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Abstract 

The paper contains a brief description of Yamasaki’s remarkable investigation 
[19] of the relationship between Moore-Yamasaki-Kharazishvili type measures 
and infinite powers of Borel diffused probability measures on R. More precisely, 
we give Yamasaki’s proof that no infinite power of the Borel probability 
measure with a strictly positive density function on R has an equivalent Moore-
Yamasaki-Kharazishvili type measure. A certain modification of Yamasaki’s 
example is used for the construction of such a Moore-Yamasaki-Kharazishvili 
type measure that is equivalent to the product of a certain infinite family of 
Borel probability measures with a strictly positive density function on R. By 
virtue of the properties of equidistributed sequences on the real axis, it is 
demonstrated that an arbitrary family of infinite powers of Borel diffused 
probability measures with strictly positive density functions on R is strongly 
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separated and, accordingly, has an infinite-sample well-founded estimator of the 
unknown distribution function. This extends the main result established in [20]. 

1. Introduction 

Let µ  and ν  be non-trivial finite-σ  measures on a measurable space 

( )., MX  The measures µ  and ν  are called orthogonal if there is a 

measurable set ME ∈  such that ( ) 0=µ E  and ( ) .0\ =EXν  The 

measures µ  and ν  are called equivalent if and only if the following 

condition: 

( ) ( ( ) ( ) )( )00 =⇔=µ→∈∀ EEMEE ν  

is satisfied. 

It is well-known that the following facts hold true in an n-

dimensional Euclidean vector space ( ):Nnn ∈R  

Fact 1.1. Let µ  be a probability Borel measure on R with a strictly 

positive continuous distribution function and nλ  be a Lebesgue measure 

defined on the n-dimensional topological vector space .nR  Then the 

measures nµ  and nλ  are equivalent. 

Fact 1.2. Let ( ) n≤≤µ kk 1  be a family of Borel probability measures on 

R with strictly positive continuous distribution functions and nλ  be a 

Lebesgue measure defined on the n-dimensional topological vector space 

.nR  Then the measures kk
µ∏ =

n
1  and nλ  are equivalent. 

Fact 1.3. Let 1µ  and 2µ  be Borel probability measures on R with 

strictly positive continuous distribution functions. Then the measures n
1µ  

and n
2µ  are equivalent. 
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Fact 1.4. Let ( ) n≤≤µ kk 1  be a family of Borel probability measures on 

R with strictly positive continuous distribution functions. Then the 

measures n
kµ  and n

lµ  are equivalent for each .1 nl ≤≤≤ k  

The proof of the above mentioned facts employs the following simple 
lemma, which is well known in the literature. 

Lemma 1.1. Let kµ  and kν  be equivalent non-trivial finite-σ  Borel 

measures on the measurable space ( )kk MX ,  for .1 n≤≤ k  Then the 

measures kk
µ∏ =

n
1  and kk

ν∏ =
n

1  are equivalent. 

In order to obtain the infinite-dimensional versions of Facts 1.1-1.2, 
we must know what measures in infinite-dimensional topological vector 

spaces can be taken as partial analogs of the Lebesgue measure in nR  
( ).Nn ∈  In this direction, the results of Girsanov and Mityasin [5] and 
Sudakov [16] on the nonexistence of nontrivial translation-invariant 

finite-σ  Borel measures in infinite-dimensional topological vector spaces 
are important. These authors assert that the properties of finiteness-σ  
and of translation-invariance are not consistent. Hence one can weaken 
the property of translation-invariance for analogs of the Lebesgue 
measure and construct nontrivial finite-σ  Borel measures which are 
invariant under everywhere dense linear manifolds. We wish to make a 
special note that Moore [12], Yamasaki [19], and Kharazishvili [9] give 
the constructions of such measures in an infinite-dimensional Polish 

topological vector space NR  of all real-valued sequences equipped with 

product topology, which are invariant under the group ( )NR  of all 
eventually zero real-valued sequences. Such measures can be called 

Moore-Yamasaki-Kharazishvili type measures in .NR  Using 
Kharazishvili’s approach [9], it is proved in [3] that every infinite-
dimensional Polish linear space admits a finite-σ  non-trivial Borel 
measure that is translation invariant with respect to a dense linear 
subspace. This extends a recent result of Gill et al. [4] on the existence of 
such measures in Banach spaces with Schauder bases. 
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In this paper, we focus on the question whether Facts 1.1-1.2 admit 
infinite-dimensional generalizations in terms of Moore-Yamasaki-

Kharazishvili type measures in .NR  To this end, our consideration will 
involve the following problems: 

Problem 1.1. Let µ  be a probability Borel measure on R with a 

strictly positive continuous distribution function and λ  be a Moore-

Yamasaki-Kharazishvili type measure in .NR  Are the measures Nµ  and 

λ  equivalent? 

