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Abstract 

In this paper, we shall follow Håstad [28], Coppersmith [16, 17], and others to 
describe methods for finding small zeros of polynomial congruences. As an 
application, we study the security of public key cryptosystems. In particular, we 
study the RSA public key cryptosystem by making use of these methods. 
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1. Introduction and Notations 

The purpose of the present note is to give a method for finding small 
roots to polynomial congruence in one or two variables. We shall follow 
technique of Coppersmith [16, 17] as a starting point for many of our 
result. We will introduce the general Coppersmith approach and provide 
a few simple examples. We use a simplified version due to Howgrave-
Graham [30, 31, 32]. 

In our work, we shall use standard notion and write Z  to denote the 
ring of integers, Q  for the field of rationals, and R  for the field of real 
numbers. 

We denote by nZ  (resp., nQ  and nR ) the vector space with elements 
that are n-tuples of elements of Z  (resp., Q  and R ). We endow these 

vector spaces with the Euclidean norm: if ,na R∈  then .22
ii aa ∑=  

We also work with the rings of unvaried polynomials [ ] [ ],, xx QZ  and 

[ ],xR  as well as multivariate polynomials in [ ] [ ],,,, yxyx QZ  and 

[ ]., yxR  

Given a polynomial ( ) ,i
ii xaxg ∑=  we define the norm of ( )xg  by 

( ) .22
ii axg ∑=  Given nonnegative ,R∈X  we define the weighted norm 

of ( )xg  by ( ) ( ) .22 i
ii XaxXg ∑=  Similarly, given a polynomial 

( ) ,, ,,
ji

jiji yxbyxh ∑=  we define the norm of ( )yxh ,  by ( ) =2, yxg  

.2
,, jiji b∑  Given nonnegative ,, R∈YX  we define the weighted norm of 

( )yxh ,  by ( ) ( ) ., 22 i
ii XayYxXh ∑=  

A univariate polynomial is said to be monic when the coefficient of 
the leading term is equal to 1. Of primary importance in this work is the 
notion of a lattice (concept from the geometry of numbers), defined in the 
next section. 
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Let wuuu ,,, 21 …  be linearly independent vectors in an normal         

n-dimensional vector space. The lattice L spanned by ( )21 ,, uu …  is the 

set of all integer linear combinations of .,,1 wuu …  We call w the 

dimension or rank of the lattice L, and that the lattice is full rank when 
.nw =  We alternatively say that L is generated by ( )21 ,, uu …  and that 

( )21 ,, uu …  forms a basis of L. 

We work mostly with lattice in two vector spaces: the set nR  
endowed with the Euclidean norm; and, the set of polynomials in [ ]xR  of 

degree at most ,1−n  endowed with the norm given by =∑ −
=

21
0

i
i

n
i xa  

.21
0 i

n
i a∑ −
=

 

There is a natural isomorphism between these two vector spaces 
given by identifying a polynomial with its coefficients vector, and 
throughout this work switch freely between representations as 
convenient. 

We denote by ( )∗∗
wuu ,,1 …  the vectors obtained by applying the 

Gram-Schmidt orthogonalization process to the vectors .,,1 wuu …  We 

define the determinant of the lattice L as ( ) .:det 1
∗

=∏= i
w
i uL  For 

example, if full rank lattice with basis in ,nR  then the determinant of L 

is equal to the determinant of the ww ×  matrix whose rows are the basis 
vectors .,,1 wuu …  

We note that every nontrivial lattice in R  has infinitely many bases. 
This gives rise to the notion of the quality of a basis for a lattice. The 
notion of quality applied to a lattice depends on the application, but 
usually includes some measure of the lengths or orthogonality of the 
vectors in a basis. 
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The goal of lattice reduction is to find good lattice bases. The theory of 
lattice reduction goes back to the work of Lagrange [36]; Gauss [24]; 
Hermite [29]; and Korkine and Zolotareff [35], who were interested in the 
reduction of quadratic forms. Lattice theory was given its geometric 
foundation in Minkowski’s famous work Geometrie der Zahlen (The 
Geometry of Numbers) [40] in the late nineteenth century. 

Minkowski (see Niven et al. [43]), proved that there is always a basis 

wuu ,,1 …  for a lattice L satisfying iu∏  ( )Lw det⋅γ≤  for some wγ  

that depend only on w (and not on the entries of iu ). However, his proof 

is nonconstructive, and it would be almost a century before the first 
polynomial-time algorithm to compute reduced bases of lattices of 
arbitrary dimension was discovered. This is the celebrated Lenstra-
Lenstra-lovaász lattice basis reduction algorithm. This algorithm is of 
primary importance to the results in this work, and is summarized in 
Lemma 2.1. 

2. Lattices and it Representations 

In order to discuss the running times of algorithms operating on 
lattices, we must describe the representation of lattices given as input to 

these algorithms. Suppose wuu ,,1 …  are vectors in .nZ  The running 

time of an algorithm with input ( )wuu ,,1 …  is parameterized by ,, nw  

and by the largest element of the ,iu  defined by .max:
, ijjirgestla uu =  For 

lattices in ,nQ  the situation is slightly more complex. Suppose we are 

given the vectors wuu ,,1 …  in .nQ  There is some least integer D such 

that wDuDu ,,1 …  are all in .nZ  Then we define the largest element by 

( ).max:
, ijjirgestla Duu =  

We note that all lattices in nR  used in this work are in fact lattices 

in nQ  since they are represented using rational approximations. 
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Lemma 2.1 (The LLL algorithm). Let L be a lattice spanned by 
( ).,,1 wuu …  The LLL algorithm, given ( ),,,1 wuu …  produces a new 

basis ( )wbb ,,1 …  of L satisfying: 

(1) 
2

1
2

2 ∗
+

∗ ≤ ii bb  for all .1 wi ≤≤  

(2) For all i, if ,1
1

∗−
=

∗ µ+= ∑ jj
i
jii bbb  then 2

1≤µ j  for all  j. 

The algorithm performs ( )lwO 4  arithmetic operations, where 

.log rgestlaul =  

We note that an LLL-reduced basis satisfies some stronger 
properties, but those are not relevant to our discussion. 

We denote by ( )nwTLLL ,  the running time of the LLL algorithm on a 

basis ( )wuu ,,1 …  satisfying .log2 nu rgestla ≤  When ( )wbb ,,1 …  is the 

output of the LLL algorithm on a basis for a lattice L, we say that it is an 
LLL-reduced basis. We will make heavy use of the following fundamental 
fact about the first vector in an LLL-reduced basis. 

Lemma 2.2. Let L be a lattice and wbb ,,1 …  be an LLL-reduced 

basis of L. Then 

( ) ( ) .det2
14/1

1 wLb w−≤  

Proof. Since ∗= 11 bb  the bound immediately follows from: 

( )
( )

.2det 4
1

1

−−∗ ⋅≥= ∏
ww

w
i

i
bbL   

In sequence sections, we may also need to bound the length of the second 
vector in an LLL-basis. This is provided in the following lemma: 
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Lemma 2.3. Let L be a lattice and wbb ,,1 …  be an LLL-reduced 

basis of L. Then 

( ) .det2 1
1

4
1

1
−





≤

ww

b
Lb  

Proof. Observe 

( )
( )( )

,2det 4
211

21

−−−

⋅⋅≥=
−∗∗∏

www
i

i
bbbL  

giving us 

( ) .det2 1
1

4
2

1
2

−−





≤∗ ww

b
Lb  

Then the bound follows from 

( ) .2
22

112
1

22122
∗∗∗ ≤+≤+≤ bbbbb   

3. Finding Small Zeros to Univariate 
Polynomial Congruences 

Much of the work described in this work was inspired by the seminal 
work of Coppersmith for finding small solutions to polynomial 
congruences [16]. We use this very effective technique as a starting point 
for many of our results. In subsequent sections, we will apply and extend 
this technique to solve a number of cryptanalytic problems, and discuss 
subtleties in its implementation and use. In this section, we will 
introduce the general Coppersmith approach and provide a few simple 
examples. We use a simplified version due to Howgrave-Graham [30, 31, 
32]. 

Suppose we are giving a polynomial ( )xf  and a real number M, and 

we wish to find a value Z∈0x  for which ( ) ( ).mod00 Mxf ≡  The main 

tool we use is stated in the following simple fact. This has been attributed 
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to many authors. Its first use we are aware of is in the work of Håstad 
[28]; it was later used was used implicitly by Coppersmith [15, 16], and 
stated in nearly the following form by Howgrave-Graham [32]. 

