
Journal of Mathematical Sciences: Advances and Applications
Volume 38, 2016, Pages 1-48
Available at http://scientificadvances.co.in
DOI: http://dx.doi.org/10.18642/jmsaa_7100121630

2010 Mathematics Subject Classification: 11C08, 11D79.
Keywords and phrases: small solutions, small zeros, polynomial, congruences, applications
of lattices, RSA.
Received February 4, 2016

 2016 Scientific Advances Publishers

A STUDY OF SOME METHODS FOR FINDING SMALL
ZEROS OF POLYNOMIAL CONGRUENCES

APPLIED TO RSA

ALI H. HAKAMI and MOHAMMED H. HAKAMI

Department of Mathematics
Faculty of Science
Jazan University
P. O. Box 277, Jazan
Postal Code: 45142
Saudi Arabia
e-mail: aalhakami@jazanu.edu.sa

Department of Computer Science
Information Security
Faculty of Science and Engineering
Queensland University of Technology
Gardens Point GP, P Block Level 8801
Australia

Abstract

In this paper, we shall follow Håstad [28], Coppersmith [16, 17], and others to
describe methods for finding small zeros of polynomial congruences. As an
application, we study the security of public key cryptosystems. In particular, we
study the RSA public key cryptosystem by making use of these methods.

ALI H. HAKAMI and MOHAMMED H. HAKAMI 2

1. Introduction and Notations

The purpose of the present note is to give a method for finding small
roots to polynomial congruence in one or two variables. We shall follow
technique of Coppersmith [16, 17] as a starting point for many of our
result. We will introduce the general Coppersmith approach and provide
a few simple examples. We use a simplified version due to Howgrave-
Graham [30, 31, 32].

In our work, we shall use standard notion and write Z to denote the
ring of integers, Q for the field of rationals, and R for the field of real
numbers.

We denote by nZ (resp., nQ and nR) the vector space with elements
that are n-tuples of elements of Z (resp., Q and R). We endow these

vector spaces with the Euclidean norm: if ,na R∈ then .22
ii aa ∑=

We also work with the rings of unvaried polynomials [] [],, xx QZ and

[],xR as well as multivariate polynomials in [] [],,,, yxyx QZ and

[]., yxR

Given a polynomial () ,i
ii xaxg ∑= we define the norm of ()xg by

() .22
ii axg ∑= Given nonnegative ,R∈X we define the weighted norm

of ()xg by () () .22 i
ii XaxXg ∑= Similarly, given a polynomial

() ,, ,,
ji

jiji yxbyxh ∑= we define the norm of ()yxh , by () =2, yxg

.2
,, jiji b∑ Given nonnegative ,, R∈YX we define the weighted norm of

()yxh , by () () ., 22 i
ii XayYxXh ∑=

A univariate polynomial is said to be monic when the coefficient of
the leading term is equal to 1. Of primary importance in this work is the
notion of a lattice (concept from the geometry of numbers), defined in the
next section.

A STUDY OF SOME METHODS FOR FINDING … 3

Let wuuu ,,, 21 … be linearly independent vectors in an normal

n-dimensional vector space. The lattice L spanned by ()21 ,, uu … is the

set of all integer linear combinations of .,,1 wuu … We call w the

dimension or rank of the lattice L, and that the lattice is full rank when
.nw = We alternatively say that L is generated by ()21 ,, uu … and that

()21 ,, uu … forms a basis of L.

We work mostly with lattice in two vector spaces: the set nR
endowed with the Euclidean norm; and, the set of polynomials in []xR of

degree at most ,1−n endowed with the norm given by =∑ −
=

21
0

i
i

n
i xa

.21
0 i

n
i a∑ −
=

There is a natural isomorphism between these two vector spaces
given by identifying a polynomial with its coefficients vector, and
throughout this work switch freely between representations as
convenient.

We denote by ()∗∗
wuu ,,1 … the vectors obtained by applying the

Gram-Schmidt orthogonalization process to the vectors .,,1 wuu … We

define the determinant of the lattice L as () .:det 1
∗

=∏= i
w
i uL For

example, if full rank lattice with basis in ,nR then the determinant of L

is equal to the determinant of the ww × matrix whose rows are the basis
vectors .,,1 wuu …

We note that every nontrivial lattice in R has infinitely many bases.
This gives rise to the notion of the quality of a basis for a lattice. The
notion of quality applied to a lattice depends on the application, but
usually includes some measure of the lengths or orthogonality of the
vectors in a basis.

ALI H. HAKAMI and MOHAMMED H. HAKAMI 4

The goal of lattice reduction is to find good lattice bases. The theory of
lattice reduction goes back to the work of Lagrange [36]; Gauss [24];
Hermite [29]; and Korkine and Zolotareff [35], who were interested in the
reduction of quadratic forms. Lattice theory was given its geometric
foundation in Minkowski’s famous work Geometrie der Zahlen (The
Geometry of Numbers) [40] in the late nineteenth century.

Minkowski (see Niven et al. [43]), proved that there is always a basis

wuu ,,1 … for a lattice L satisfying iu∏ ()Lw det⋅γ≤ for some wγ

that depend only on w (and not on the entries of iu). However, his proof

is nonconstructive, and it would be almost a century before the first
polynomial-time algorithm to compute reduced bases of lattices of
arbitrary dimension was discovered. This is the celebrated Lenstra-
Lenstra-lovaász lattice basis reduction algorithm. This algorithm is of
primary importance to the results in this work, and is summarized in
Lemma 2.1.

2. Lattices and it Representations

In order to discuss the running times of algorithms operating on
lattices, we must describe the representation of lattices given as input to

these algorithms. Suppose wuu ,,1 … are vectors in .nZ The running

time of an algorithm with input ()wuu ,,1 … is parameterized by ,, nw

and by the largest element of the ,iu defined by .max:
, ijjirgestla uu = For

lattices in ,nQ the situation is slightly more complex. Suppose we are

given the vectors wuu ,,1 … in .nQ There is some least integer D such

that wDuDu ,,1 … are all in .nZ Then we define the largest element by

().max:
, ijjirgestla Duu =

We note that all lattices in nR used in this work are in fact lattices

in nQ since they are represented using rational approximations.

A STUDY OF SOME METHODS FOR FINDING … 5

Lemma 2.1 (The LLL algorithm). Let L be a lattice spanned by
().,,1 wuu … The LLL algorithm, given (),,,1 wuu … produces a new

basis ()wbb ,,1 … of L satisfying:

(1)
2

1
2

2 ∗
+

∗ ≤ ii bb for all .1 wi ≤≤

(2) For all i, if ,1
1

∗−
=

∗ µ+= ∑ jj
i
jii bbb then 2

1≤µ j for all j.

The algorithm performs ()lwO 4 arithmetic operations, where

.log rgestlaul =

We note that an LLL-reduced basis satisfies some stronger
properties, but those are not relevant to our discussion.

We denote by ()nwTLLL , the running time of the LLL algorithm on a

basis ()wuu ,,1 … satisfying .log2 nu rgestla ≤ When ()wbb ,,1 … is the

output of the LLL algorithm on a basis for a lattice L, we say that it is an
LLL-reduced basis. We will make heavy use of the following fundamental
fact about the first vector in an LLL-reduced basis.