Problem 1.2. Let ( ) N∈µ kk  be a family of Borel probability measures 

on R with strictly positive continuous distribution functions and λ  be a 

Moore-Yamasaki-Kharazishvili type measure in .NR  Are the measures 

kk
µ∏ ∈N  and λ  equivalent? 

Concerning Facts 1.3-1.4, it is natural to consider the following 
problems: 

Problem 1.3. Let 1µ  and 2µ  be Borel probability measures on R 

with strictly positive continuous distribution functions. Are the measures 
N
1µ  and N

2µ  equivalent? 

Problem 1.4. Let ( ) Iii ∈µ  be a family of all Borel probability 

measures on R with strictly positive continuous distribution functions. 

Setting ( ) ( ),dom: N
iIi

NRS µ= ∈∩  where N
iµ  denotes a usual completion 

of the measure ( ),IiN
i ∈µ  does there exist a partition ( ) IiiD ∈  of NR  

into elements of the ( )NRSalgebra-σ  such that ( ) 1=µ i
N
i D  for each 

Ii ∈ ? 

Problems 1.3-1.4 are not new and have been investigated by many 
authors in more general formulations. In this direction, we should 
specially mention the result of Kakutani [8] (see Theorem 4.3) stating 
that if one has equivalent probability measures iµ  and iν  on the 
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iLalgebra-σ  of subsets of a set ",2,1, =Ω ii  and if µ  and ν  denote, 

respectively the infinite product measures iNi µ∏ ∈
 and iNi ν∏∈

 on the 

infinite product algebra-σ  generated on the infinite product set ,Ω  then 

µ  and ν  are either equivalent or orthogonal. Similar dichotomies have 

revealed themselves in the study of Gaussian stochastic processes. 
Cameron and Martin [1] that if one considers the measures induced on a 
path space by a Wiener process on the unit interval, then, if the variances 
of corresponding processes are different, the measures are orthogonal. 
Results of this kind were generalized by many authors (cf. [2], [6] and 
others). Veršik [17] proved that a group of all admissible translations (in 
the sense of quasiinvariance) of an arbitrary Gaussian measure in an 
infinite-dimensional separable Hilbert space is a linear manifold. 

For study of the general problem of equivalence and singularity of 
two product measures was carried out by various authors using different 
approaches, among which are the strong law of large numbers, the 
properties of the Hellinger integral [7], the zero-one laws [11] and so on. 
In this paper, we propose a new approach for the solution of Problems 
1.3-1.4, which uses the properties of uniformly distributed sequences [10]. 

In Sections 2-3, we give solutions of Problems 1.1-1.2 which are due 
to Yamasaki [19]. In Section 4, we give solutions of Problems 1.3-1.4. 

2. Negative Solution of the Problem 1.1 

A negative solution of Problem 1.1 is contained in the following: 

Fact 2.1 ([19], Proposition 2.1, p. 696). Let ( )xf  be a measurable 

function on 1R  which satisfies ( ) 0>xf  and ( ) .1=∫
∞+

∞−
dxxf  Let µ  be 

the stationary product measure of f ( ( ) )iii dxxfd ∏∞
=

=µ 1.,i.e  and ( )NR  

be a linear vector space of all eventually zero real-valued sequences. 