Recall that if ( ) ,i
ixaxh ∑=  then ( ) ( ) .22

i
i

i aXxXh ∑=  

Theorem 3.1. Let ( ) R∈xh  be a polynomial of degree w, and let 

R∈X  be given. Suppose there is some Xx <0  such that 

(1) ( ) ,0 Z∈xh  and for all .wi ≤≤1  

(2) ( ) .1
w

xXh <  

Then ( ) .00 =xh  

Proof. Observe 

( ) ( ) ( ) i
i

ii
i

ii
i

i
i XaX

xXaX
xXaxaxh ∑∑∑∑ ≤≤== 00

00  

( ) ,1<≤ xXhw  

but since ( ) Z∈0xh  we must have ( ) .00 =xh   

Theorem 3.1 suggest we should look for a polynomial ( )xh  of small 

weighted norm satisfying ( ) .0 Z∈xh  To do this, we will build a lattice of 

polynomial related to f and use LLL to look for short vectors in that 
lattice. 

Our first observation is that ( ) Z∈M
xf 0  because ( ) ( ).mod00 Mxf ≡  

Define 

( ) ( ( ) ) .:,
k

k M
xfxxg i

i =  

Observe that ( ) ( ( ) )kk M
xfxxg i

i
0

00, =  for all .0, ≥ki  Furthermore, this is 

true for all integer linear combinations of the ( )., xgi k  The idea behind 
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the Coppersmith technique is to build a lattice L from ( )xXgi k,  and use 

LLL to find a short vector in this lattice. The first vector 1b  returned by 

the LLL algorithm will be a low-norm polynomial ( )xXh  also satisfying 

( ) .0 Z∈xh  If its norm is small enough, Theorem 3.1 would imply 

( ) .00 =xh  Traditional root-finding methods [45] such as Newton-

Raphson would then find .0x  

To use Theorem 3.1 we must have ( ) .1<xXh  Fortunately, Lemma 

2.2 allows us to compute a good bound on the norm of the first vector in 
an LLL-reduced basis. We see 

( )
( )

( ) .12det 24
1

w
xXhwL

www
<⇒<

−−−

 (3.1) 

Usually, the “error term” of 
( )

24
1

2
www

w
−− −

 is insignificant compared to 
( )Ldet  and this condition is simplified as 

( ) ( ) .11det
w

xXhL <⇒  (3.2) 

The determinant of L depends on the choice of polynomials ( )xXgi k,  

defining the lattice. In general, it is a difficult problem to compute the 
determinant of a lattice when the basis has symbolic entries. However, a 
careful choice of basis polynomials ( )xXgi k,  may lead to a lattice with a 

determinant that can be easily computed. Ideally, we will be able to 
choose a basis so that the matrix whose rows are the coefficients vectors 
of ( )xXgi k,  is full-rank and diagonal, with an explicit formula for the 

entries on the diagonal. 

We illustrate this technique with a few examples. 

Example 3.1. A numerical example. 

Suppose we wish to find a root 0x  of the polynomial 

( )10001mod0532428492 ≡+− xx   (3.3) 
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satisfying .170 ≤x  Define 

( ) .10001
53242849:

2 +−= xxxf  

We build a lattice with polynomial 

{ ( ) ( ) ( )}.17,1717,17,17,1 2 xfxfxfx  

Writing this as a matrix gives us 

.

1000117100011756981000117812274491000117303361521000128344976

0100011710001172849100011753240

00100011710001172849100015324

000170

00001

24232222

13121

1211































⋅⋅⋅−⋅⋅⋅⋅−⋅

⋅⋅⋅−⋅⋅

⋅⋅⋅−⋅

−−−−−

−−−

−−−

 

The determinant of this lattice is just the product of the entries on the 
diagonal 

( ) .100.21000117det 4410 −− ⋅≈⋅=L  

Recall we required ( ) ,det γ<L  where 

( )
.106.552 42

5
4

155
−⋅≈=γ

−−−

 

Hence, condition (3.1) is satisfied. We find that the LLL algorithm 
returns the polynomial 

( ) .
10001

725001626251741970691743336941760517 2

234 +−+−−= xxxxxh  

This leads to 

( ) .
10001

7250016154422681915135
2

234 +−+−−= xxxxxh  

The roots of ( )xh  over the reals are { }.413.307,16 …−  We find the only 

integer solution 0x  to Equation (3.3) satisfying 170 ≤x  is .160 =x  
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Example 3.2. Håstad’s original result. 

Suppose we are given a monic polynomial ( )xf  of degree d with 

integer coefficients, along with integers X and M. We wish to find an 
integer 0x  such that Xx <0  and ( ) ( ).mod00 Mxf ≡  An early attempt 

to solve this problem was given by Håstad [28]. 

We take as a basis for our lattice L the polynomials 

{ ( ) ( ) ( ) }.,,,,,1 12
M
XxfXxXxXx d−…  

For instance, when 6=d  this results in a lattice spanned by the rows of 
the matrix in Figure 3.1. 

( )

( )

( )

( )

( )

.

1

:/

:

:

:

:

:

:1

16

5

4

3

2

5

4

3

2









































−−−−−− −MX

X

X

X

X

X

MXxf

Xx

Xx

Xx

Xx

Xx

 

Coppersmith’s lattice for finding small solutions to a polynomial 
congruence. The ”−“  symbols denote nonzero off-diagonal entries whose 

values do not affect the determinant. 

Figure 3.1. Example Håstad lattice. 

The dimension of this lattice is 1+= dw  and its determinant is 

( )
( )

.det 12
1

−
−

= MXL
ww
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To satisfy condition (3.1), we require ( )
( )

.2det 24
1 www

wL
−−−

<  This leads to 

( ) ,1
2
+⋅γ< ddMX a   (3.4) 

where 
2

1
22

1 <γ≤ a  for all d. Hence, when X satisfies bound (3.4), the 

LLL algorithm will find a short vector ( )xXh  satisfying ( ) 00 =xh  and 

( ) .1
d

xXh <  Standard root-finding techniques will recover 0x  from h. 

The running time of this method is dominated by the time to run LLL 
on a lattice of dimension 1+d  with entries of size at most ( ).log MO  

Example 3.3. Coppersmith’s generic result. 

The first major improvement over Håstad’s result came from 
Coppersmith [16]. Coppersmith suggested including powers and shifts of 
the original polynomial in the lattice; as we shall see, this is the reason 
for improved results. We use a presentation by Howgrave-Graham [31]. 
Again, suppose we are given a monic polynomial ( )xf  of degree d with 

integer coefficients, along with integers X and M. We wish to find an 
integer 0x  such that Xx <0  and ( ) ( ).mod00 Mxf ≡  

Let 1>m  be an integer to be determined later. Define 

( ) ( ) .:,
k

k 





= M

xfxxg i
i  

We use as a basis for our lattice L the polynomials ( )xXgi k,  for 

1,,0 −= di …  and .1,,0 −= m…k  For instance, when 3=d  and 3=m  

this result in the lattice spanned by the rows of the matrix in Figure 3.2. 
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( )

( )

( )

( )

( )

( )

( )

( )

( )

.

1

:

:

:

:

:

:

:

:

:

28

27

26

15

14

13

2

2,2

2,1

2,0

1,2

1,1

1,0

0,2

0,1

0,0





















































−−−−−−

−−−−−−

−−−−−

−−−

−−−

−−−

−

−

−

−

−

−

MX

MX

MX

MX

MX

MX

X

X

xXg

xXg

xXg

xXg

xXg

xXg

xXg

xXg

xXg

 

Coppersmith’s lattice for finding small solutions to a polynomial 
congruence. The ”−“  symbols denote nonzero off-diagonal entries whose 

values do not affect the determinant. 

Figure 3.2. Example Coppersmith lattice. 

The dimension of this lattice is mdw =  and its determinant is 

( )
( ) ( )

.det 2
1

2
1 −−−

=
mwww

MXL  

We require ( )
( )

;2det 24
1 www

wL
−−−

<  this leads to 

,2 1
1

2
1

1
1

−
−

−
− −

< ww
m

wMX  

which can simplified to 

,
1 ε−

⋅γ< dMX w  

where ( )1
1
−
−=ε wd

d  and 
2

1
22

1 <γ≤ w  for all w. As we take ∞→m  

we have ∞→w  and therefore .0→ε  In particular, if we wish to solve 

for up to 0
1 ε−

< dMX  for arbitrary ,0ε  it is sufficient to take ,




=
d
kOm  

where { }.log,1min
0

M
ε

=k  
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We summarize this in the following theorem: 

Theorem 3.2 (Univariate Coppersmith). Let a monic polynomial 
( )xf  of degree d with integer coefficients and integer MX ,  be given. 