Lemma 2.2. Let L be a lattice and wbb ,,1 … be an LLL-reduced

basis of L. Then

() () .det2
14/1

1 wLb w−≤

Proof. Since ∗= 11 bb the bound immediately follows from:

()
()

.2det 4
1

1

−−∗ ⋅≥= ∏
ww

w
i

i
bbL 

In sequence sections, we may also need to bound the length of the second
vector in an LLL-basis. This is provided in the following lemma:

ALI H. HAKAMI and MOHAMMED H. HAKAMI 6

Lemma 2.3. Let L be a lattice and wbb ,,1 … be an LLL-reduced

basis of L. Then

() .det2 1
1

4
1

1
−





≤

ww

b
Lb

Proof. Observe

()
()()

,2det 4
211

21

−−−

⋅⋅≥=
−∗∗∏

www
i

i
bbbL

giving us

() .det2 1
1

4
2

1
2

−−





≤∗ ww

b
Lb

Then the bound follows from

() .2
22

112
1

22122
∗∗∗ ≤+≤+≤ bbbbb 

3. Finding Small Zeros to Univariate
Polynomial Congruences

Much of the work described in this work was inspired by the seminal
work of Coppersmith for finding small solutions to polynomial
congruences [16]. We use this very effective technique as a starting point
for many of our results. In subsequent sections, we will apply and extend
this technique to solve a number of cryptanalytic problems, and discuss
subtleties in its implementation and use. In this section, we will
introduce the general Coppersmith approach and provide a few simple
examples. We use a simplified version due to Howgrave-Graham [30, 31,
32].

Suppose we are giving a polynomial ()xf and a real number M, and

we wish to find a value Z∈0x for which () ().mod00 Mxf ≡ The main

tool we use is stated in the following simple fact. This has been attributed

A STUDY OF SOME METHODS FOR FINDING … 7

to many authors. Its first use we are aware of is in the work of Håstad
[28]; it was later used was used implicitly by Coppersmith [15, 16], and
stated in nearly the following form by Howgrave-Graham [32].

Recall that if () ,i
ixaxh ∑= then () () .22

i
i

i aXxXh ∑=

Theorem 3.1. Let () R∈xh be a polynomial of degree w, and let

R∈X be given. Suppose there is some Xx <0 such that

(1) () ,0 Z∈xh and for all .wi ≤≤1

(2) () .1
w

xXh <

Then () .00 =xh

Proof. Observe

() () () i
i

ii
i

ii
i

i
i XaX

xXaX
xXaxaxh ∑∑∑∑ ≤≤== 00

00

() ,1<≤ xXhw

but since () Z∈0xh we must have () .00 =xh 

Theorem 3.1 suggest we should look for a polynomial ()xh of small

weighted norm satisfying () .0 Z∈xh To do this, we will build a lattice of

polynomial related to f and use LLL to look for short vectors in that
lattice.

Our first observation is that () Z∈M
xf 0 because () ().mod00 Mxf ≡

Define

() (()) .:,
k

k M
xfxxg i

i =

Observe that () (())kk M
xfxxg i

i
0

00, = for all .0, ≥ki Furthermore, this is

true for all integer linear combinations of the ()., xgi k The idea behind

ALI H. HAKAMI and MOHAMMED H. HAKAMI 8

the Coppersmith technique is to build a lattice L from ()xXgi k, and use

LLL to find a short vector in this lattice. The first vector 1b returned by

the LLL algorithm will be a low-norm polynomial ()xXh also satisfying

() .0 Z∈xh If its norm is small enough, Theorem 3.1 would imply

() .00 =xh Traditional root-finding methods [45] such as Newton-

Raphson would then find .0x

To use Theorem 3.1 we must have () .1<xXh Fortunately, Lemma

2.2 allows us to compute a good bound on the norm of the first vector in
an LLL-reduced basis. We see

()
()

() .12det 24
1

w
xXhwL

www
<⇒<

−−−

 (3.1)

Usually, the “error term” of
()

24
1

2
www

w
−− −

 is insignificant compared to
()Ldet and this condition is simplified as

() () .11det
w

xXhL <⇒ (3.2)

The determinant of L depends on the choice of polynomials ()xXgi k,

defining the lattice. In general, it is a difficult problem to compute the
determinant of a lattice when the basis has symbolic entries. However, a
careful choice of basis polynomials ()xXgi k, may lead to a lattice with a

determinant that can be easily computed. Ideally, we will be able to
choose a basis so that the matrix whose rows are the coefficients vectors
of ()xXgi k, is full-rank and diagonal, with an explicit formula for the

entries on the diagonal.

We illustrate this technique with a few examples.

Example 3.1. A numerical example.

Suppose we wish to find a root 0x of the polynomial

()10001mod0532428492 ≡+− xx (3.3)

A STUDY OF SOME METHODS FOR FINDING … 9

satisfying .170 ≤x Define

() .10001
53242849:

2 +−= xxxf

We build a lattice with polynomial

{ () () ()}.17,1717,17,17,1 2 xfxfxfx

Writing this as a matrix gives us

.

1000117100011756981000117812274491000117303361521000128344976

0100011710001172849100011753240

00100011710001172849100015324

000170

00001

24232222

13121

1211































⋅⋅⋅−⋅⋅⋅⋅−⋅

⋅⋅⋅−⋅⋅

⋅⋅⋅−⋅

−−−−−

−−−

−−−

The determinant of this lattice is just the product of the entries on the
diagonal

() .100.21000117det 4410 −− ⋅≈⋅=L

Recall we required () ,det γ<L where

()
.106.552 42

5
4

155
−⋅≈=γ

−−−

Hence, condition (3.1) is satisfied. We find that the LLL algorithm
returns the polynomial

() .
10001

725001626251741970691743336941760517 2

234 +−+−−= xxxxxh

This leads to

() .
10001

7250016154422681915135
2

234 +−+−−= xxxxxh

The roots of ()xh over the reals are { }.413.307,16 …− We find the only

integer solution 0x to Equation (3.3) satisfying 170 ≤x is .160 =x

ALI H. HAKAMI and MOHAMMED H. HAKAMI 10

Example 3.2. Håstad’s original result.

Suppose we are given a monic polynomial ()xf of degree d with

integer coefficients, along with integers X and M. We wish to find an
integer 0x such that Xx <0 and () ().mod00 Mxf ≡ An early attempt

to solve this problem was given by Håstad [28].

We take as a basis for our lattice L the polynomials

{ () () () }.,,,,,1 12
M
XxfXxXxXx d−…

For instance, when 6=d this results in a lattice spanned by the rows of
the matrix in Figure 3.1.

()

()

()

()

()

.

1

:/

:

:

:

:

:

:1

16

5

4

3

2

5

4

3

2









































−−−−−− −MX

X

X

X

X

X

MXxf

Xx

Xx

Xx

Xx

Xx

Coppersmith’s lattice for finding small solutions to a polynomial
congruence. The ”−“ symbols denote nonzero off-diagonal entries whose

values do not affect the determinant.

Figure 3.1. Example Håstad lattice.

The dimension of this lattice is 1+= dw and its determinant is

()
()

.det 12
1

−
−

= MXL
ww

A STUDY OF SOME METHODS FOR FINDING … 11

To satisfy condition (3.1), we require ()
()

.2det 24
1 www

wL
−−−

< This leads to

() ,1
2
+⋅γ< ddMX a (3.4)

where
2

1
22

1 <γ≤ a for all d. Hence, when X satisfies bound (3.4), the

LLL algorithm will find a short vector ()xXh satisfying () 00 =xh and

() .1
d

xXh < Standard root-finding techniques will recover 0x from h.

The running time of this method is dominated by the time to run LLL
on a lattice of dimension 1+d with entries of size at most ().log MO

Example 3.3. Coppersmith’s generic result.

The first major improvement over Håstad’s result came from
Coppersmith [16]. Coppersmith suggested including powers and shifts of
the original polynomial in the lattice; as we shall see, this is the reason
for improved results. We use a presentation by Howgrave-Graham [31].
Again, suppose we are given a monic polynomial ()xf of degree d with

integer coefficients, along with integers X and M. We wish to find an
integer 0x such that Xx <0 and () ().mod00 Mxf ≡

Let 1>m be an integer to be determined later. Define

() () .:,
k

k 





= M

xfxxg i
i

We use as a basis for our lattice L the polynomials ()xXgi k, for

1,,0 −= di … and .1,,0 −= m…k For instance, when 3=d and 3=m

this result in the lattice spanned by the rows of the matrix in Figure 3.2.