Then µ  is ( )NR -quasi-invariant but µ  has no equivalent Moore-

Yamasaki-Kharazishvili type measure. 
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Proof. As proved in [14], the stationary product measure µ  is      

( ) ergodic.-NR  Let ∑  be the permutation group on the set of all natural 

numbers { } ∑= .,2,1 …N  can be regarded as a transformation group 

on ,NR  and µ  is invariant.-∑  Let ∑0  be the subgroup of ∑  

generated by all transpositions (of two elements of N). ∑0  consists of 

such a permutation ∑∈σ  that satisfies ( ) ii =σ  except finite numbers 

of .Ni ∈  As shown in [14], the measure µ  is ergodic.-0∑  

Now, we shall derive a contradiction assuming that µ  has an 

equivalent ( ) invariant-NR  finite-σ  measure ν.  Since ,ν≈µ  where µ  is 

invariant-0∑  and ergodic,-0∑  and ν  is invariant,-0∑  then we have 

νc=µ  for some constant .0>c  Thus, the ( ) invariance-NR  of ν  implies 

that of ,µ  which is a contradiction. 

Therefore, it suffices to prove that ν  is invariant,-0∑  namely, for 

each ,,0 νντ =∈σ σ∑  where 

( ) ( ( )),1 BB −
σ σ= νντ   (2.1) 

for each ( ).NRB B∈  Since ,µ=µστ  we have .νντ ≈σ  On the other 

hand, ν  is ( ) ergodic-NR  because µ  is such. Therefore, if ντσ  is         

( ) invariant,-NR  then we have νντ σσ = c  for some constant .0>σc  In 

particular, for a transposition l=σσ 2,  implies ,2 lc =σ  hence .1=σc  

This means that ν  is invariant under any transposition. Since ∑0  is 

generated by the set of all transpositions, we have proved the 

invariance-0∑  of .ν  
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To complete the proof of Fact 2.1, it remains only to prove that ντσ  is 
( ) invariant.-NR  Since ν  is ( ) invariant,-NR  we have νντ =x  for any 

( ).NR∈x  Therefore, 

( ) ( ( ) ).ντνττ σσ =→∈∀ xxx NR   (2.2) 

However, we can easily show ,νττνττ σσσ = xx  so (2.2) implies that        

στ  is ( ( ) ) .invariant-NRσ  Since σ  maps ( )NR  onto ( ),NR  namely, 

( ( ) ) ( )NN RR =σ  we have proved the ( ) invariance-NR  of .ντσ   

3. Particular Solution of Problem 1.2 

Remark 3.1. If in the formulation of Problem 1.2 we have that 
nµ=µk  for each ,, Nn ∈k  then, following Fact 2.1, the answer to the 

question posed in Problem 2.1 is no. 

Example 3.1 ([13], Section 1, p. 354). Let NR  be the topological 
vector space of all real-valued sequences equipped with the Tychonoff 

topology. Let us denote by ( )NB R  the algebra-σ  of all Borel subsets in 

.NR  

Let ( ) Niia ∈  and ( ) Niib ∈  be sequences of real numbers such that 

( ) ( ).ii baNii <→∈∀  

We put 

( ),0 i
ni

nnA ∆×××= ∏
>

RR "  

for ,Nn ∈  where 

( ) ( [ [).;& iiii baNii =∆=→∈∀ RR  

We put also 

.i
Ni
∆=∆ ∏

∈
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For an arbitrary natural number ,Ni ∈  consider the Lebesgue 

measure iµ  defined on the space iR  and satisfying the condition 

( ) .1=∆µ ii  Let us denote by iλ  the normed Lebesgue measure defined 

on the interval .i∆  

For an arbitrary ,Nn ∈  let us denote by nν  the measure defined by 

,
1

i
ni

i
ni

n λ×µ= ∏∏
>≤≤

ν  

and by nν  the Borel measure in the space NR  defined by 

( ) ( ( ) ( ) ( )).nnn
N AXXBXX ∩νν =→∈∀ R  

Note that (see [13], Lemma 1.1, p. 354) for an arbitrary Borel set 
NX R⊆  there exists a limit 

( ) ( ).lim XX nn
νν

∞→∆ =  

Moreover, the functional ∆ν  is a nontrivial finite-σ  measure defined on 

the Borel algebra-σ  ( ).NB R  

Recall that an element Nh R∈  is called an admissible translation in 
the sense of invariance for the measure ∆ν  if 