Suppose 
ε−

< dMX
1

 for some .0>ε  There is an algorithm to find all 
Z∈0x  satisfying Xx <0  and ( ) ( ).mod00 Mxf ≡  This algorithm runs 

in time ( ( )),log, MmmdTO LLL  where 




=
d
kOm  for { ,1min

ε
=k  

}.log M  

We note that the generic result is in some sense “blind” to the actual 
polynomial being used (it takes into account only the degree, but not the 
coefficients), and that there may be a more optimal choice of polynomials 

k,ig  to include in the lattice to solve a particular problem. By taking into 

account an optimized set of polynomials, one can improve over this 
generic (see, for example, [15, 37, 34]). 

4. Finding Small Zeros to Bivariate 
Polynomial Congruences 

In this section, we generalize the results of the previous section to 
finding solutions of bivariate polynomial congruences. We note that this 
is a different application of these techniques than the solution of 
bivariate polynomial equations (over the integers) [16]. We note that, in 
contrast to the previous approach, the method here is only a heuristic. 

In order to analyze bivariate polynomial congruences we must 
introduce a few observations. The first is that there is a simple 
generalization of Theorem 3.1 to multivariate polynomials. 

Theorem 4.1. Let ( ) [ ]yxyxh ,, R∈  be a polynomial of which is a 

sum of at most w monomials, and let R∈YX ,  be given. Suppose that 

(1) ( ) Z∈00 , yxh  for some Xx <0  and ;0 Yy <   

(2) ( ) .1,
w

yYxXh <  
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Then ( ) .0, 00 =yxh�  

Suppose we are given a polynomial ( )yxf ,  and a real number M, and 

we wish to find a pair ( ) ZZ� ×∈00 , yx  for which ( ) ( ).mod0, 00 Myxf ≡  

The idea is a straightforward generalization of the approach in Section 3. 
We define 

( ) ( ) ,,:,,,
k

k 





= M

yxfyxyxg ii
ji  

and observe ( ) Z∈00,, , yxg ji k  for all .0,, ≥kji  We build a lattice from 

( )yYxXg ji ,,, k  by selecting certain indices ( )k,, ji  so that the 

determinant of the resulting lattice is “small enough”, and compute an 
LLL-reduced basis for this lattice. Lemma 2.2 bounds the norm of the 
first vector ( )yYxXh ,1  of this LLL-reduced basis, allowing us to use 

Theorem 4.1 to show that ( ) .0, 001 =yxh  

However, a single bivariate equation may be insufficient to recover 
the desired root. To obtain another relation, we use the second vector 

( )yYxXh ,2  of the LLL-reduced basis. Lemma 2.3 tells us 

( ) ( )
( ) .,
det2, 1

1
4

1
2

−





≤

ww

yYxXh
LyYxXh  (4.1) 

So we must also provide a lower bound on the norm of .1h  

Suppose the indices of the k,, jig  are chosen so that m≤k  for some 

m. Then all coefficients of ( )yYxXg ji ,,, k  are integer multiples of .mM −  

Thus, since ( ) ,0,1 ≠yYxXh  we know it has at least one coefficient 

greater than or equal to mM −  in absolute value. So ( ) .,1
mMyYxXh −≥  

Equation (4.1) becomes 

( ) ( ( )) .det2, 1
1

42 −≤ w
w

LMyYxXh m  
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This gives us 

( )
( ) ( )

( ) .1,2det 22
1

4
1

w
yYxXhwML

www
m <⇒<

−−−−
−  (4.2) 

In particular, this condition is usually simplified as 

( ) ( ) .1,det 2 w
yYxXhML m <⇒−  (4.3) 

Hence, we obtain another polynomial ( ) [ ]yxyxh ,,2 R∈  such that 

( ) .0, 002 =yxh �  It follows that ( )yxh ,1  and ( )yxh ,2  are linearly 

independent. If we make the assumption that ( )yxh ,1  and ( )yxh ,2  are 

also algebraically independent, we can solve for 0y  by computing the 

resultant ( ) ( ).,Res 21 hhyh x=  Then 0y  must be a root of ( ),yh  and these 

roots are easily determined. From this, we may find 0x  as a root of 

( )., 01 yxh  

It is not clear why linear independence of 1h  and 2h  should imply 

algebraic independence, and in fact it is easy to construct (artificial) 
examples where this is not the case, for instance, the polynomial ≡− yx  

( )Mmod0  has too many solutions (even in 2Z ) thus the method must 

fail at this step (since all other steps are provable). So at the moment this 
step of the method is only a heuristic. However, growing experimental 
evidence [33, 3, 9, 22] shows that it is a very good heuristic for 
polynomials of interest in cryptology. 

Example 4.1. Generic result. 

Suppose we are given a polynomial ( )yxf ,  of total degree d with at 

least one monic monomial ada yx −  of maximum total degree. Also 
suppose integers ,, YX  and M are given. We wish to find an integer pair 

( )00 , yx  such that ,, 00 YyXx <<  and ( ) ( ).mod0, 00 Myxf ≡  



ALI H. HAKAMI and MOHAMMED H. HAKAMI 16

We will follow an approach suggested by Coppersmith [16], worked 
out in detail by Jutla [33]. Let 1>m  be an integer to be determined 
later. Define 

( ) ( ) .:,,,
k

k 





= M

xfyxyxg ii
ji  

We use as a basis for our lattice L the polynomials ( ),,,, yYxXg ji k  where 

the indices ( )k,, ji  come from the following set: 

( ) ( ){ }.orand0,,and,,: 3 adjaijimddjijiS −<<≥≤++∈= kkk Z  

Denote by mS  the set of polynomials ( )yYxXg ji ,,, k  such that ( ) .,, Sji ∈k  

Every mSg ∈  has total degree less than md. Indeed, the set mS  is in 

one-to-one correspondence with the set of monomials { }mdyx ≤β+αβα  

given by ( ) ( ).,,,
adji

ji yxyYxXg −++↔ kka
k  We may write these 

polynomials as the rows of a matrix in a way that puts the coefficient of 
the corresponding monomial on the diagonal. The resulting matrix is 
lower diagonal, and the contribution of ( ) mji SyYxXg ∈,,, k  to the 

diagonal is ( ).adjai YXM −++− kkk  A straightforward but tedious 
calculation shows that the resulting lattice has determinant 

( ) ( ) ( ( ) ) .det 3122
1

000
2




























= +−−−

−

=

−βα
α−

=β=α
∏∏∏ dm
m

m
mdmd d

MMYXL kk

k
 

For simplicity we carry out the computation using low-order terms. We 
find 

( ) ( ) ( ) ( )
.det

33
6
2

33
6
3 mommom

dd
MXYL

+−+=  

To use condition (4.3), we require ( ) .det mML −  This leads to 

( )
,

1 ε−
< dMXY  
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where 0→ε  as .∞→m  (We note that to use the more precise condition 

(4.2) requires ( ) ,det m
m ML −⋅γ<  where 22

2

2
ww

wm
−−

=γ  for ( ).22dmOw =  

So ( ) ,loglog
44

M
dmO

mM =γ−  implying the method will not work if m is too 

large and M is too small. In most applications, however, we find 
0log ≈γmM  and this term may be safely-ignored.) 

We note that the shape or coefficients of a particular polynomial may 
allow for a better selection of basis polynomials .,, kjig  For instance, 

when ( )yxf ,  has degree d in each variable separately and is monic in 

the monomial ,dd yx  a different choice of basis leads to the improved 

bound .3
2
dNXY <  

5. Public Key Cryptography 

In this section, we present the notion of a public key cryptosystem, 
and in particular, the RSA public key cryptosystem. There are many good 
formal definitions for public key cryptosystems [25, 21, 39, 49], and we do 
not try to cover all of them here. Instead we try to develop the intuition 
that will be useful later. 