ALI H. HAKAMI and MOHAMMED H. HAKAMI 12

()

()

()

()

()

()

()

()

()

.

1

:

:

:

:

:

:

:

:

:

28

27

26

15

14

13

2

2,2

2,1

2,0

1,2

1,1

1,0

0,2

0,1

0,0





















































−−−−−−

−−−−−−

−−−−−

−−−

−−−

−−−

−

−

−

−

−

−

MX

MX

MX

MX

MX

MX

X

X

xXg

xXg

xXg

xXg

xXg

xXg

xXg

xXg

xXg

Coppersmith’s lattice for finding small solutions to a polynomial
congruence. The ”−“ symbols denote nonzero off-diagonal entries whose

values do not affect the determinant.

Figure 3.2. Example Coppersmith lattice.

The dimension of this lattice is mdw = and its determinant is

()
() ()

.det 2
1

2
1 −−−

=
mwww

MXL

We require ()
()

;2det 24
1 www

wL
−−−

< this leads to

,2 1
1

2
1

1
1

−
−

−
− −

< ww
m

wMX

which can simplified to

,
1 ε−

⋅γ< dMX w

where ()1
1
−
−=ε wd

d and
2

1
22

1 <γ≤ w for all w. As we take ∞→m

we have ∞→w and therefore .0→ε In particular, if we wish to solve

for up to 0
1 ε−

< dMX for arbitrary ,0ε it is sufficient to take ,




=
d
kOm

where { }.log,1min
0

M
ε

=k

A STUDY OF SOME METHODS FOR FINDING … 13

We summarize this in the following theorem:

Theorem 3.2 (Univariate Coppersmith). Let a monic polynomial
()xf of degree d with integer coefficients and integer MX , be given.

Suppose
ε−

< dMX
1

 for some .0>ε There is an algorithm to find all
Z∈0x satisfying Xx <0 and () ().mod00 Mxf ≡ This algorithm runs

in time (()),log, MmmdTO LLL where 




=
d
kOm for { ,1min

ε
=k

}.log M

We note that the generic result is in some sense “blind” to the actual
polynomial being used (it takes into account only the degree, but not the
coefficients), and that there may be a more optimal choice of polynomials

k,ig to include in the lattice to solve a particular problem. By taking into

account an optimized set of polynomials, one can improve over this
generic (see, for example, [15, 37, 34]).

4. Finding Small Zeros to Bivariate
Polynomial Congruences

In this section, we generalize the results of the previous section to
finding solutions of bivariate polynomial congruences. We note that this
is a different application of these techniques than the solution of
bivariate polynomial equations (over the integers) [16]. We note that, in
contrast to the previous approach, the method here is only a heuristic.

In order to analyze bivariate polynomial congruences we must
introduce a few observations. The first is that there is a simple
generalization of Theorem 3.1 to multivariate polynomials.

Theorem 4.1. Let () []yxyxh ,, R∈ be a polynomial of which is a

sum of at most w monomials, and let R∈YX , be given. Suppose that

(1) () Z∈00 , yxh for some Xx <0 and ;0 Yy <

(2) () .1,
w

yYxXh <

ALI H. HAKAMI and MOHAMMED H. HAKAMI 14

Then () .0, 00 =yxh�

Suppose we are given a polynomial ()yxf , and a real number M, and

we wish to find a pair () ZZ� ×∈00 , yx for which () ().mod0, 00 Myxf ≡

The idea is a straightforward generalization of the approach in Section 3.
We define

() () ,,:,,,
k

k 





= M

yxfyxyxg ii
ji

and observe () Z∈00,, , yxg ji k for all .0,, ≥kji We build a lattice from

()yYxXg ji ,,, k by selecting certain indices ()k,, ji so that the

determinant of the resulting lattice is “small enough”, and compute an
LLL-reduced basis for this lattice. Lemma 2.2 bounds the norm of the
first vector ()yYxXh ,1 of this LLL-reduced basis, allowing us to use

Theorem 4.1 to show that () .0, 001 =yxh

However, a single bivariate equation may be insufficient to recover
the desired root. To obtain another relation, we use the second vector

()yYxXh ,2 of the LLL-reduced basis. Lemma 2.3 tells us

() ()
() .,
det2, 1

1
4

1
2

−





≤

ww

yYxXh
LyYxXh (4.1)

So we must also provide a lower bound on the norm of .1h

Suppose the indices of the k,, jig are chosen so that m≤k for some

m. Then all coefficients of ()yYxXg ji ,,, k are integer multiples of .mM −

Thus, since () ,0,1 ≠yYxXh we know it has at least one coefficient

greater than or equal to mM − in absolute value. So () .,1
mMyYxXh −≥

Equation (4.1) becomes

() (()) .det2, 1
1

42 −≤ w
w

LMyYxXh m

A STUDY OF SOME METHODS FOR FINDING … 15

This gives us

()
() ()

() .1,2det 22
1

4
1

w
yYxXhwML

www
m <⇒<

−−−−
− (4.2)

In particular, this condition is usually simplified as

() () .1,det 2 w
yYxXhML m <⇒− (4.3)

Hence, we obtain another polynomial () []yxyxh ,,2 R∈ such that

() .0, 002 =yxh � It follows that ()yxh ,1 and ()yxh ,2 are linearly

independent. If we make the assumption that ()yxh ,1 and ()yxh ,2 are

also algebraically independent, we can solve for 0y by computing the

resultant () ().,Res 21 hhyh x= Then 0y must be a root of (),yh and these

roots are easily determined. From this, we may find 0x as a root of

()., 01 yxh

It is not clear why linear independence of 1h and 2h should imply

algebraic independence, and in fact it is easy to construct (artificial)
examples where this is not the case, for instance, the polynomial ≡− yx

()Mmod0 has too many solutions (even in 2Z) thus the method must

fail at this step (since all other steps are provable). So at the moment this
step of the method is only a heuristic. However, growing experimental
evidence [33, 3, 9, 22] shows that it is a very good heuristic for
polynomials of interest in cryptology.

Example 4.1. Generic result.

Suppose we are given a polynomial ()yxf , of total degree d with at

least one monic monomial ada yx − of maximum total degree. Also
suppose integers ,, YX and M are given. We wish to find an integer pair

()00 , yx such that ,, 00 YyXx << and () ().mod0, 00 Myxf ≡

ALI H. HAKAMI and MOHAMMED H. HAKAMI 16

We will follow an approach suggested by Coppersmith [16], worked
out in detail by Jutla [33]. Let 1>m be an integer to be determined
later. Define

() () .:,,,
k

k 





= M

xfyxyxg ii
ji

We use as a basis for our lattice L the polynomials (),,,, yYxXg ji k where

the indices ()k,, ji come from the following set:

() (){ }.orand0,,and,,: 3 adjaijimddjijiS −<<≥≤++∈= kkk Z

Denote by mS the set of polynomials ()yYxXg ji ,,, k such that () .,, Sji ∈k

Every mSg ∈ has total degree less than md. Indeed, the set mS is in

one-to-one correspondence with the set of monomials { }mdyx ≤β+αβα

given by () ().,,,
adji

ji yxyYxXg −++↔ kka
k We may write these

polynomials as the rows of a matrix in a way that puts the coefficient of
the corresponding monomial on the diagonal. The resulting matrix is
lower diagonal, and the contribution of () mji SyYxXg ∈,,, k to the

diagonal is ().adjai YXM −++− kkk A straightforward but tedious
calculation shows that the resulting lattice has determinant

() () (()) .det 3122
1

000
2




























= +−−−

−

=

−βα
α−

=β=α
∏∏∏ dm
m

m
mdmd d

MMYXL kk

k

For simplicity we carry out the computation using low-order terms. We
find

() () () ()
.det

33
6
2

33
6
3 mommom

dd
MXYL

+−+=

To use condition (4.3), we require () .det mML − This leads to

()
,

1 ε−
< dMXY

A STUDY OF SOME METHODS FOR FINDING … 17

where 0→ε as .∞→m (We note that to use the more precise condition

(4.2) requires () ,det m
m ML −⋅γ< where 22

2

2
ww

wm
−−

=γ for ().22dmOw =

So () ,loglog
44

M
dmO

mM =γ− implying the method will not work if m is too

large and M is too small. In most applications, however, we find
0log ≈γmM and this term may be safely-ignored.)