( ) ( ( ) ( ) ( )).XhXBXX N
∆∆ =+→∈∀ ννR  

We define 

{ }.forntranslatioadmissibleanis&: ∆∆ ∈= νhhhG NR  

It is easy to show that ∆G  is a vector subspace of .NR  

We have the following: 
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Lemma 3.1 ([13], Theorem 1.4, p. 356). The following conditions are 
equivalent: 

(1) ( ) ,,, 21 ∆∈= Gggg "  

(2) ( ) ( ( ) ).1ln convergentisab
gseriestheNnn

ii
i

ni
gg

g
−

−→∈∃ ∑
≥

 

Let ( )NR  be the space of all finite sequences, i.e., 

( ) {( ) ( ) { } }.0card& 0<≠∈= ∈∈ i
N

NiiNii
N gigg RR  

It is clear that, on the one hand, for an arbitrary compact infinite-
dimensional parallelepiped [ ],, kk

k
ba

N
∏
∈

=∆  we have 

( ) .∆⊂ GNR  

On the other hand, ( ) 0\ /≠∆
NG R  since an element ( ) Niig ∈  defined by 

( ) ( ( { } ( ))),
2

exp1 iii
ii

i ababgNii −×
−

−−=→∈∀  

belongs to the difference ( ).\ NG R∆  

It is easy to show that the vector space ∆G  is everywhere dense in 
NR  with respect to the Tychonoff topology since ( ) .∆⊂ GNR  

Below we present an example of the product of an infinite family of 
Borel probability measures on R with strictly positive continuous 
distribution functions and a Moore-Yamasaki-Kharazishvili type 

measure in ,NR  such that these measures are equivalent. 

Let ( ) Nnnc ∈  be a sequence of positive numbers such that .0 lcn <<  

On the real axis R, for each n consider a continuous function ( )xfn  which 

satisfies: 
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( ) ( ) ,1,10 =<< ∫
∞+

∞−
dxxfxf nn  

( ) [ ].1,0for ∈= xcxfn k  

Such a function ( )xfn  exists certainly for any .Nn ∈  

For ,Nn ∈  let us denote by nµ  a Borel probability measure on R 

defined by the distribution density function .nf  

Fact 3.1. If ,0>∏ ∈ nNn c  then the measures nNn µ∏ ∈
 and [ ]N1,0ν  

are equivalent. 

Proof. By the Fubini theorem, one can easily prove that the measure 

nNn µ∏ ∈
 is ( ) iant.quasiinvar-NR  According to [14], every product 

measure on NR  is ( ) ergodic.-NR  Therefore, ,nNn µ∏ ∈
 hence [ ] ,1,0 Nν  

too is ( ) ergodic.-NR  

For ( ) ,N
nxx R∈=  define a function ( )xf  by 

( ) ( ).xfxf n
Nn
∏
∈

=   (3.1) 

Since ( ) ,10 << nxf  the partial product decreases monotonically, so that 

the infinite product in (3.1) exists certainly. If ,nAx ∈  then [ ]1,0∈kx  

for ,n>k  so we have 

( ) ( ) .0
1

>= ∏∏
>=
k

k
kk

k

cxfxf
n

n
 

Thus ( )xf  is positive on ,nA  hence positive on ,nNn A∈∪  too. On the 

other hand, since [ ] ( ) ,0\1,0 =∈ nNn
N AN ∪Rν  we see that ( )xf  is 

positive for [ ] almost-1,0 Nν  all x. 
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Now, define a measure ν′  on NR  by 

( ) ( ) [ ] ( ),1,0 xdxfX N
X

νν ∫=′  

for ( ).NX RB∈  

Let us show that .ν′=µ∏ ∈ nNn  For this it suffices to show that for 

each ( ),nRA B∈  we have 

( { } ) ( { } ).,,1\,,1\ nN
n

Nn

nN AA "" RR ×µ=×′ ∏
∈

ν  

Indeed, we have 

( { } )nNA ,,1\ "R×′ν  

{ } ( ) [ ] ( )xdxf NnNA 1,0,,1\ ν∫ ×
=

"R
 

( { } )
( ) [ ] ( )xdxf NnN

m AAm 1,0,,1\lim ν∫ ×+∞→
=

"∩ R
 

[ ]
( ) [ ] ( )xdxf N

m
m

nAm 1,01,01
lim ν∫ ∏∏ >+= ××+∞→

=
kk R

 