A public key (or asymmetric) cryptosystem is a method for securing 
communication between parties who have never met before. More 
precisely, a public key cryptosystem is described by the following: 

● a set M  of plaintexts (or messages), and a set C  of ciphertexts; 

● a set pK  of public keys, and a set sK  of secret keys; 

● a key generation algorithm key-gen: ;sp KK ×→Z  

● an encryption algorithm ;CKK →×p  and, 

● a decryption algorithm .: MCK →×sD  
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The key generation, encryption, and decryption algorithms can be 
randomized and should run in expected time polynomial in the length of 
their inputs. For all sp KK ,  output by “key-gen” and all messages 

M∈M  we must have that ( ( )) .,, MMKEKD ps =  

The input to the key generation algorithm is called the security 
parameter. The hope is that as the security parameter increases, the 
resources required to break the cryptosystem using the resulting keys 
should increase more rapidly than the resources required to use it. 
Ideally, the running time of a break should be a (sub-) exponential 
function of n, while the running time of key-gen, E, and D should be some 
(small) polynomial in n. 

Suppose Ali is a user of a public key cryptosystem. To initialize she 
chooses a security parameter n and computes ( ).gen-key:, nKK sp =  

When another user Mohd wishes to send a message to Ali securely, he 
obtains Ali’s public key pK  and computes the ciphertext 

( ).,: MKEC p=  He sends ciphertext C is sent to Ali, who upon 

obtaining it computes the original message ( )., CKDM s=  

The security requirements of a cryptosystem can be defined in many 
ways. In general, when defining a security goal it is important to state 
what resources are available to an attacker and what success criteria the 
attacker must fulfill. A very basic requirement is that it should not be 
possible to derive the secret key from the public key efficiently; indeed, it 
is considered the most devastating cryptanalytic break to compute sK  

from pK  in (say) time polynomial in the security parameter. We will see 

examples of this in next sections. We might consider security against 
partial key exposure, where information about sK  (say perhaps a subset 

of bits of sK ) allows an attacker to compute all of .sK  There are many 

issues that arise in determining good notions of security, and we do not 
try to address them all here. There are many good surveys on the subject 
[39, 21]. 
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Since the publication of New Directions, there have been countlessly 
many proposals for public key cryptosystems. Our primary focus in this 
work, however, will be on the RSA public key cryptosystem and simple 
variants [46, 51, 50]. Now we present the basic RSA scheme in the next 
section. 

6. The RSA Public Key Cryptosystem 

In this section, we outline the basic RSA public key cryptosystem 
[46]. 

Let n be a security parameter. The key generation algorithm for RSA 
computes primes p and q approximately 2/n  bits in length, so that 

pqN =:  is an integer n bits in length. More precisely, p and q are 
random primes subject to the constraint that pqN =  is an n-bit number 
and 

.22 NpqN <<<  

We denote the set of all such N as ( ).2Z  Typically n = 1024, so that N is 

1024 bits in length; p and q are primes typically chosen to be 
approximately 512 bits each. 

The key generation algorithm selects integers e and d such that 
( ),mod1 Ned φ≡  where ( ) 1+−−=φ qpNN  (also called the Euler 

totient function). We call e the public exponent and d the secret exponent. 
The value N is called the public modulus. An RSA public key is the pair 
of integers ., eN  The corresponding secret key is the pair ., dN  Thus 

( ) .2 ZZ ×== sp KK  

How e and d are chosen depends on the application. Typically, e is 
chosen to satisfy certain constraints (say e is small, like 3=e ), then d is 
picked from ( ){ }Nφ,,1 …  to satisfy ( ).mod1 Ned φ≡  However, this 

process may be done in reverse, and in many applications d is chosen 
first (say to make d short, as in Subsection 7.4). 
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Messages and ciphertexts are represented as elements of 

.∗== NZCM  Suppose Mohd wishes to send a message ∗∈ NM Z  to Ali. 

He obtains Ali’s public key eN ,  and computes NMC e mod=  which 

he sends to Ali. Upon receiving C, Ali may compute 

( ),mod NMMC edd ≡≡  

where the last equivalence follows from Euler’s theorem. 

For digital signing, the roles of these operations are reversed. If Ali 

intends to sign the message M she computes NMS d mod=  and sends 

SM ,  to Mohd. Mohd checks .mod
?

NSM e≡  

This presentation simplifies RSA encryption and signing; in practice, 
randomized padding of the messages [1, 5] is required before 
exponentiation to prevent several security flaws [2, 20, 19]. We will not 
go into the details here, since all attacks in subsequent sections succeed 
regardless of the padding scheme that is being used. 

7. Previous Attacks on RSA 

In this section, we summarize several previously-known attacks on 
the RSA public key cryptosystem relevant to this work. We follow the 
presentation of the recent survey of attacks on RSA [6] and refer to it for 
a comprehensive listing of attacks on RSA. 

7.1. Factoring 

The most straightforward attack on RSA is factorization of the 
modulus .pqN =  Once a factor p is discovered, the factor pNq /=  

may be computed, so ( ) 1+−−=φ qpNN  is revealed. This is enough to 

compute ( ).mod1 Ned φ≡ −  
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The current fastest method for factoring is the “general number field 

sieve” [26]. It has a running time of ( ( )( ) ( ) 3/1log1exp NOc ⋅+ ( ) )3/2loglog N  

for some .21 << c  The size of N is chosen to foil this attack. The largest 
integer that has been successfully factored using this method was the 
512-bit RSA challenge modulus RSA-155, factored in 1999 using a 
massive distributed implementation of GNFS on the Internet [14]. Even 
though the speed of computer hardware continues to accelerate, it seems 
unlikely that the best factoring algorithms will be able to factor say 1024-
bit RSA moduli in the next twenty years. 

7.2. Håstad’s attack on broadcasted messages 

In order to speed up RSA encryption (and signature verification), it is 
useful to use small value for the public exponent e, say .3=e  However, 
this opens up RSA to the following attack, discovered by Håstad [28]. 

Let us start with a simpler version. Suppose Mohd wishes to send the 
same message M to k  recipients, all of whom are using public exponent 
equal to 3. He obtains the public keys ie,iN  for ,,,1 k…=i  where 

3=ie  for all i. Naively, Mohd computes the ciphertext ii NMC mod3=   

for all i and sends iC  to the i-th recipient. 

A simple argument shows that as soon as ,3≥k  the message M is no 

longer secure. Suppose Eman intercepts ,, 21 CC  and ,3C  where 

.mod3
ii NMC =  We may assume ( ) 1,gcd =ji NN  for all ji ≠  

(otherwise, it is possible to compute a factor of one of the s,
iN ). By the 

Chinese Remainder Theorem, she may compute ∗∈ 321 ,, NNNC Z  such 

that .mod ii NCC ≡  Then ;mod 321
3 NNNMC ≡  however, since 

iNM <  for all i, we have .321
3 NNNM <  Thus 3MC =  holds over the 

integers, and Eman can compute the cube root of C to obtain M. 
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Håstad proves a much stronger result. To understand it, consider the 
following naive defense against the above attack. Suppose Mohd applies 
a pad to the message M prior to encrypting it so that the recipients 
receive slightly different messages. For instance, if M is m bits long, 

Mohd might encrypt Mi m +⋅ 2  and send this to the i-th recipient. 
Håstad proved that this linear padding scheme is not secure. In fact, he 
showed that any fixed polynomial applied to the message will result in an 
insecure scheme. 

Theorem 7.1 (Håstad). Suppose kNN ,,1 …  are relatively prime 

integers and set ( ).minmin ii NN =  Let ( ) [ ]xxg iNi Z∈  be k  polynomials 

of maximum degree d. Suppose there exists a unique minNM <  

satisfying  

( ) ( ) { }.,,0mod0 k…∈= iallforNMg ii  

Furthermore suppose .d>k  There is an efficient algorithm which, given 

( )xgNi ,  for all i, computes M. 

Proof. Since the iN  are relatively prime, we may use the Chinese 

Remainder Theorem to compute coefficients iT  satisfying 1≡iT  

( )iNmod  and ( )ji NT mod0≡  for all .ji ≠  Setting ( ) ( )xgTxg iii∑=:  

we see ( ) ( ).mod0 iNMg ∏=  Since the iT  are nonzero we have that 

( )xg  is not identically zero. If the leading coefficient of ( )xg  is not one, 

then we may multiply by its inverse to obtain a monic polynomial ( ).xg  

The degree of ( )xg  is at most d. By Coppersmith’s theorem (Theorem 

3.2), we may compute all integer roots 0x  satisfying ( ) 00 ≡xg  

iN∏mod  and ( ) ./1
0

d
iNx ∏<  But we know (∏<< minNM  

) ( ) ,/1/1 d
ii NN ∏<k  so M is such a root.  
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This can be applied to the problem of broadcast RSA as follows. 
Suppose the i-th plaintext is padded with a polynomial ( ),xfi  so that 

( ( )) ( ).mod i
e

ii NMfC i≡  Then the polynomials ( ) ( )( ) Cxfxg ieii −=:  

satisfy the above relation. The attack succeeds once ( ).degmax iii fe ⋅>k  

We note that Håstad’s original result was significantly weaker, 

requiring ( )2dO=k  messages, where ( ).degmax iii fed ⋅=  This is 

because the original result used the Håstad method for solving 
polynomial congruences (see Example 3.2) instead of the full 
Coppersmith method. 