We note that the shape or coefficients of a particular polynomial may
allow for a better selection of basis polynomials .,, kjig For instance,

when ()yxf , has degree d in each variable separately and is monic in

the monomial ,dd yx a different choice of basis leads to the improved

bound .3
2
dNXY <

5. Public Key Cryptography

In this section, we present the notion of a public key cryptosystem,
and in particular, the RSA public key cryptosystem. There are many good
formal definitions for public key cryptosystems [25, 21, 39, 49], and we do
not try to cover all of them here. Instead we try to develop the intuition
that will be useful later.

A public key (or asymmetric) cryptosystem is a method for securing
communication between parties who have never met before. More
precisely, a public key cryptosystem is described by the following:

● a set M of plaintexts (or messages), and a set C of ciphertexts;

● a set pK of public keys, and a set sK of secret keys;

● a key generation algorithm key-gen: ;sp KK ×→Z

● an encryption algorithm ;CKK →×p and,

● a decryption algorithm .: MCK →×sD

ALI H. HAKAMI and MOHAMMED H. HAKAMI 18

The key generation, encryption, and decryption algorithms can be
randomized and should run in expected time polynomial in the length of
their inputs. For all sp KK , output by “key-gen” and all messages

M∈M we must have that (()) .,, MMKEKD ps =

The input to the key generation algorithm is called the security
parameter. The hope is that as the security parameter increases, the
resources required to break the cryptosystem using the resulting keys
should increase more rapidly than the resources required to use it.
Ideally, the running time of a break should be a (sub-) exponential
function of n, while the running time of key-gen, E, and D should be some
(small) polynomial in n.

Suppose Ali is a user of a public key cryptosystem. To initialize she
chooses a security parameter n and computes ().gen-key:, nKK sp =

When another user Mohd wishes to send a message to Ali securely, he
obtains Ali’s public key pK and computes the ciphertext

().,: MKEC p= He sends ciphertext C is sent to Ali, who upon

obtaining it computes the original message ()., CKDM s=

The security requirements of a cryptosystem can be defined in many
ways. In general, when defining a security goal it is important to state
what resources are available to an attacker and what success criteria the
attacker must fulfill. A very basic requirement is that it should not be
possible to derive the secret key from the public key efficiently; indeed, it
is considered the most devastating cryptanalytic break to compute sK

from pK in (say) time polynomial in the security parameter. We will see

examples of this in next sections. We might consider security against
partial key exposure, where information about sK (say perhaps a subset

of bits of sK) allows an attacker to compute all of .sK There are many

issues that arise in determining good notions of security, and we do not
try to address them all here. There are many good surveys on the subject
[39, 21].

A STUDY OF SOME METHODS FOR FINDING … 19

Since the publication of New Directions, there have been countlessly
many proposals for public key cryptosystems. Our primary focus in this
work, however, will be on the RSA public key cryptosystem and simple
variants [46, 51, 50]. Now we present the basic RSA scheme in the next
section.

6. The RSA Public Key Cryptosystem

In this section, we outline the basic RSA public key cryptosystem
[46].

Let n be a security parameter. The key generation algorithm for RSA
computes primes p and q approximately 2/n bits in length, so that

pqN =: is an integer n bits in length. More precisely, p and q are
random primes subject to the constraint that pqN = is an n-bit number
and

.22 NpqN <<<

We denote the set of all such N as ().2Z Typically n = 1024, so that N is

1024 bits in length; p and q are primes typically chosen to be
approximately 512 bits each.

The key generation algorithm selects integers e and d such that
(),mod1 Ned φ≡ where () 1+−−=φ qpNN (also called the Euler

totient function). We call e the public exponent and d the secret exponent.
The value N is called the public modulus. An RSA public key is the pair
of integers ., eN The corresponding secret key is the pair ., dN Thus

() .2 ZZ ×== sp KK

How e and d are chosen depends on the application. Typically, e is
chosen to satisfy certain constraints (say e is small, like 3=e), then d is
picked from (){ }Nφ,,1 … to satisfy ().mod1 Ned φ≡ However, this

process may be done in reverse, and in many applications d is chosen
first (say to make d short, as in Subsection 7.4).

ALI H. HAKAMI and MOHAMMED H. HAKAMI 20

Messages and ciphertexts are represented as elements of

.∗== NZCM Suppose Mohd wishes to send a message ∗∈ NM Z to Ali.

He obtains Ali’s public key eN , and computes NMC e mod= which

he sends to Ali. Upon receiving C, Ali may compute

(),mod NMMC edd ≡≡

where the last equivalence follows from Euler’s theorem.

For digital signing, the roles of these operations are reversed. If Ali

intends to sign the message M she computes NMS d mod= and sends

SM , to Mohd. Mohd checks .mod
?

NSM e≡

This presentation simplifies RSA encryption and signing; in practice,
randomized padding of the messages [1, 5] is required before
exponentiation to prevent several security flaws [2, 20, 19]. We will not
go into the details here, since all attacks in subsequent sections succeed
regardless of the padding scheme that is being used.

7. Previous Attacks on RSA

In this section, we summarize several previously-known attacks on
the RSA public key cryptosystem relevant to this work. We follow the
presentation of the recent survey of attacks on RSA [6] and refer to it for
a comprehensive listing of attacks on RSA.

7.1. Factoring

The most straightforward attack on RSA is factorization of the
modulus .pqN = Once a factor p is discovered, the factor pNq /=

may be computed, so () 1+−−=φ qpNN is revealed. This is enough to

compute ().mod1 Ned φ≡ −

A STUDY OF SOME METHODS FOR FINDING … 21

The current fastest method for factoring is the “general number field

sieve” [26]. It has a running time of (()() () 3/1log1exp NOc ⋅+ ())3/2loglog N

for some .21 << c The size of N is chosen to foil this attack. The largest
integer that has been successfully factored using this method was the
512-bit RSA challenge modulus RSA-155, factored in 1999 using a
massive distributed implementation of GNFS on the Internet [14]. Even
though the speed of computer hardware continues to accelerate, it seems
unlikely that the best factoring algorithms will be able to factor say 1024-
bit RSA moduli in the next twenty years.

7.2. Håstad’s attack on broadcasted messages

In order to speed up RSA encryption (and signature verification), it is
useful to use small value for the public exponent e, say .3=e However,
this opens up RSA to the following attack, discovered by Håstad [28].

Let us start with a simpler version. Suppose Mohd wishes to send the
same message M to k recipients, all of whom are using public exponent
equal to 3. He obtains the public keys ie,iN for ,,,1 k…=i where

3=ie for all i. Naively, Mohd computes the ciphertext ii NMC mod3=

for all i and sends iC to the i-th recipient.