[ ]
( ) ( )k

k
k

kkk

λ×µ= ∏∏∫
>=××+∞→ ∏∏ >+= m

m

Am
dxf

m
m

n 11,01
lim

R
 

(
[ ]

( ) ) k
k

k
kkk

µλ= ∏∏∫∫
=>×+∞→ ∏∏ >+=

m

mAm
ddxf

m
m

n 11,01
lim

R
 

[ ]
( ) k

k
kk

kk

λ= ∏∏∫
>>

+∞→ ∏ > mm
m

dxf
m 1,0

lim  

( ) k
k

kk
kk

µ× ∏∏∫
==×+∞→ ∏ +=

mm

Am
dxfm

n 111
lim

R
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[ ]
( ) k

k
kk

kk

λ= ∏∏∫
>>

+∞→ ∏ > mm
m

dxf
m 1,0

lim  

( ) ( ) k
k

kk
k

k
k

kk
k k

µ×µ× ∏∏∫∏∏∫
=+===

+∞→ ∏ +=

mm

n

nn

Am
dxfdxf m

n 1111 1
lim

R
 

( ) ( ) ( { } ).lim ,,1\

11

nN

N

nn

m
m

AAAc "R×µ=µ=µ×= ∏∏∏∏
∈==>

+∞→ k
k

k
k

k
k

k
k

 

This ends the proof of Fact 3.1. 

  

Remark 3.2. Let the product-measure kk
µ∏ ∈N  comes from Fact 3.1. 

Then by virtue of Lemma 3.1, we know that the group of all admissible 
translations (in the sense of invariance) for the measure [ ]N1,0ν  is 

{( ) ( ) }.&:1 +∞<∈= ∑ ∈∈∈ kkkkkk xRxxl N
N

NN  Following Fact 3.1, 

the measures kk
µ∏ ∈N  and [ ]N1,0ν  are equivalent, which implies that 

the group of all admissible translations (in the sense of quasiinvariance) 
for the measure kk

µ∏ ∈N  is equal to .1l  

For ( ) ,1lx N ∈∈kk  we set ( ) ( )kkk xXX −µ=ν  for each ( ).RBX ∈  It 

is obvious that kµ  and kν  are equivalent for each .N∈k  For N∈k  and 

,Rx ∈  we put ( ) ( )
( ) .xd
xdx

k

k
k µ

=ρ
ν  Let us consider the product-measures 

k
k

µ=µ ∏
∈N

 and .k
k

νν ∏
∈

=
N

 On the one hand, following our observation, 

the measures µ  and ν  are equivalent. On the other hand, by virtue of 

Kakutani’s well known result (see [8]), since the measures µ  and ν  are 

equivalent, we deduce that the infinite product k
k

α∏
∈N

 is divergent to 

zero, where ( ) ( ).kkkkk xdx
R

µρ=α ∫  In this case, ( ) =xrn  ( )x
n
k

k
ρ∏

=1
 is 
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convergent (in the mean) to the function ( ) ( ),
1

xxr k
k

ρ= ∏
∞

=
 which is the 

density of the measure ν  with respect to ,µ  i.e., 

( ) ( )
( ) .xd
xdxr

µ
= ν  

Remark 3.3. The approach used in the proof of Fact 3.1 is taken from 
[19] (see Proposition 4.1, p. 702). 

In the context of Fact 3.1, we state the following: 

Problem 3.1. Do there exist a family ( ) N∈µ kk  of linear Gaussian 

probability measures on R and a Moore-Yamasaki-Kharazishvili type 

measure λ  in NR  such that the measures k
k

µ∏
∈N

 and λ  are equivalent? 

4. Solution of Problems 1.3-1.4 

We present a new approach for the solution of Problems 1.3-1.4, 
which is quite different from the approach introduced in [8]. Our 
approach uses the technique of the so-called uniformly distributed 
sequences. The main notions and auxiliary propositions are taken from 
[10]. 