This attack suggests that randomized padding should be used in RSA 
encryption. 

7.3. Coppersmith attack on short random pads 

Like the previous attack, this attack exploits a weakness of RSA with 
public exponent .3=e  Coppersmith showed that if randomized padding 
is used improperly then RSA encryption is not secure [16]. Coppersmith 
addressed the following question: if randomized padding is used with 
RSA, how many bits of randomness are needed ? 

To motivate this question, consider the following attack. Suppose 
Mohd sends a message M to Ali using a small random pad before 
encrypting. Eman obtains this and disrupts the transmission, prompting 
Mohd to resend the message with a new random pad. The following 
attack shows that even though Eman does not know the random pads 
being used, she can still recover the message M if the random pads are 
too short. 

For simplicity, we will assume the padding is placed in the least 

significant bits, so that ( ) ( )NrMC e
i

m
i mod2 +=  for some small m and 

random .2mr <  Eman now knows 

( ) ( ) ( ) ( ),mod2andmod2 2211 NrMCNrMC emem +=+=  
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for some unknown 1, rM  and .2r  Define 

( ) ( ) ( ) .:,and:, 21 CyxyxgCxyxf ee −+=−=  

We see that when ,2 1rMx m +=  both of these polynomials have 12 rry −=  

as a root mod N. We may compute the resultant ( ) xyh Res:=  ( )gf ,  which 

will be of degree at most .2e  Then 12 rry −=  is a root of ( ) .mod Nyh      

If ( )
2/12/1 e

i Nr <  for ,2,1=i  then we have that 12 rr − .
2/1 eN<          

By Coppersmith’s theorem (Theorem 3.2), we may compute all of the 
roots ( ),yh  which will include .12 rr −  Once 12 rr −  is discovered, we may 

use a result of Franklin and Reiter [18] to extract M (see [6] for details). 

7.4. Wiener's attack on short secret exponent 

To speed up RSA decryption and signing, it is tempting to use a small 
secret exponent d rather a random ( ).Nd φ≤  Since modular 

exponentiation takes time linear in ,log2 d  using a d that is 

substantially shorter than N can improve performance by a factor of 10 or 
more. For instance, if N is 1024 bits in length and d is 80 bits long, this 
results in a factor of 12 improvement while keeping d large enough to 
resist exhaustive search. 

Unfortunately, a classic attack by Wiener [53] shows that a 
sufficiently short d leads to an efficient attack on the system. His method 
uses approximations of continued fractions. This attack is stated in the 
following theorem: 

Theorem 7.2 (Wiener). Suppose pqN =  and .2 NpqN <<<  

Furthermore suppose .3
1 4/1Nd <  There is an algorithm which, given N 

and e, generates a list of length log N of candidates for d, one of which will 
equal d. This algorithm runs in time linear in log N. 
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Proof. Since ( )( ),mod1 Ned φ≡  there is some k  such that 

( ) .1=φ− Ned k  We may write this as 

( ) ( ) .1
NddN

e
φ

=−
φ

k  

Hence ( )N
e

φ
 is an approximation to .d

k  The attacker does not know 

( ),Nφ  but he does know N. Since NpqN 22 <<<  we have −+ qp  

,31 N<  and thus ( ) .3 NNN <φ−  Now if the attacker uses N
e  as an 

approximation we find 

( ) ( )
Nd

kkkk NNNed
dN

e −φ+φ−
=−  

( )( ) .331
Nd
kk

Nd
k =≤φ−−= Nd

NNN  

Since ( ),Ne φ<  we know .3
1 4/1Nd <<k  Thus 

.
2

11
24/1 ddNdN

e <=− k  

This is a classic approximation relation, and there are well-known 
methods [27, Theorem 177] to solve it. Such methods produce a list of all 
integers pairs ( )ii d,k  satisfying ( ) 1,gcd =ii dk  and 

.
2

1
2
ii

i
ddN

e <−
k  

This list is of length at most log N. Since ( ) 1=φ− Ned k  we know 

( ) .1,gcd =dk  Hence, idd =  for some { }.log,,1 Ni …∈   
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8. Cryptanalysis via the Defining Equation 

Since ( ),mod1 Ned φ≡  this implies there exists an integer k  such 

that 

( ( ) .111 =+−++ qpNed k   (8.1) 

This equation succinctly summarizes the RSA, and we will refer to it 
frequently throughout this work. 

As discussed earlier, a break of the RSA public key cryptosystem can 
be defined in several ways. Most obviously, the scheme is broken if an 
attacker is able to recover the secret exponent d. Since factorization of 
the modulus pqN =  leads to recovery of the private key d, this is also a 

total break. All of the attacks presented in subsequent sections are of this 
type, and involve either a direct computation of the private key d or one 
of the factors p of the public modulus N, given the public key information 

eN ,  alone. 

In [4, 7, 8, 10, 11, 12, 13], we can see several examples where the 
value qps +=  is computed from the public information. We note that 

this immediately allows the recovery of the factorization of N; indeed, when 

,qps +=  then p and q are the two roots of the equation .02 =+− Nsxx   

We emphasize that our results in this work come from the basic RSA 
equations; our attacks do not use plaintext/ciphertext pairs or signatures, 
so they hold regardless of any padding schemes used. It is an interesting 
open question to determine if the attacks presented in this work can be 
improved if a particular padding is in use, or if the adversary is given 
access to known or chosen plaintext/ciphertext pairs or chosen 
signatures. 

 

 



A STUDY OF SOME METHODS FOR FINDING … 27

9. The Lattice Factoring Method 

In recent years, integers of the form qpN r=  have found 

applications in cryptography. For example, Fujioke et al. [23] use a 

modulus qpN 2=  in an electronic cash scheme. Okamoto and Uchiyama 

[44] use qpN 2=  for an elegant public key system. Recently, Takagi [51] 

observed that RSA decryption can be performed significantly faster by 

using a modulus of the form .qpN r=  In all of these applications, the 

factors p and q are primes of approximately the same size. The security of 
the system relies on the difficulty of factoring N. We show that moduli of 

the form qpN r=  should be used with care. In particular, let p and q be 

integers (not necessarily prime) of a certain length, say 512 bits each. We 

show that factoring qpN r=  becomes easier as r gets bigger. For 

example, when r is on the order of ,log p  our algorithm factors N in 

polynomial time. This is a new class of integers that can be factored 

efficiently. This is discussed in Subsection 11.2. When qpN r=  with r on 

the order of ,log p  our algorithm factors N faster than the best 

previously-known method- the elliptic curve method (ECM) [38]. Hence, 

if p and q are 512-bit primes, then qpN r=  with 23≈r  can be factored 

by our algorithm faster than with ECM. These results suggest that 

integers of the form qpN r=  with large r are inappropriate for 

cryptographic purposes. In particular, Takagi’s proposal [47] should not 
be used with a large r. Here is a rough idea of how the algorithm’s 
efficiency depends on the parameter r. Suppose p and q are bit-k  

integers and .qpN r=  When ,ε= kr  the our method runs 

(asymptotically) in time ( ) ( ) ( ).2 log1 kk OT +ε−=  Hence, when ,1=ε  the 

modulus N is roughly 2k  bits long and the algorithm will factor N in 
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polynomial time in .k  When ,2
1=ε  the algorithm asymptotically 

outperforms ECM. The algorithm’s efficiency and its comparison with 
previously-known factoring methods is discussed in Section 13. 

We ran experiments to compare our method to ECM factoring. It is 

most interesting to compare the algorithms when ,2
1≈ε  namely, 

.log pr ≈  Unfortunately, since qpN r=  rapidly becomes too large to 
handle, we could only experiment with small values of p. Our largest 
experiment involves 96-bit primes p and q and .9=r  In this case, N is 
960 bits long. Our results suggest that although our algorithm is 
asymptotically superior, for such small prime factors the ECM method is 
better. Our experimental results are described in Section 12. 