A simple argument shows that as soon as ,3≥k the message M is no

longer secure. Suppose Eman intercepts ,, 21 CC and ,3C where

.mod3
ii NMC = We may assume () 1,gcd =ji NN for all ji ≠

(otherwise, it is possible to compute a factor of one of the s,
iN). By the

Chinese Remainder Theorem, she may compute ∗∈ 321 ,, NNNC Z such

that .mod ii NCC ≡ Then ;mod 321
3 NNNMC ≡ however, since

iNM < for all i, we have .321
3 NNNM < Thus 3MC = holds over the

integers, and Eman can compute the cube root of C to obtain M.

ALI H. HAKAMI and MOHAMMED H. HAKAMI 22

Håstad proves a much stronger result. To understand it, consider the
following naive defense against the above attack. Suppose Mohd applies
a pad to the message M prior to encrypting it so that the recipients
receive slightly different messages. For instance, if M is m bits long,

Mohd might encrypt Mi m +⋅ 2 and send this to the i-th recipient.
Håstad proved that this linear padding scheme is not secure. In fact, he
showed that any fixed polynomial applied to the message will result in an
insecure scheme.

Theorem 7.1 (Håstad). Suppose kNN ,,1 … are relatively prime

integers and set ().minmin ii NN = Let () []xxg iNi Z∈ be k polynomials

of maximum degree d. Suppose there exists a unique minNM <

satisfying

() () { }.,,0mod0 k…∈= iallforNMg ii

Furthermore suppose .d>k There is an efficient algorithm which, given

()xgNi , for all i, computes M.

Proof. Since the iN are relatively prime, we may use the Chinese

Remainder Theorem to compute coefficients iT satisfying 1≡iT

()iNmod and ()ji NT mod0≡ for all .ji ≠ Setting () ()xgTxg iii∑=:

we see () ().mod0 iNMg ∏= Since the iT are nonzero we have that

()xg is not identically zero. If the leading coefficient of ()xg is not one,

then we may multiply by its inverse to obtain a monic polynomial ().xg

The degree of ()xg is at most d. By Coppersmith’s theorem (Theorem

3.2), we may compute all integer roots 0x satisfying () 00 ≡xg

iN∏mod and () ./1
0

d
iNx ∏< But we know (∏<< minNM

) () ,/1/1 d
ii NN ∏<k so M is such a root. 

A STUDY OF SOME METHODS FOR FINDING … 23

This can be applied to the problem of broadcast RSA as follows.
Suppose the i-th plaintext is padded with a polynomial (),xfi so that

(()) ().mod i
e

ii NMfC i≡ Then the polynomials () ()() Cxfxg ieii −=:

satisfy the above relation. The attack succeeds once ().degmax iii fe ⋅>k

We note that Håstad’s original result was significantly weaker,

requiring ()2dO=k messages, where ().degmax iii fed ⋅= This is

because the original result used the Håstad method for solving
polynomial congruences (see Example 3.2) instead of the full
Coppersmith method.

This attack suggests that randomized padding should be used in RSA
encryption.

7.3. Coppersmith attack on short random pads

Like the previous attack, this attack exploits a weakness of RSA with
public exponent .3=e Coppersmith showed that if randomized padding
is used improperly then RSA encryption is not secure [16]. Coppersmith
addressed the following question: if randomized padding is used with
RSA, how many bits of randomness are needed ?

To motivate this question, consider the following attack. Suppose
Mohd sends a message M to Ali using a small random pad before
encrypting. Eman obtains this and disrupts the transmission, prompting
Mohd to resend the message with a new random pad. The following
attack shows that even though Eman does not know the random pads
being used, she can still recover the message M if the random pads are
too short.

For simplicity, we will assume the padding is placed in the least

significant bits, so that () ()NrMC e
i

m
i mod2 += for some small m and

random .2mr < Eman now knows

() () () (),mod2andmod2 2211 NrMCNrMC emem +=+=

ALI H. HAKAMI and MOHAMMED H. HAKAMI 24

for some unknown 1, rM and .2r Define

() () () .:,and:, 21 CyxyxgCxyxf ee −+=−=

We see that when ,2 1rMx m += both of these polynomials have 12 rry −=

as a root mod N. We may compute the resultant () xyh Res:= ()gf , which

will be of degree at most .2e Then 12 rry −= is a root of () .mod Nyh

If ()
2/12/1 e

i Nr < for ,2,1=i then we have that 12 rr − .
2/1 eN<

By Coppersmith’s theorem (Theorem 3.2), we may compute all of the
roots (),yh which will include .12 rr − Once 12 rr − is discovered, we may

use a result of Franklin and Reiter [18] to extract M (see [6] for details).

7.4. Wiener's attack on short secret exponent

To speed up RSA decryption and signing, it is tempting to use a small
secret exponent d rather a random ().Nd φ≤ Since modular

exponentiation takes time linear in ,log2 d using a d that is

substantially shorter than N can improve performance by a factor of 10 or
more. For instance, if N is 1024 bits in length and d is 80 bits long, this
results in a factor of 12 improvement while keeping d large enough to
resist exhaustive search.

Unfortunately, a classic attack by Wiener [53] shows that a
sufficiently short d leads to an efficient attack on the system. His method
uses approximations of continued fractions. This attack is stated in the
following theorem:

Theorem 7.2 (Wiener). Suppose pqN = and .2 NpqN <<<

Furthermore suppose .3
1 4/1Nd < There is an algorithm which, given N

and e, generates a list of length log N of candidates for d, one of which will
equal d. This algorithm runs in time linear in log N.

A STUDY OF SOME METHODS FOR FINDING … 25

Proof. Since ()(),mod1 Ned φ≡ there is some k such that

() .1=φ− Ned k We may write this as

() () .1
NddN

e
φ

=−
φ

k

Hence ()N
e

φ
 is an approximation to .d

k The attacker does not know

(),Nφ but he does know N. Since NpqN 22 <<< we have −+ qp

,31 N< and thus () .3 NNN <φ− Now if the attacker uses N
e as an

approximation we find

() ()
Nd

kkkk NNNed
dN

e −φ+φ−
=−

()() .331
Nd
kk

Nd
k =≤φ−−= Nd

NNN

Since (),Ne φ< we know .3
1 4/1Nd <<k Thus

.
2

11
24/1 ddNdN

e <=− k

This is a classic approximation relation, and there are well-known
methods [27, Theorem 177] to solve it. Such methods produce a list of all
integers pairs ()ii d,k satisfying () 1,gcd =ii dk and

.
2

1
2
ii

i
ddN

e <−
k

This list is of length at most log N. Since () 1=φ− Ned k we know

() .1,gcd =dk Hence, idd = for some { }.log,,1 Ni …∈ 

ALI H. HAKAMI and MOHAMMED H. HAKAMI 26

8. Cryptanalysis via the Defining Equation

Since (),mod1 Ned φ≡ this implies there exists an integer k such

that

(() .111 =+−++ qpNed k (8.1)

This equation succinctly summarizes the RSA, and we will refer to it
frequently throughout this work.

As discussed earlier, a break of the RSA public key cryptosystem can
be defined in several ways. Most obviously, the scheme is broken if an
attacker is able to recover the secret exponent d. Since factorization of
the modulus pqN = leads to recovery of the private key d, this is also a

total break. All of the attacks presented in subsequent sections are of this
type, and involve either a direct computation of the private key d or one
of the factors p of the public modulus N, given the public key information

eN , alone.

In [4, 7, 8, 10, 11, 12, 13], we can see several examples where the
value qps += is computed from the public information. We note that

this immediately allows the recovery of the factorization of N; indeed, when

,qps += then p and q are the two roots of the equation .02 =+− Nsxx

We emphasize that our results in this work come from the basic RSA
equations; our attacks do not use plaintext/ciphertext pairs or signatures,
so they hold regardless of any padding schemes used. It is an interesting
open question to determine if the attacks presented in this work can be
improved if a particular padding is in use, or if the adversary is given
access to known or chosen plaintext/ciphertext pairs or chosen
signatures.

