: ∗=→= UMBMBBXUq  where q is the 

epi map that is the identity on MB \  and identifying M with a point ∗  
[5]. 

Baran [5] introduced the definition of various separation properties 
for arbitrary topological category over sets. Moreover, he defined the 
notions of closed points, closed objects, and strongly closed objects. 

Definition 3.1 (cf. [5] and [6]). Let Set→E:U  be a topological 
functor, D is the discrete functor which is a left adjoint of XU ,  an object 

in ,E  and p a point in .BUX =  

(1) X is 0T  at p iff the initial lift of the U-source { →BBA pp :  

( ) 22 BXU =  and },: BUDBBB pp =→∇   is discrete. 

(2) X is 0T ′  at p iff the initial lift of the U-source { UBBid p →:  

( ) BBXX pp  =  and }BUDBBB pp =→∇ :  is discrete, where 

XX p  is the wedge in E  i.e. the final lift of the U-sink { =UXii :, 21  

},BBB p→  where 21, ii  denote the canonical injections. 

(3) X is 1T  at p iff the initial lift of the U-source { UBBS pp →:  

( ) 22 BX =  and }BUDBBB pp =→∇ :  is discrete. 

(4) X is 2TreP  at p iff the initial lift of the U-source { →BBS pp :  

( ) }22 BXU =  and the initial lift of the U-source { ( )2: XUBBA pp →  

}2B=  agree. 

(5) X is 2TreP ′  at p iff the initial lift of the U-source { →BBS pp :  

( ) }22 BXU =  and the final lift of the U-sink { }BBBUXii p→=:, 21  

agree. 
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(6) X is 2T  at p iff X is 0T  at p and 2TreP  at p. 

(7) X is 2T ′  at p iff X is 0T ′  at p and 2TreP ′  at p. 

Theorem 3.2 (cf. [5]). For the category of topological spaces, we have 

(1) 0T  at p is equivalent to 0T ′  at p and they both reduce to the 

following (called 0T  at p): for each point x distinct from p, there exists a 

neighbourhood of x missing p or there exists a neighbourhood of p missing x. 

(2) 2TreP  at p is equivalent to 2TreP ′  at p and they both reduce to the 

following (called 2reTP  at p): for each point x distinct from p, if the set 

{ }px,  is not indiscrete, then there exist disjoint neighbourhoods of x and p. 

(3) 2T  at p is equivalent to 2T ′  at p and they both reduce to the 

following (called 2T  at p): for each point x distinct from p, then there exist 

disjoint neighbourhoods of x and p. 

Theorem 3.3. Let ( )C,X  be a closure space and .Xp ∈  The space X 

is 0T  at p iff X is a singleton. 

Proof. Assume that ( )C,X  is 0T  at p. Let px ≠  and .Xx ∈  Then 

{ } ( ),1 XXPx p∈  where ( )XXP p  is the discrete structure on 

.XX p  Assume also that 2C  is the product structure on 2X  and 

,2C∈W  then we get { }( ) ( ) { }.1
11 xWAx pp =∇ −− U  Since ( ) ( ) WpxxAp ∈= ,1  

and ,2C∈W  we have C∈MN ,  such that ( ) ( ) ( )XNMNW ×=ππ= −− 1
2

1
1 U  

( ).MX ×U  On the other hand, if ,px ≠  then we find 

{ }( ) =∇− xp
1 { }., 21 xx  However, since we get { } { }( ) ( )WAxx pp

11
1

−−∇= U  

supset { },, 21 xx  which is impossible. Hence, we get { }.pX =  

The other side of the implication is trivial.   

Theorem 3.4. Let ( )C,X  be a closure space and .Xp ∈  The space X 

is 0T ′  at p iff X is a singleton. 
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Proof. Let ( )C,X  be 0T ′  at p and ., Xpx ∈  Since ( )C,X  is 0T ′  at p 

we have { ( )}.1 XXPx p∈  Assume that 2C  is the product structure on 

2X  and ,2C∈W  then we get { }( ) ( ) { }.1
11 xWidx pp =∇ −− U  Since ( ) 11 xxid =  

( ) Wpx ∈= ,  and ,2C∈W  there exist C∈MN ,  such that ( )NW 1
1
−π=  

( ) ( ) ( ).1
2 MXXNM ××=π− UU  However, we find { }( ) { },, 21

1 xxxp =∇−  

and { } { }( ) ( )WAxx pp
11

1
−−∇= U  supset { },, 21 xx  which is a contradiction. 

Therefore, { }.pX =  

The other side of the implication is trivial.   