An additional feature of our algorithm is that it is able to make use of 
partial information about a factor. This is sometimes called factoring 
with a hint. In particular, our method gives an algorithm for factoring 

pqN =  when half of the bits of the factor p are known. This gives an 
elegant restatement of a theorem originally due to Coppersmith [16] for 
factoring with a hint using bivariate polynomial equations. In the case 
that ,1=r  our presentation also coincides with an extension of 
Coppersmith’s theorem developed by Howgrave-Graham [31]. Our 
version has several practical advantages, and will be an important tool 
used in partial key exposure attacks discussed in the next section. This is 
discussed in Subsection 11.1. 

10. Algorithm to Factor Integers of the Form qpN r=  

Our goal in this section is to develop an algorithm to factor integers 

of the form .qpN r=  The main theorem of this section is given below. 

Recall that ( ) nn 2exp =  and logarithms should be interpreted as 

logarithms to the base 2. 
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Theorem 10.1. Let qpN r=  where epq <  for some e. The factor p 
can be recovered from ,, rN  and c by an algorithm with a running time of 

( ),log1exp γ⋅




 ⋅

+
+ Opcr

c  

where ( ( ) ).log,2 NcrrTLLL +=γ  The algorithm is deterministic, and 

runs in polynomial space. 

Note that is polynomial in log N. It is worthwhile to consider a few 
examples using this theorem. For simplicity, we assume ,1=c  so that 
both p and q are roughly the same size. Taking c as any small constant 
gives similar results. 

● When 1≈c  we have that .11





=

+
+

rOcr
c  Hence, the larger r is, the 

easier the factoring problem becomes. When pr logε=  for a fixed ,ε  the 
algorithm is polynomial time. 

● When ,log 2/1 pr ≈  then the running time is approximately 

( ).logexp 2/1 p  Thus, the running time is (asymptotically) slightly better 

than the Elliptic Curve Method (ECM) [38]. 

● For small r, the algorithm runs in exponential time. 

● When c is large (e.g., on the order of r) the algorithm becomes 
exponential time. Hence, the algorithm is most effective when p and q are 

approximately the same size. All cryptographic applications of qpN r=  
we are aware of use p and q of approximately the same size. 

We prove Theorem 10.1 by extending the approach for finding 
solutions to univariate congruences developed in Section 4. The main tool 
we will need is the following slight variant of Theorem 3.1. 

Lemma 10.1. Let ( ) [ ]xxh R∈  be a polynomial of degree w, and let 

Z∈m  and R∈X  be given. Suppose there is some Xx <0  such that 

(1) ( ) ,0 Zmqxh −∈  and 
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(2) ( ) ./ wqxXh m−<  

Then ( ) .00 =xh  

Proof. Apply Theorem 3.1 to the polynomial ( ).xhqm   

Note that for simplicity we assume r and c are given to the algorithm 
of Theorem 10.1. Clearly, this is not essential since one can try all 
possible values for r and c until the correct values are found. 

10.1. Lattice-based factoring 

We are given .qpN r=  Suppose that in addition, we are also given 

an integer P that matches p on a few of p’s most significant bits. In the 
other words, XpP <−  for some large X. For now, our objective is to 

find p given ,, rN  and P. This is clearly equivalent finding the point 

.:0 pPx −=  

Define the polynomial ( ) ( ) NxPxf r /: +=  and observe ( ) ./10 qxf =  

Let 0>m  be an integer to be determined later. For m,,0 …=k  and 

any 0≥i  define 

( ) ( ).:, xfxxg i
i

k
k =  

Observe that ( ) Zmi
i qqxxg −− ∈= k
k 00,  for all 0≥i  and all 

.,,0 m…=k  

Theorem 3.1 suggests that we should look for a low-norm integer 

linear combination of the k,ig  of weighted norm less than ./ wq m−  Let 

L be the lattice spanned by 

(1) ( )xXgi k,  for 1,,0 −= m…k  and ,1,,0 −= ri …  and 

(2) ( )xXg mj,  for .1,,0 −−= mrwj …  
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The values of m and w will be determined later. To use Lemma 2.2, 
we must bound the determinant of the resulting lattice. Let M be a 
matrix whose rows are the coefficients vectors for the basis of L (see 
Figure 10.1). Notice that M is a triangular matrix, so the determinant of 
L is just the product of the diagonal entries of M. This is given by 

( ) ( ) .det 2/12/
11

0

1

0

2 wmmmrwmj
w

mrj

ir
r

i

m
NXgNXNXM −+−

−

=

−+
−

=

−

=

≤


























= ∏∏∏ kk

k
 

Lemma 2.2 guarantees that the LLL algorithm will find a short vector 
( )xXh  in L satisfying 

( ) ( ) ( ) .2det2 2/12/4/4/ 222 wmmmrwwww NXLxXh −+≤≤  (10.1) 

Furthermore, since ( )xXh  is an integer linear combination of the 

( ),, xXgi k  the corresponding ( )xh  as an integer linear combination of the 

( )., xgi k  Therefore ( ) .0 Zmqxh −∈  
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Example LFM lattice for qpN 2=  when 3=m  and .9=d  The entries 
marked with ”−“  represent non-zero off-diagonal entries we may ignore. 

Figure 10.1. Example LFM lattice. 



ALI H. HAKAMI and MOHAMMED H. HAKAMI 32

To apply Theorem 3.1, we also require that 

( ) ./ wqxXh m−<  

Plugging in the bound on ( )xXh  from Equation (10.1) and reordering 

terms, we see this condition is satisfied when 

( ) ( ) ( ) ./2 2/12/2/ 22 wmmrwmwmww wNNNqX +−−<   (10.2) 

We may substitute .1 rpNq =−  Because cpq <  for some c, we know 

.rcpN +<  So inequality (10.2) is satisfied when the following holds: 

( ) ( ) ( ) ( ) ./2 2/12/2 wmrcmrwmw wqX ++−<  

We note that ( )( ) 2/2 ≤ww  for all ,4≥w  so this leads to 

( ) ( ) ( ) .2/1
2/1/2 wmrcmrwmpX ++−<  

Larger values of X allow us to use weaker approximations P, so we wish 
to find the largest X satisfying the bound. The optimal value of m is 

attained at ,2
1

0 



 −

+
= cr

wm  and we may choose 0w  so that 0w  so that 

2
10 −

+ cr
w  is within cr +2

1  of an integer. Plugging in 0mm =  and 

{ }4,max 0ww =  and working through tedious arithmetic results in the 

bound 

( )
( )

.4
1where,2/1

11
w

cr
crpX w

r
cr

c +−
+

=δ<
δ+−

+  

Since 1<δ  we obtain the slightly weaker, but more appealing bound 

( ) .2/1
21 w

r
cr

c
pX

−−
+<  (10.3) 

So when X satisfies inequality (10.3), the LLL algorithm will find a vector 

( )xXh  in L satisfying ( ) ./ wqxXh m−<  The polynomial ( )xh  is an 

integer linear combination of the ( )xgi k,  and thus satisfies 
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( ) .0 Zmqxh −∈  But since ( )xXhw ,4≥  is bounded, we have by Theorem 

3.1 that ( ) .00 =xh  Traditional root-finding methods [45] such as 

Newton-Raphson can extract the roots of ( ).xh  Given a candidate for ,0x  

it is easy to check if 0xP +  divides N. Since h is of degree ,1−w  there 

are at most w roots to check before 0x  is found and the factorization of N 

is exposed. 

We summarize this result in the following theorem: 

Theorem 10.2. Let qpN r=  be given, and assume cpq <  for some c. 
Furthermore assume that P is an integer satisfying 

( ) ,2/1
21 w

r
cr

c
ppP

−−
+<−  

for some w. Then the factor p may be computed from ,,, crN  and P by an 

algorithm whose running time is dominated by (   ).log/2, NrwwTLLL ⋅  

Note that as w tends to infinity, the bound on P becomes 

( ) .2/1
1 cr

c
ppP +

−
<−  When ,1=c  taking 2rw =  provides a similar 

bound and is sufficient for practical purposes. We can now complete the 
proof of the main theorem. 