A STUDY OF SOME METHODS FOR FINDING … 27

9. The Lattice Factoring Method

In recent years, integers of the form qpN r= have found

applications in cryptography. For example, Fujioke et al. [23] use a

modulus qpN 2= in an electronic cash scheme. Okamoto and Uchiyama

[44] use qpN 2= for an elegant public key system. Recently, Takagi [51]

observed that RSA decryption can be performed significantly faster by

using a modulus of the form .qpN r= In all of these applications, the

factors p and q are primes of approximately the same size. The security of
the system relies on the difficulty of factoring N. We show that moduli of

the form qpN r= should be used with care. In particular, let p and q be

integers (not necessarily prime) of a certain length, say 512 bits each. We

show that factoring qpN r= becomes easier as r gets bigger. For

example, when r is on the order of ,log p our algorithm factors N in

polynomial time. This is a new class of integers that can be factored

efficiently. This is discussed in Subsection 11.2. When qpN r= with r on

the order of ,log p our algorithm factors N faster than the best

previously-known method- the elliptic curve method (ECM) [38]. Hence,

if p and q are 512-bit primes, then qpN r= with 23≈r can be factored

by our algorithm faster than with ECM. These results suggest that

integers of the form qpN r= with large r are inappropriate for

cryptographic purposes. In particular, Takagi’s proposal [47] should not
be used with a large r. Here is a rough idea of how the algorithm’s
efficiency depends on the parameter r. Suppose p and q are bit-k

integers and .qpN r= When ,ε= kr the our method runs

(asymptotically) in time () () ().2 log1 kk OT +ε−= Hence, when ,1=ε the

modulus N is roughly 2k bits long and the algorithm will factor N in

ALI H. HAKAMI and MOHAMMED H. HAKAMI 28

polynomial time in .k When ,2
1=ε the algorithm asymptotically

outperforms ECM. The algorithm’s efficiency and its comparison with
previously-known factoring methods is discussed in Section 13.

We ran experiments to compare our method to ECM factoring. It is

most interesting to compare the algorithms when ,2
1≈ε namely,

.log pr ≈ Unfortunately, since qpN r= rapidly becomes too large to
handle, we could only experiment with small values of p. Our largest
experiment involves 96-bit primes p and q and .9=r In this case, N is
960 bits long. Our results suggest that although our algorithm is
asymptotically superior, for such small prime factors the ECM method is
better. Our experimental results are described in Section 12.

An additional feature of our algorithm is that it is able to make use of
partial information about a factor. This is sometimes called factoring
with a hint. In particular, our method gives an algorithm for factoring

pqN = when half of the bits of the factor p are known. This gives an
elegant restatement of a theorem originally due to Coppersmith [16] for
factoring with a hint using bivariate polynomial equations. In the case
that ,1=r our presentation also coincides with an extension of
Coppersmith’s theorem developed by Howgrave-Graham [31]. Our
version has several practical advantages, and will be an important tool
used in partial key exposure attacks discussed in the next section. This is
discussed in Subsection 11.1.

10. Algorithm to Factor Integers of the Form qpN r=

Our goal in this section is to develop an algorithm to factor integers

of the form .qpN r= The main theorem of this section is given below.

Recall that () nn 2exp = and logarithms should be interpreted as

logarithms to the base 2.

A STUDY OF SOME METHODS FOR FINDING … 29

Theorem 10.1. Let qpN r= where epq < for some e. The factor p
can be recovered from ,, rN and c by an algorithm with a running time of

(),log1exp γ⋅




 ⋅

+
+ Opcr

c

where (()).log,2 NcrrTLLL +=γ The algorithm is deterministic, and

runs in polynomial space.

Note that is polynomial in log N. It is worthwhile to consider a few
examples using this theorem. For simplicity, we assume ,1=c so that
both p and q are roughly the same size. Taking c as any small constant
gives similar results.

● When 1≈c we have that .11





=

+
+

rOcr
c Hence, the larger r is, the

easier the factoring problem becomes. When pr logε= for a fixed ,ε the
algorithm is polynomial time.

● When ,log 2/1 pr ≈ then the running time is approximately

().logexp 2/1 p Thus, the running time is (asymptotically) slightly better

than the Elliptic Curve Method (ECM) [38].

● For small r, the algorithm runs in exponential time.

● When c is large (e.g., on the order of r) the algorithm becomes
exponential time. Hence, the algorithm is most effective when p and q are

approximately the same size. All cryptographic applications of qpN r=
we are aware of use p and q of approximately the same size.

We prove Theorem 10.1 by extending the approach for finding
solutions to univariate congruences developed in Section 4. The main tool
we will need is the following slight variant of Theorem 3.1.

Lemma 10.1. Let () []xxh R∈ be a polynomial of degree w, and let

Z∈m and R∈X be given. Suppose there is some Xx <0 such that

(1) () ,0 Zmqxh −∈ and

ALI H. HAKAMI and MOHAMMED H. HAKAMI 30

(2) () ./ wqxXh m−<

Then () .00 =xh

Proof. Apply Theorem 3.1 to the polynomial ().xhqm 

Note that for simplicity we assume r and c are given to the algorithm
of Theorem 10.1. Clearly, this is not essential since one can try all
possible values for r and c until the correct values are found.

10.1. Lattice-based factoring

We are given .qpN r= Suppose that in addition, we are also given

an integer P that matches p on a few of p’s most significant bits. In the
other words, XpP <− for some large X. For now, our objective is to

find p given ,, rN and P. This is clearly equivalent finding the point

.:0 pPx −=

Define the polynomial () () NxPxf r /: += and observe () ./10 qxf =

Let 0>m be an integer to be determined later. For m,,0 …=k and

any 0≥i define

() ().:, xfxxg i
i

k
k =

Observe that () Zmi
i qqxxg −− ∈= k
k 00, for all 0≥i and all

.,,0 m…=k

Theorem 3.1 suggests that we should look for a low-norm integer

linear combination of the k,ig of weighted norm less than ./ wq m− Let

L be the lattice spanned by

(1) ()xXgi k, for 1,,0 −= m…k and ,1,,0 −= ri … and

(2) ()xXg mj, for .1,,0 −−= mrwj …

A STUDY OF SOME METHODS FOR FINDING … 31

The values of m and w will be determined later. To use Lemma 2.2,
we must bound the determinant of the resulting lattice. Let M be a
matrix whose rows are the coefficients vectors for the basis of L (see
Figure 10.1). Notice that M is a triangular matrix, so the determinant of
L is just the product of the diagonal entries of M. This is given by

() () .det 2/12/
11

0

1

0

2 wmmmrwmj
w

mrj

ir
r

i

m
NXgNXNXM −+−

−

=

−+
−

=

−

=

≤


























= ∏∏∏ kk

k

Lemma 2.2 guarantees that the LLL algorithm will find a short vector
()xXh in L satisfying

() () () .2det2 2/12/4/4/ 222 wmmmrwwww NXLxXh −+≤≤ (10.1)

Furthermore, since ()xXh is an integer linear combination of the

(),, xXgi k the corresponding ()xh as an integer linear combination of the

()., xgi k Therefore () .0 Zmqxh −∈

()

()

()

()

()

()

()

()

()

.

1
1

38

37

36

25

24

13

12

3,2

3,1

3,0

2,1

2,0

1,1

1,0

0,1

0,0

8765432





















































−−−−−−

−−−−−−

−−−−−−

−−−−

−−−−

−−

−−

−

−

−

−

−

−

−

Nx

Nx

Nx

Nx

Nx

Nx

Nx

x

xXg

xXg

xXg

xXg

xXg

xXg

xXg

xXg

xXg
xxxxxxxx

Example LFM lattice for qpN 2= when 3=m and .9=d The entries
marked with ”−“ represent non-zero off-diagonal entries we may ignore.