Definition 4.1 ([10]). A sequence ( ) Nx ∈kk  of real numbers from the 

interval ( )ba,  is said to be equidistributed or uniformly distributed on an 

interval ( )ba,  if for any subinterval [ ]dc,  of ( ),, ba  we have 

({ } [ ]) ( ) ( ),,,,,#lim 1
21

1 cdabdcxxxn nn
−−= −−

∞→
∩"  

where #  denotes the counting measure. 

Now, let X be a compact Polish space and µ  be a probability Borel 

measure on X. Let ( )XR  be a space of all bounded continuous 

measurable functions defined on X. 
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Definition 4.2. A sequence ( ) Nx ∈kk  of elements of X is said to be 

butedequidistri-µ  or uniformly-µ  distributed on X if for every ( ),Xf R∈  

we have 

( ) .lim
1

1 µ= ∫∑
=

−
∞→

fdxfn
X

n

n k
k

 

Definition 4.3 ([10], Lemma 2.1, p. 199). Let ( ).Xf R∈  Then, for 

almost-Nµ  every sequence ( ) ,N
N Xx ∈∈kk  we have 

( ) .lim
1

1 µ= ∫∑
=

−
∞→

fdxfn
X

n

n k
k

 

Lemma 4.4 ([10], pp. 199-201). Let S be a set of all butedequidistri-µ  

sequences on X. Then we have ( ) .1=µ SN  

Corollary 4.5 ([20], Corollary 2.3, p. 473). Let 1A  be a Lebesgue 

measure on ( ).1,0  Let D be a set of all butedequidistri-1A  sequences on 

( ).1,0  Then we have ( ) .11 =DNA  

Definition 4.6. Let µ  be a probability Borel measure on R with a 

distribution function F. A sequence ( ) Nx ∈kk  of elements of R is said to be 

butedequidistri-µ  or uniformly-µ  distributed on R if for every interval 

[ ] ( ),+∞≤<≤−∞ baba,  we have 

([ ] { }) ( ) ( ).,,,#lim 1
1 aFbFxxban nn

−=−
∞→

"∩  

Lemma 4.7 ([20], Lemma 2.4, p. 473). Let ( ) Nx ∈kk  be an 

butedequidistri-1A  sequence on ( ) F,1,0  be a strictly increasing 

continuous distribution function on R and p be a Borel probability 

measure on R defined by F. Then ( ( )) NxF ∈
−

kk
1  is p-equidistributed on R. 
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Corollary 4.8 ([20], Corollary 2.4, p. 473). Let F be a strictly 
increasing continuous distribution function on R and p be a Borel 

probability measure on R defined by F. Then for a set N
F RD ⊂  of all    

p-equidistributed sequences on R, we have 

(i) {( ( )) ( ) };:1 DxxFD NNF ∈= ∈∈
−

kkkk  

(ii) ( ) .1=F
N Dp  

Lemma 4.9. Let 1F  and 2F  be different strictly increasing continuous 

distribution functions on R, and 1p  and 2p  be Borel probability 

measures on R defined by 1F  and ,2F  respectively. Then there does not 

exist a sequence of real numbers ( ) ,Nx ∈kk  which simultaneously is 

butedequidistrip -1  and .-2 butedequidistrip  

Proof. Assume the contrary and let ( ) Nx ∈kk  be such a sequence. 

Since 1F  and 2F  are different, there is a point R∈0x  such that 

( ) ( ).0201 xFxF ≠  The latter relation is not possible under our 

assumption because ( ) Nx ∈kk  simultaneously is butedequidistri-1p  and 

buted,equidistri-2p  which implies 

( ) (( ] { }) ( ).,,,#lim 0210
1

01 xFxxxnxF nn
=∞−= −

∞→
"∩  

  

The next theorem contains the solution of Problem 1.3. 

Theorem 4.10. Let 1F  and 2F  be different strictly increasing 

continuous distribution functions on R and 1p  and 2p  be Borel 

probability measures on R, defined by 1F  and ,2F  respectively. Then the 

measures Np1  and Np2  are orthogonal. 
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Proof. Let 1FD  and 2FD  denote butedequidistri-1p  and 

butedequidistri-2p  sequences on R, respectively. By Lemma 4.9, we 

know that .021 /=FF DD ∩  By Corollary 4.8, we know that ( ) 111 =F
N Dp  

and ( ) .122 =F
N Dp  This ends the proof of the theorem.   