Theorem 3.5 (cf. [11]). Let ( )C,X  be a closure space and .Xp ∈  

( )C,X  is 1T  at p iff { }.pX =  

Proof. Suppose ( )C,X  is 1T  at p and { }.pX ≠  Then there exists 

Xx ∈  with .px ≠  Since ( )C,X  is 1T  at { } { }( ) ( ),, 11
1 WSxxp pp

−−∇= U  

where 2C∈W  and 2C  is the product structure on .XX ×  Note that 

{ } { }( ) ( ) { }( ) { },, 21
111

1 xxxWSxx ppp =∇⊃∇= −−− U  which is a contradiction. 

Hence, { }.pX =  

Conversely, let { }.pX =  Note that the only closure structure on X is 

given by { }{ } ( ).,0 XPpC =/=  It follows from Definition 3.1 that ( )C,X  is 

1T  at p.   

Remark 3.6. Let BE →:U  be a topological functor. It was shown 

by Baran [9] that every indiscrete object in E  is .2TreP  

Theorem 3.7. Let ( )C,X  be a closure space and ( )C,. XXp ∈  is 

2TreP  at p iff ( )C,X  is an indiscrete closure space. 

Proof. If ( )C,X  is an indiscrete, then ( )C,X  is 2TreP  at p since 

Remark 3.6. 
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Assume that ( )C,X  is 2TreP  at p and X contains more than one 

element. In fact, xp ≠  and .Xx ∈  Assume also that { } XxpN ⊂= ,  

and the induced structure on N is given by { }.: CC ∈= UUNN I  We 

will show that ( )C,N  is 2TreP  only when NC  is indiscrete. There are 

four cases. 

Case 1. If { },0, /= NNC  then ( )C,X  is 2TreP  at p since Remark 3.6. 

Case 2. If { }{ },,0, pNN /=C  then the product structure on 2N  is 

{ { } { } { }( ) { }( )} { {( ),,,0,,,,0, 22
2 ppNpNNppNNpNN /=××××/= UC  

( )} ( ) ( ){ } ( ) ( ) ( ){ }}.,,,,,,,,,,, pxxppppxppxp  Suppose that 2NXNW C∈×=  

and ( ) { }( ) { }.1
11 ppNSWSU pp =×== −−  However, there is no W ′  in    

2NC  that gives the equality ( ) ( ).11 WAWS pp ′= −−  In fact,                        

( ) { { } { }}.,,,0, 121
1

2 pxpNNS pNp /=− C  On the other hand, ( ) =−
2

1
NpA C  

{ { } { }}.,,,,0, 1121 xpxpNN p /  Thus, ( )C,X  is not 2TreP  at p. 

Case 3. If { }{ },,0, xNN /=C  then the product structure on 2N  is 

{ { } { } { }( ) { }( )} { {( ),,,0,,,,0, 22
2 pxNxNNxxNNxNN /=××××/= UC

 ( )} ( ) ( ){ } ( ) ( ) ( ){ }}.,,,,,,,,,,, xpxxpxxpxxxx  Similar to Case 2, we 

obtain ( ) { { } { }}211
1 ,,,0,2 xxxNNS pNp /=− C  and ( ) { ,2

1 NNA pNp =− C  

{ } { } { }}.,,,,0 2112 xxxx/  Therefore, ( )C,X  is not 2TreP  at p. 

Case 4. If { } { }{ },,,0, xpNN /=C  then the product structure on 2N  is 

{ { } { } { }( ) { }( ) { } { },,,,,,0,2
2 xNNxpNNppNNpNN ××××××/= UC

 ({ } ) ( { })}.xNNx ×× U  When we consider { }pNW ×=  we get ( ) == − WSU p
1  

( ) { },1
1 ppNSp =×−  but there is no W ′  in 2NC  which gives the equality 

( ) ( ).11 WApNS pp ′=× −−  In fact, ( ) { { } { },,,,,0, 1121
1

2 xpxpNNA pNp /=− C  

{ } { } { }}.,,, 2121 xxxx  Hence, ( ) ( ).22
11

NpNp AS CC −− =/  
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In general, let X have at least two elements and ( )C,X  is not 

indiscrete. Suppose also that Xxp ∈,  and .C∈U  If { }xU =  and       

=W ( ) ,21
2 C∈×=π− UXU  then ( ) { }1

1 pWSp =−  but we obtain ( ) =− WAp
1  

{ }.,,, 211 Kxxp  Hence ( ) ( ).2121 CC −− ≠ pp AS  In addition, if { }xU =  and 

( ) ,21
2 C∈×=π= − UXUW  then ( ) { }., 21

1 xxWSp =−  However, ( ) { }.1
1 xWAp =−   

Therefore ( ) ( ).2121 CC −− ≠ pp AS  We get similar results for the rest of the 

subsets of X since they are unions of these sets. Therefore ( )C,X  is not 

2TreP  at p unless it is indiscrete.   