Figure 10.1. Example LFM lattice.

ALI H. HAKAMI and MOHAMMED H. HAKAMI 32

To apply Theorem 3.1, we also require that

() ./ wqxXh m−<

Plugging in the bound on ()xXh from Equation (10.1) and reordering

terms, we see this condition is satisfied when

() () () ./2 2/12/2/ 22 wmmrwmwmww wNNNqX +−−< (10.2)

We may substitute .1 rpNq =− Because cpq < for some c, we know

.rcpN +< So inequality (10.2) is satisfied when the following holds:

() () () () ./2 2/12/2 wmrcmrwmw wqX ++−<

We note that ()() 2/2 ≤ww for all ,4≥w so this leads to

() () () .2/1
2/1/2 wmrcmrwmpX ++−<

Larger values of X allow us to use weaker approximations P, so we wish
to find the largest X satisfying the bound. The optimal value of m is

attained at ,2
1

0 



 −

+
= cr

wm and we may choose 0w so that 0w so that

2
10 −

+ cr
w is within cr +2

1 of an integer. Plugging in 0mm = and

{ }4,max 0ww = and working through tedious arithmetic results in the

bound

()
()

.4
1where,2/1

11
w

cr
crpX w

r
cr

c +−
+

=δ<
δ+−

+

Since 1<δ we obtain the slightly weaker, but more appealing bound

() .2/1
21 w

r
cr

c
pX

−−
+< (10.3)

So when X satisfies inequality (10.3), the LLL algorithm will find a vector

()xXh in L satisfying () ./ wqxXh m−< The polynomial ()xh is an

integer linear combination of the ()xgi k, and thus satisfies

A STUDY OF SOME METHODS FOR FINDING … 33

() .0 Zmqxh −∈ But since ()xXhw ,4≥ is bounded, we have by Theorem

3.1 that () .00 =xh Traditional root-finding methods [45] such as

Newton-Raphson can extract the roots of ().xh Given a candidate for ,0x

it is easy to check if 0xP + divides N. Since h is of degree ,1−w there

are at most w roots to check before 0x is found and the factorization of N

is exposed.

We summarize this result in the following theorem:

Theorem 10.2. Let qpN r= be given, and assume cpq < for some c.
Furthermore assume that P is an integer satisfying

() ,2/1
21 w

r
cr

c
ppP

−−
+<−

for some w. Then the factor p may be computed from ,,, crN and P by an

algorithm whose running time is dominated by ( ).log/2, NrwwTLLL ⋅

Note that as w tends to infinity, the bound on P becomes

() .2/1
1 cr

c
ppP +

−
<− When ,1=c taking 2rw = provides a similar

bound and is sufficient for practical purposes. We can now complete the
proof of the main theorem.

Proof of Theorem 10.1. Suppose qpN r= with cpq < for some c.
Let ().2 crrw += Then, by Theorem 10.2 we know that given an integer

P satisfying

,2
1 11 cr

c
ppP +

+−
<−

the factorization of N can be found in time ( ).log/2, NrwwTLLL ⋅ Let

.1: 





+
+=ε cr

c We proceed as follows:

(a) For all () rN /log,,1 …=k do:

(b) For all 12,,0 +ε= k…j do: n

ALI H. HAKAMI and MOHAMMED H. HAKAMI 34

(c) Set () .22 11 −ε−⋅+= kk jP

(d) Run the algorithm of Theorem 10.2 using the approximation P.

The outermost loop to determine the length k of p is not necessary if
the size of p is known. If p is k bits long then one of the candidate values

P generated in step (c) will satisfy () 112 −ε−<− kpP and hence

() ε−<− 12/1 ppP as required. Hence, the algorithm will factor N in the

required time.

11. Applications

11.1. Factoring pqN = with a hint

One immediate application of Theorem 10.2 is the factorization of
integers of the form pqN = when partial information about one of the

factors is known. Suppose () δ+4/n bits of one of factors of an n-bit

value pqN = is known for some small ,0>δ Coppersmith showed [16]

how to apply a bivariate version of his technique to solve the integer
factorization problem using this partial information. The lattice factoring
method described here is the first application of the univariate
Coppersmith method to the problem of integer factorization with a hint.

This method generalizes to integers of the form ,qpN r= while the

bivariate method does not. Therefore, it appears this technique appears
to be superior to the original bivariate Coppersmith approach.

Our method has significant performance advantages over the original
bivariate method of Coppersmith. Given () δ+4/n bits of one of the

factors of ,pqN = the bivariate method of Coppersmith builds a lattice

()22 9/ δn with entries of size at most ().2/2 δn Our method creates

lattices of dimension δ/n with entries of size at most ./2 2 δn This
results in a substantial performance improvement.

A STUDY OF SOME METHODS FOR FINDING … 35

Factoring pqN = knowing MSBs of p. We first describe the

result for pqN = when most significant bits of p are known.

Corollary 11.1 (MSBFact). Let pqN = of binary length n be given

and assumeq .pq < Furthermore assume 0>P and 4/nt > are

integers satisfying

() .2 2/ tnpP −<−

Then there is an algorithm that given ,, PN and t computes the factor p

in time (),2, nwwTLLL where () .4/ 





−
= nt

nw We denote the running

time of this algorithm by ().,MSBFact tnT

Proof. In order to use Theorem 10.2 we must choose w such that

() .2/1
2

2
11 wppP
−−

<−

This is achieved once
()

,2
2

2
1

2 w
n

pP
−

<− i.e., () .4/nt
nw

−
≥ 

Some comments:

● When P and p are bit-2/n integers such that P matches p on the t

most significant bits, we have () .2 2/ tnpP −<− Informally, we say that

MSBFact is given the t most significant bits of p.

● Note that as t increases, ()tnT ,MSBFact decreases. While this

follows from the fact that w is inversely proportional to t, it is also makes
intuitive sense since the factoring problem naturally becomes easier as
more bits of p are given to MSBFact.

● This algorithm can be extended to 4/nt ≤ by running MSBFact
sequentially with approximations

() () () ,2122: 14/2/ −− −+−= ntn
j jPP

ALI H. HAKAMI and MOHAMMED H. HAKAMI 36

for { () }.2,,1 14/ +−= tnj … One of these jP will satisfy <− pPj

() .2 14/ −n Hence the total running time is () (()4/,.2 MSBFact
14/ nnTtn +−

) () .2.1 14/ +−+ tn

● For () 14/ += nt we have .nw = In practice, this may result in a

lattice too large to handle (e.g., factoring 1024=n bit RSA moduli). The

previous trick can be applied to get a running time of () .2 4/ ctn +−
()()CnnT +4/,MSBFact for any 0>C to get   ./ Cnw =

● In most cases w can be taken to be much smaller, but the method is
no longer provable.

Factoring pqN = knowing LSBs of p. We now describe a slight

variant of the lattice factoring method that can be used to factor pqN =

when least significant bits of a factor p are known.