Proof of Theorem 10.1. Suppose qpN r=  with cpq <  for some c. 
Let ( ).2 crrw +=  Then, by Theorem 10.2 we know that given an integer 

P satisfying 

,2
1 11 cr

c
ppP +

+−
<−  

the factorization of N can be found in time (   ).log/2, NrwwTLLL ⋅  Let 

.1: 





+
+=ε cr

c  We proceed as follows: 

(a) For all ( ) rN /log,,1 …=k  do: 

(b) For all 12,,0 +ε= k…j  do: n 
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(c) Set ( ) .22 11 −ε−⋅+= kk jP  

(d) Run the algorithm of Theorem 10.2 using the approximation P. 

The outermost loop to determine the length k  of p is not necessary if 
the size of p is known. If p is k  bits long then one of the candidate values 

P generated in step (c) will satisfy ( ) 112 −ε−<− kpP  and hence 

( ) ε−<− 12/1 ppP  as required. Hence, the algorithm will factor N in the 

required time. 

11. Applications 

11.1. Factoring pqN =  with a hint 

One immediate application of Theorem 10.2 is the factorization of 
integers of the form pqN =  when partial information about one of the 

factors is known. Suppose ( ) δ+4/n  bits of one of factors of an n-bit 

value pqN =  is known for some small ,0>δ  Coppersmith showed [16] 

how to apply a bivariate version of his technique to solve the integer 
factorization problem using this partial information. The lattice factoring 
method described here is the first application of the univariate 
Coppersmith method to the problem of integer factorization with a hint. 

This method generalizes to integers of the form ,qpN r=  while the 

bivariate method does not. Therefore, it appears this technique appears 
to be superior to the original bivariate Coppersmith approach. 

Our method has significant performance advantages over the original 
bivariate method of Coppersmith. Given ( ) δ+4/n  bits of one of the 

factors of ,pqN =  the bivariate method of Coppersmith builds a lattice 

( )22 9/ δn  with entries of size at most ( ).2/2 δn  Our method creates 

lattices of dimension δ/n  with entries of size at most ./2 2 δn  This 
results in a substantial performance improvement. 
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Factoring pqN =  knowing MSBs of p. We first describe the 

result for pqN =  when most significant bits of p are known. 

Corollary 11.1 (MSBFact). Let pqN =  of binary length n be given 

and assumeq .pq <  Furthermore assume 0>P  and 4/nt >  are 

integers satisfying 

( ) .2 2/ tnpP −<−  

Then there is an algorithm that given ,, PN  and t computes the factor p 

in time ( ),2, nwwTLLL  where ( ) .4/ 





−
= nt

nw  We denote the running 

time of this algorithm by ( ).,MSBFact tnT  

Proof. In order to use Theorem 10.2 we must choose w such that 

( ) .2/1
2

2
11 wppP
−−

<−  

This is achieved once 
( )

,2
2

2
1

2 w
n

pP
−

<−  i.e., ( ) .4/nt
nw

−
≥   

Some comments: 

● When P and p are bit-2/n  integers such that P matches p on the t 

most significant bits, we have ( ) .2 2/ tnpP −<−  Informally, we say that 

MSBFact is given the t most significant bits of p. 

● Note that as t increases, ( )tnT ,MSBFact  decreases. While this 

follows from the fact that w is inversely proportional to t, it is also makes 
intuitive sense since the factoring problem naturally becomes easier as 
more bits of p are given to MSBFact. 

● This algorithm can be extended to 4/nt ≤  by running MSBFact 
sequentially with approximations 

( ) ( ) ( ) ,2122: 14/2/ −− −+−= ntn
j jPP  
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for { ( ) }.2,,1 14/ +−= tnj …  One of these jP  will satisfy <− pPj  

( ) .2 14/ −n  Hence the total running time is ( ) ( ( )4/,.2 MSBFact
14/ nnTtn +−  

) ( ) .2.1 14/ +−+ tn  

● For ( ) 14/ += nt  we have .nw =  In practice, this may result in a 

lattice too large to handle (e.g., factoring 1024=n  bit RSA moduli). The 

previous trick can be applied to get a running time of ( ) .2 4/ ctn +−  
( )( )CnnT +4/,MSBFact  for any 0>C  to get   ./ Cnw =  

● In most cases w can be taken to be much smaller, but the method is 
no longer provable. 

Factoring pqN =  knowing LSBs of p. We now describe a slight 

variant of the lattice factoring method that can be used to factor pqN =  

when least significant bits of a factor p are known. 

Corollary 11.2 (LSBFact). Let pqN =  of binary length n be given 

and assume .pq <  Furthermore assume ,0,0 >> RP  and 4/2/ ntn >≥  

are integers satisfying 

( ) .2,mod tRRpP ≥≡  

Then there is an algorithm that given ,,, RPN  and t computes the factor 

p in time ( ),6, nwwTLLL  where ( ) .4/ 





−
= nt

nw  We denote the running 

time of this algorithm by ( ).,LSBFact tnT  

Proof. In this problem, we are seeking to discover the value 

( ) ,/:0 RpPx −=  where .2 2/
0

tnx −<  We cannot apply Theorem 10.2 

directly, so we derive the following variant. We have ( ) 1,gcd =NR  

(otherwise we know the factorization of N immediately), so we can 
compute a and b satisfying .1=+ bNaR  Define the polynomial 

( ) ( ) ,/: NxaPxf r+=  
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and observe 

( ) ( ) ( ) ./// 1
00 Z−∈==+= qqaNapNaRxaPaRxf rrr  

But 

( ) ( ) ( ) ,0000 CxfbNxxfaRxf +=−=  

for some ,Z∈C  so ( ) .1
0 Z−∈ qxf  

This encodes the factorization problem as a univariate root-finding 
problem, and we use exactly the same techniques used in Subsection 10.1 
to solve it. Namely, let 0>m  be an integer to be determined later. For 

m,,0 …=k  and any 0≥i  define 

( ).:, xfxg i
i

k
k =  

Then ( ) Zm
i qxg −∈0, k  for all 0≥i  and all .m≤k  We build a lattice 

from these polynomials and use LLL to find a short vector. The proof 
follows as in Lemma 10.2, and we derive the same bound ( )2/10 <x  

.
21 w

c
cr

c
p

−−
+  In this case ,1== cr  so the bound is achieved once 

( )
,2

2
2
1

20 w
n

x
−

≤  i.e., ( ) .4/nt
nw

−
≥   

Some comments: 

● When P and p are bit-2/n  integers such that P matches p on the t 

least significant bits, we have ( ).2mod tpP ≡  Informally, we say that 

LSBFact is given the t least significant bits of p. 

● Note that as t increases, ( )tnT ,LSBFact  decreases. While this 

follows from the fact that w is inversely proportional to t, it is also makes 
intuitive sense since the factoring problem naturally becomes easier as 
more bits of p are given to LSBFact. 
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● This algorithm can be extended to 4/nt ≤  by running LSBFact 

with ( ) ,.2 4/ RR tn −=′  and approximations ( )RjPPj 1: −+=  for { ,1=j  

( ) }.2, 4/ tn −…  One of these jP  will satisfy ,mod RpPi ′≡  where 

.2 4/nR ≥′  Hence the total running time is ( )
LSBFact

14/ .2 Ttn +−  

( )( ).14/, +nn  

● For ( ) 14/ += nt  we have .nw =  In practice, this may result in a 

lattice too large to handle (e.g., factoring 1024=n  bit RSA moduli). The 

previous trick can be applied to get a running time of ( ) .2 4/ Ctn +−  
( )( )CnnT +4/,LSBFact  for any 0>C  to get  ./ Cnw =  

● In most cases w can be taken to be much smaller, but the method is 
no longer provable, see [30, 37, 41, 42, 52]. 

11.2. Polynomial-time factoring for ( )prqpN r log, Ω==   

When pr log≈  the lattice factoring method runs in time polynomial 

in log N. This is a new class of integers that can be efficiently factored. 
We state this formally in the following: 

Corollary 11.3. Let qpN r=  where cpq <  for some c. Suppose 

.log pMr =  The factor p can be recovered from ,, rN  and c by an 

algorithm with a running time of ( ) (( ) ( ) ).log,log/1.2 /1 NcrNMTLLL
Mc ++  

The algorithm is deterministic, and runs in polynomial space. 

Proof. This follows from Theorem 10.1 with the observation that 

( ) ,1
log

11log1
M

c
cpM

cc
M

cpcr
c +≤

+
+

−+=






+
+  

and ( ) .log/12 NMr =  
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12. Experiments 

We implemented the lattice factoring method using Maple version 5.0 
and Victor Shoup’s Number Theory Library package [47]. The program 
operates in two phases. First, it guesses the most significant bits P of the 
factor p, then builds the lattice described in Section 9. Using NTL’s 
implementation of LLL, it reduces the lattice from Section 9, looking for 
short vectors. Second, once a short vector is found, the corresponding 
polynomial is passed to Maple, which computes the roots for comparison 
to the factorization of N. 