Definition 4.11. Let { }Iii ∈µ :  be a family of probability measures 

defined on a measure space ( )., MX  Let ( )XS  be defined by 

( ) ( ),dom iIiXS µ= ∈∩  

where iµ  denotes a usual completion of the measure .iµ  We say that the 

family { }Iii ∈µ :  is strongly separable if there exists a partition 

{ }IiCi ∈:  of the space X into elements of the ( )XSalgebra-σ  such that 

( ) 1=µ ii C  for each .Ii ∈  

Definition 4.12. Let { }Iii ∈µ :  be a family of probability measures 

defined on a measure space ( )., MX  Let ( )IS  denote a minimal 

algebra-σ  generated by singletons of I and the ( )XSalgebra-σ  of subsets 

of X be defined by 

( ) ( ),dom iIiXS µ= ∈∩  

where iµ  denotes a usual completion of the measure iµ  for .Ii ∈  We 

say that a ( ) ( )( ) measurable-, ISXS  mapping IXT →:  is a well-

founded estimate of an unknown parameter ( )Iii ∈  for the family 

{ }Iii ∈µ :  if the following condition: 

( ) ( ( { }( ) ))11 =µ→∈∀ − iTIii i  

holds true. 

One can easily get the validity of the following assertion: 
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Lemma 4.13 ([20], Lemma 2.5, p. 474). Let { }Iii ∈µ :  be a family of 

probability measures defined on a measure space ( )., MX  The following 

propositions are equivalent: 

(i) The family of probability measures { }Iii ∈µ :  is strongly 

separable. 

(ii) There exists a well-founded estimate of an unknown parameter i 
( )Ii ∈  for the family { }.: Iii ∈µ  

The next theorem contains the solution of Problem 1.4. 

Theorem 4.14. Let F  be a family of all strictly increasing and 
continuous distribution functions on R and Fp  be a Borel probability 

measure on R defined by F for each .F∈F  Then the family of Borel 

probability measures { }F∈FpN
F :  is strongly separable. 

Proof. We denote by FD  the set of all butedequidistri-Fp  sequences 

on R for each .F∈F  By Lemma 4.9, we know that ∩1FD  02 /=FD       

for each different ., 21 F∈FF  By Corollary 4.8, we know that ( ) 1=F
N
F Dp  

for each .F∈F  Let us F∈0F  and define a family ( ) F∈FFC                 

of subsets of NR  as follows: FF DC =  for { }0\ FF F∈  and 

{ } .\ 00 \ FFF
N

F DRC F∈= ∪  Since FD  is a Borel subset of NR  for each 

,F∈F  we claim that ( )NRSCF ∈  for each { }.\ 0FF F∈  Since N
Fp  

( ) 0\ \ =∈ FF
N DR F∪  for each ,F∈F  we deduce that \\ F∈F

NR ∪  

( ) ( ).dom NN
FFF RSpD =∈ ∈F∩  Since ( )NRS  is an algebra,-σ  we claim 

that ( )N
F RSC ∈0  because ( ) 0\ \ =∈ FF

NN
F DRp F∪  for each F∈F  

( ( )),\,lyequivalent \
N

FF
N RSDR ∈∈F∪  and 

{ } ( ) .\\ 000 \ FFF
N

FFF
N

F DDRDRC ∪∪∪ FF ∈∈ ==  

This ends the proof of the theorem. 

  
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By virtue of the results of Lemma 4.13 and Theorem 4.14, we get the 
following: 

Corollary 4.15. Let F  be a family of all strictly increasing and 
continuous distribution functions on R. Then there exists a well-founded 
estimate of an un-known distribution function ( )F∈FF  for the family of 

Borel probability measures { }.: F∈FpN
F  

Remark 4.16. The validity of Theorem 4.14 and Corollary 4.15 can 
be obtained for an arbitrary family of strictly increasing and continuous 
distribution functions on R. Note that Corollary 4.15 extends the main 
result established in [20] (see Lemma 2.6, p. 476). 