Theorem 3.8. Let ( )C,X  be a closure space and ( )C,. XXp ∈  is 

2TreP ′  at p iff ( )C,X  is an indiscrete closure space. 

Proof. Let ( )C,X  be 2TreP ′  at p. It is trivial if 0/=X  or { }.pX =  

Assume that X contains at least two elements and that { } ., XxpN ⊂=  

The subspace structure on N is given by { }CC ∈= UUNN :I  and the 

product structure on 2N  is .2NC  The final structure on NN p  

obtained using the canonical injections 1i  and NNNi p→:2  is 

{ ( ) Np UiNNU CCN ∈⊂= −∗ 1
1:  and ( ) }.2 N

i Ui C∈−  We will find the 

condition that gives ( ) .2
1 ∗− = NNpS CC  There are four cases. 

Case 1. If { },0, /= NNC  then clearly ( ) { } .0,2
1 ∗− =/= NpNp NNS CC   

Hence, ( )C,X  is 2TreP ′  at p. 

Case 2. If { }{ },,0, pNN /=C  then the product structure on 2N           

is { { } { } { }( ) { }( )}pNNppNNpNN ××××/= U,,,0,2
2C  and we get 

( ) { { } { }}.,,,0, 121
1

2 pxpNNS pNp /=− C  On the other hand, we find 

=∗
NC { { } { } { }}.,,,,,0, 11121 pxpxpNN p /  Therefore, since ( )2

1
NpS C−  

and ∗
NC  are different and ( )NN C,  is not 2TreP ′  at p. 
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Case 3. If { }{ },0, xNN /=C  then the product structure on 2N             

is { { } { } { }( ) { }( )}xNNxxNNxNN ××××/= U,,,0,2
2C  and we find 

( ) { { } { }}211
1 ,,,0,2 xxxNNS pNp /=− C  However, the final structure is 

∗
NC { { } { }}.,,0, 21 xxNN p /=   Thus ( ) ∗− ≠ NCC 2

1
NpS  and ( )NN C,  is 

not 2TreP ′  at p. 

Case 4. If { } { }{ },,,0, xpNN /=C  then the product structure on 2N  is 

{ { } { } { }( ) { }( ) { } { },,,,,,0,2
2 xNNxpNNppNNpNN ××××××/= UC  

({ } ) { }( )}.xNNx ×× U  We have ( ) { { } { } { },,,,,0, 1121
1

2 xpxpNNS pNp /=− C  

{ }}., 21 xx  On the other hand, we get { { },,,0, 21 xpNN pN /=∗ C  

{ } { } { } { }}.,,,, 12111 pxxxp  Hence ( ) ,2
1 ∗− ≠ NNpS CC  and so ( )NN C,  is 

not 2TreP ′  at p. 

In general, suppose that X contains at least two elements. Then 2C  is 

the product structure on 2X  and { ( ) CC ∈⊂= −∗ UiXXU p
1

1:  and 

( ) }C∈− Ui 1
2  is the final structure on XX p  obtained by using 

canonical injections 1i  and .:2 XXXi p→  If ( )C,X  is an indiscrete 

space, then since ( ) { } ,0,2
1 ∗− =/= NpNp NNS CC   we easily conclude that 

( )C,X  is 2TreP ′  at p. 

Assume that ( )C,X  is not indiscrete. Let Xxp ∈,  and .C∈U                 

If { },pU =  then we get { { } { } { } { }}.,,,0, pppXXpXX pppp  /=∗C  

However, ( )21 C−
pS  does not contain { }1x  so ( ) .21 ∗− ≠ CCpS  On the other 

hand, if { },xU =  then we have { { } { },,,0, xXXxXX ppp  /=∗C  

{ } { }}.xx p  However, ( ) { }21
21 , xxSp =− C  and hence ( ) .21 ∗− ≠ CCpS  

Since the rest of the subsets of X are unions of these sets we obtain 
similar results. Hence ( )C,X  is not 2TreP  at p unless it is indiscrete.   
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Theorem 3.9. Let ( )C,X  be a closure spaces. ( )C,X  is 2T  or 2T ′  at p 

iff X is a singleton or the empty set. 

Proof. The proof is straightforward.   

4. Conclusion 

Various generalizations of separation properties for an arbitrary 
topological category over Set were given by Baran [5] in 1992 and 
recently, characterization of each of the separation properties ,iT  

2,1,0=i  at a point p is given and relationships are examined in the 

topological category of Cauchy spaces by Kula [25]. In this paper, we 

found that separation properties 0T  and 0T ′  at p equivalent in the 

category of closure spaces. Similarly, we showed that 2TreP  and 2TreP ′  

at p are equivalent in this category. 
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