We tested MSBFact, LSBFact, and the algorithm of Theorem 10.2. 
The algorithm of Theorem 10.1 uses Theorem 10.2 and simple exhaustive 
search. Examples of running times for LSBFact are given in Section 12. 
Running times for MSBFact are similar. Here we restrict attention to the 
core algorithm given in Theorem 10.2. Example running times of this 
algorithm are listed in Figure 12.1. To extend this to the full version 
(Theorem 10.1) would require exhaustive search for the “bits given”.  

P N r Bits Lattice Running 

(bits) (bits)  given dim. time 

64 576 8 16 49 14 minutes 

80 1280 15 20 72 5.2 hours 

96 768 7 22 60 1.6 hours 

96 960 9 22 65 3.2 hours 

100 600 5 23 69 1.7 hours 

Experiments performed on a 1GHz Intel Pentium III running Linux. 

Figure 12.1. Running times for LFM. 

This introduces a large multiplicative factor in the running times 
listed above. The resulting running times are not so impressive; for such 
small N, ECM performs much better. However, we expect the running 
time to scale polynomially with the size of the input, quickly outpacing 
the running times of ECM and NFS, which scale much less favorably. 
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Optimizations. The execution times of the algorithms presented in 
this sections are dominated by the running time of the LLL algorithm. In 
this section, we address several practical concerns that greatly improve 
the performance of this step. 

The first observation is that in our experiments, the short vector 
returned by the LLL algorithm almost always corresponds to a 
polynomial of degree .1−w  This means that a linear combination which 
yields a short vector will include those basis vectors corresponding to the 

k,ig  and k,jg  of greatest degree. We focus attention of the LLL 

algorithm on these basis vectors by using the following ordering on the 
basis vectors: 

● ( )xXg mj,  for 0,,1 …−−= mrwj  followed by 

● ( )xXgi k,  for 0,,1, …−= mmk  and .1,,0 −= ri …  

This resulted in a speedup of over factor of two compared to the 
natural ordering, in which LLL spent a large amount of time reducing a 
portion of the basis that would ultimately be irrelevant. 

The second observation is that in an LLL-reduced lattice, the worst-
case result for the shortest vector will be 

( ) (( ) ).log3 α
α = pxppT  

Implementations of LLL often try to improve this by reducing the “fudge 

factor” of ( ) .2 4/1−w  However, as the analysis from Subsection 4.1 shows, 
the final contribution of this term is negligible. Thus a high-quality basis 
reduction is unnecessary, and running times can be greatly improved by 
deactivating features such as Block Korkin-Zolotareff reduction. 

13. Comparison to Other Factoring Methods 

We restate the Theorem 10.1 so that it is easier to compare lattice 
factoring to existing algorithms. We first introduce some notation. Let 

( )pTα  be the function defined by 
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( ) (( ) ).logexp α
α = ppT  

This function is analogous to the ( )pL βα,  function commonly used to 

describe the running time of factoring algorithms [5]. Recall that 

( ) ( ( ) ( ) ).logloglogexp 1
,

α−α
βα β= pppL  

One can easily see that ( )pTα  is slightly smaller than ( ).1, pLα  We can 

now state a special case of Theorem 10.1. 

Corollary 13.1. Let qpN r=  be given where p and q are both k  bit 

integers. Suppose ( )ε= pr log  for some .ε  Then given N and r, a non-

trivial integer factor of N can be found in time 

( ) ( )[ ] ,logexp 1
1 γ⋅=⋅γ ε−

ε− ppT  

where is polynomial in log N. 

Asymptotic comparison. Let p, q be bit-k  primes, and suppose we 

are given .qpN r=  We study the running time of various algorithms 
with respect to k  and r, and analyze their behaviours as r goes to 

infinity. We write ( ) .log ε= pr  The standard running times [15, 37] of 

several algorithms are summarized in the following table, ignoring 
polynomial factors. 

Method Asymptotic running time 

Lattice factoring method (( ) )ε−1logexp p  

Elliptic curve method ( ( ) ( ) )2/12/1 logloglog414.1exp pp⋅  

Number field sieve ( ( ) ( ) )3/22/1 logloglog902.1exp NN⋅  

Since qpN r=  and ,ε= kr  we know that 

.logloglog 1 ε+=≥+= kkrqprN  

Rewriting the above running times in terms of k  yields the following list 
of asymptotic running times: 
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Method Asymptotic running time 

Lattice factoring method ( ) ( )pT ε−
ε− = 1

1exp k  

Elliptic curve method ( ( ) ) ( )( ) 414.1
2/1

2/12/1 log414.1exp pTp >⋅ k  

Number field sieve ( ( ) (( ) ) ( ( ) ( )) 902.1
3.1

3/23/1 1902.1exp pT ε+
ε+ >ε+⋅ k  

We are particularly interested in the exponential component of the 

running times, which is tracked in Figure 13.1. Notice that when ,2
1=ε  

then all three algorithms run in time close to ( ).2/1 pT  

Practical comparison to ECM. Of particular interest in Figure 13.1 

is the point at ( ),2
1i.e.,log =ε= pr  where ECM, LFM, and NFS 

have similar asymptotic running times. We refer the reader to 

 

Comparison of subexponential running times of current factoring 
methods as a function of r. Both axes are logarithmic, and polynomial 
time factors are suppressed. 

Figure 13.1. Asymptotic comparison of LFM with ECM and NFS. 

Figure 12.1 for the sample running times with the lattice factoring 
method on similar inputs. 

Since some of the larger integers that we are attempting to factor 
exceed 1000 bits, it is unlikely that current implementations of the 
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number field sieve will perform efficiently. This leaves only the elliptic 
curve method for a practical comparison. Below, we reproduce a table of 
some example running times [52, 48] for factorizations performed by ECM. 

size of p running time with 1=r  predicted run time for large r 

64 bits 53 seconds :8=r  848 seconds 

96 bits 2 hours :9=r  50 seconds 

128 bits 231 hours :10=r  7000 r hours 

Clearly, the elliptic curve method easily beats the lattice factoring 
method for small integers. However, LFM scales polynomially while ECM 
scales exponentially. Based on the two tables above, we conjecture that 
the point at which our method will be faster than ECM in practice is for 

,qpN r=  where p and q are somewhere around 400 bits and .20≈r  

14. Conclusions 

We showed that for cryptographic applications, integers of the form 

qpN r=  should be used with care. In particular, we showed that the 

problem of factoring such N becomes easier as r get bigger. For example, 
when pr logε=  for a fixed constant 0>ε  the integer N can be factored 

in polynomial time. Hence, if p and q are k  bit primes, the integer 

qpN k=  can be factored by a polynomial time algorithm. Even when 

pr log≈  such integers can be factored in time that is asymptotically 

faster than the best current methods. For much smaller r, our algorithm 
provides an efficient method for factoring N provided a “hint” of 
appropriate quality is available. 

Our experiments show that when the factors p and q are small (e.g., 
under 100 bits) the algorithm is impractical and cannot compete with the 
ECM. However, the algorithm scales better; we conjecture that as soon as 
p and q exceed 400 bits each, it performs better than ECM when r is 
sufficiently large. 
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Surprisingly, our results do not seem to follow directly from 
Coppersmith’s results on finding small roots of bivariate polynomials 
over the integers. Instead, we extend the univariate root-finding 
technique. It is instructive to compare our results to the case of 
unbalanced RSA where pqN =  is the product of two primes of different 

size, say p is much larger than q. Suppose p is a prime on the order of .sq  
Then, the larger s is, the more bits of q are needed to efficiently factor N. 

In contrast, we showed that when ,qpN r=  the larger r is, the fewer bits 
of p are needed. 

One drawback of the lattice factoring method is that for each guess of 
the most significant bits of p, the LLL algorithm has to be used to reduce 
the resulting lattice. 

It is an interesting open problem to devise a method that will enable 
us to run LLL once and test multiple guesses for the MSBs of p. This will 
significantly improve the algorithm’s running time. A solution will be 
analogous to techniques that enable one to try multiple elliptic curves at 
once in the ECM. Another question is to generalize the LFM to integers 

of the form ,srqpN =  where r and s are approximately the same size. 
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