Remark 4.17. The requirements in Theorem 4.14 that all Borel 
probability measures on R are defined by strictly increasing and 
continuous distribution functions on R and the measures under 
consideration are infinite powers of the corresponding measures are 
essential. Indeed, let µ  be a linear Gaussian measure on R whose density 

distribution function has the form ( ) ( ).
2
1 2

2

R∈
π

=
−

xexf
x

 Let xδ  be a 

Dirac measure defined on the Borel algebra-σ  of subsets of R and 

concentrated at ( ).R∈xx  Let D be a subset of NR  defined by 

{( ) }.0lim: 1 ==
∑ =

∞→∈ n
x

xD

n

nN
kk

kk  

It is obvious that D is a Borel subset of .NR  

For ( ) Dx N ∈∈kk  we set ( ) kkk k xNx N
δ=µ ∏ ∈∈

1. Let us consider the 

family of Borel probability measures { } { ( ) ( ) }.: Dx Nx
N

N
∈µµ ∈∈ kkkk

∪  It 

is obvious that it is an orthogonal family of Borel product-measures for 
which Theorem 4.14 fails. Indeed, assume the contrary and let 

                                                      
1Note that ( ) .

NxxN ∈
δ=δ∏ ∈ kkkk
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{ } { ( ) ( ) }DxCC Nx N
∈∈∈ kkkk

:∪  be such a partition of NR  into elements 

of the algebra-σ  ( ) ( ) ( ( ) ) ( )N
xDx

N
NN

RS µµ=
∈∈ ∈ domdom0 ∩∩
kkkk

 that 

( ) ( ( ) ) 1=µ
∈∈ NN xx C
kkkk

 for ( ) Dx N ∈∈kk  and ( ) .1=µ CN  Since ( ) Nx ∈kk  

( ) NxC
∈

∈
kk

 for each ( ) ,Dx N ∈∈kk  we deduce that .0/=CD ∩  This 

implies that ( ) ( ) 0\ =µ≤µ DC NN NR  because by the strong law of 

large numbers we have that ( ) .1=µ DN  The latter relation is a 

contradiction and Remark 4.17 is proved. 

Remark 4.18. By using Glivenko-Canteli theorem, we can obtain the 
solution of Problem 1.4 in more general formulation. More precisely, if F 
is any family of different distribution functions on R and Fp  denotes 

Borel probability measure on R defined by F for each ,F∈F  then the 

family of Borel probability measures { )}F∈∞ FpF :  is strongly 

separated. Indeed, for ,F∈F  we put 

{( ) ( ) ,: ∞
∈∈ ∈= RxxD NNF kkkk  

and 

{ } ( ]( ) ( ) }.0,,,#suplim 1 =−
−∞

∈∞→
xFn

xxx n
Rxn

∩"  

By Glivenko-Canteli theorem, we know that 

( ) .1=∞
FF DP  

Now let show that 021 /=FF DD ∩  for different ., 21 F∈FF  Indeed, 

assume the contrary and let ( ) .21 FFN DDx ∩∈∈kk  Let R∈0x  be such 

a point that ( ) ( ).0201 xFxF ≠  Then for each ,Nn ∈  we get 
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( ) ( )0102 xFxF −  

( ( ) { } ( ]( )) ( ( ) { } ( ]( ))n
xxxxFn

xxxxF nn 01
01

01
02

,,,#,,,# −∞
−−

−∞
−=

∩"∩"  

( ) { } ( ]( ) ( ) { } ( ]( )
n

xxxxFn
xxxxF nn 01

01
01

02
,,,#,,,# −∞

−+
−∞

−≤
∩"∩"  

( ) { } ( ]( ) ( ) { } ( ]( ) .,,,#sup,,,#sup 1
1

1
2 n

xxxxFn
xxxxF n

x
n

x

−∞
−+

−∞
−≤

∈∈

∩"∩"
RR

 

Finally, we get 

( ) ( )0102 xFxF −  

( ) { } ( ]( )
n

xxxxF n
xn

,,,#suplim 1
2

−∞
−≤

∈∞→

∩"
R

 

( ) { } ( ]( ) ,0,,,#suplim 1
1 =

−∞
−+

∈∞→ n
xxxxF n

xn
∩"

R
 

which is the contradiction. Remark 4.18 will be proved if we will use the 
construction used in the proof of Theorem 4.14. 
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