Corollary 11.2 (LSBFact). Let pqN = of binary length n be given

and assume .pq < Furthermore assume ,0,0 >> RP and 4/2/ ntn >≥

are integers satisfying

() .2,mod tRRpP ≥≡

Then there is an algorithm that given ,,, RPN and t computes the factor

p in time (),6, nwwTLLL where () .4/ 





−
= nt

nw We denote the running

time of this algorithm by ().,LSBFact tnT

Proof. In this problem, we are seeking to discover the value

() ,/:0 RpPx −= where .2 2/
0

tnx −< We cannot apply Theorem 10.2

directly, so we derive the following variant. We have () 1,gcd =NR

(otherwise we know the factorization of N immediately), so we can
compute a and b satisfying .1=+ bNaR Define the polynomial

() () ,/: NxaPxf r+=

A STUDY OF SOME METHODS FOR FINDING … 37

and observe

() () () ./// 1
00 Z−∈==+= qqaNapNaRxaPaRxf rrr

But

() () () ,0000 CxfbNxxfaRxf +=−=

for some ,Z∈C so () .1
0 Z−∈ qxf

This encodes the factorization problem as a univariate root-finding
problem, and we use exactly the same techniques used in Subsection 10.1
to solve it. Namely, let 0>m be an integer to be determined later. For

m,,0 …=k and any 0≥i define

().:, xfxg i
i

k
k =

Then () Zm
i qxg −∈0, k for all 0≥i and all .m≤k We build a lattice

from these polynomials and use LLL to find a short vector. The proof
follows as in Lemma 10.2, and we derive the same bound ()2/10 <x

.
21 w

c
cr

c
p

−−
+ In this case ,1== cr so the bound is achieved once

()
,2

2
2
1

20 w
n

x
−

≤ i.e., () .4/nt
nw

−
≥ 

Some comments:

● When P and p are bit-2/n integers such that P matches p on the t

least significant bits, we have ().2mod tpP ≡ Informally, we say that

LSBFact is given the t least significant bits of p.

● Note that as t increases, ()tnT ,LSBFact decreases. While this

follows from the fact that w is inversely proportional to t, it is also makes
intuitive sense since the factoring problem naturally becomes easier as
more bits of p are given to LSBFact.

ALI H. HAKAMI and MOHAMMED H. HAKAMI 38

● This algorithm can be extended to 4/nt ≤ by running LSBFact

with () ,.2 4/ RR tn −=′ and approximations ()RjPPj 1: −+= for { ,1=j

() }.2, 4/ tn −… One of these jP will satisfy ,mod RpPi ′≡ where

.2 4/nR ≥′ Hence the total running time is ()
LSBFact

14/ .2 Ttn +−

()().14/, +nn

● For () 14/ += nt we have .nw = In practice, this may result in a

lattice too large to handle (e.g., factoring 1024=n bit RSA moduli). The

previous trick can be applied to get a running time of () .2 4/ Ctn +−
()()CnnT +4/,LSBFact for any 0>C to get  ./ Cnw =

● In most cases w can be taken to be much smaller, but the method is
no longer provable, see [30, 37, 41, 42, 52].

11.2. Polynomial-time factoring for ()prqpN r log, Ω==

When pr log≈ the lattice factoring method runs in time polynomial

in log N. This is a new class of integers that can be efficiently factored.
We state this formally in the following:

Corollary 11.3. Let qpN r= where cpq < for some c. Suppose

.log pMr = The factor p can be recovered from ,, rN and c by an

algorithm with a running time of () (() ()).log,log/1.2 /1 NcrNMTLLL
Mc ++

The algorithm is deterministic, and runs in polynomial space.

Proof. This follows from Theorem 10.1 with the observation that

() ,1
log

11log1
M

c
cpM

cc
M

cpcr
c +≤

+
+

−+=






+
+

and () .log/12 NMr =

A STUDY OF SOME METHODS FOR FINDING … 39

12. Experiments

We implemented the lattice factoring method using Maple version 5.0
and Victor Shoup’s Number Theory Library package [47]. The program
operates in two phases. First, it guesses the most significant bits P of the
factor p, then builds the lattice described in Section 9. Using NTL’s
implementation of LLL, it reduces the lattice from Section 9, looking for
short vectors. Second, once a short vector is found, the corresponding
polynomial is passed to Maple, which computes the roots for comparison
to the factorization of N.

We tested MSBFact, LSBFact, and the algorithm of Theorem 10.2.
The algorithm of Theorem 10.1 uses Theorem 10.2 and simple exhaustive
search. Examples of running times for LSBFact are given in Section 12.
Running times for MSBFact are similar. Here we restrict attention to the
core algorithm given in Theorem 10.2. Example running times of this
algorithm are listed in Figure 12.1. To extend this to the full version
(Theorem 10.1) would require exhaustive search for the “bits given”.

P N r Bits Lattice Running

(bits) (bits) given dim. time

64 576 8 16 49 14 minutes

80 1280 15 20 72 5.2 hours

96 768 7 22 60 1.6 hours

96 960 9 22 65 3.2 hours

100 600 5 23 69 1.7 hours

Experiments performed on a 1GHz Intel Pentium III running Linux.

Figure 12.1. Running times for LFM.

This introduces a large multiplicative factor in the running times
listed above. The resulting running times are not so impressive; for such
small N, ECM performs much better. However, we expect the running
time to scale polynomially with the size of the input, quickly outpacing
the running times of ECM and NFS, which scale much less favorably.

ALI H. HAKAMI and MOHAMMED H. HAKAMI 40

Optimizations. The execution times of the algorithms presented in
this sections are dominated by the running time of the LLL algorithm. In
this section, we address several practical concerns that greatly improve
the performance of this step.

The first observation is that in our experiments, the short vector
returned by the LLL algorithm almost always corresponds to a
polynomial of degree .1−w This means that a linear combination which
yields a short vector will include those basis vectors corresponding to the

k,ig and k,jg of greatest degree. We focus attention of the LLL

algorithm on these basis vectors by using the following ordering on the
basis vectors:

● ()xXg mj, for 0,,1 …−−= mrwj followed by

● ()xXgi k, for 0,,1, …−= mmk and .1,,0 −= ri …

This resulted in a speedup of over factor of two compared to the
natural ordering, in which LLL spent a large amount of time reducing a
portion of the basis that would ultimately be irrelevant.

The second observation is that in an LLL-reduced lattice, the worst-
case result for the shortest vector will be

() (()).log3 α
α = pxppT

Implementations of LLL often try to improve this by reducing the “fudge

factor” of () .2 4/1−w However, as the analysis from Subsection 4.1 shows,
the final contribution of this term is negligible. Thus a high-quality basis
reduction is unnecessary, and running times can be greatly improved by
deactivating features such as Block Korkin-Zolotareff reduction.

13. Comparison to Other Factoring Methods

We restate the Theorem 10.1 so that it is easier to compare lattice
factoring to existing algorithms. We first introduce some notation. Let

()pTα be the function defined by

A STUDY OF SOME METHODS FOR FINDING … 41

() (()).logexp α
α = ppT

This function is analogous to the ()pL βα, function commonly used to

describe the running time of factoring algorithms [5]. Recall that

() (() ()).logloglogexp 1
,

α−α
βα β= pppL

One can easily see that ()pTα is slightly smaller than ().1, pLα We can

now state a special case of Theorem 10.1.

Corollary 13.1. Let qpN r= be given where p and q are both k bit

integers. Suppose ()ε= pr log for some .ε Then given N and r, a non-

trivial integer factor of N can be found in time

() ()[] ,logexp 1
1 γ⋅=⋅γ ε−

ε− ppT

where is polynomial in log N.

Asymptotic comparison. Let p, q be bit-k primes, and suppose we

are given .qpN r= We study the running time of various algorithms
with respect to k and r, and analyze their behaviours as r goes to

infinity. We write () .log ε= pr The standard running times [15, 37] of

several algorithms are summarized in the following table, ignoring
polynomial factors.

Method Asymptotic running time

Lattice factoring method (())ε−1logexp p

Elliptic curve method (() ())2/12/1 logloglog414.1exp pp⋅

Number field sieve (() ())3/22/1 logloglog902.1exp NN⋅

Since qpN r= and ,ε= kr we know that

.logloglog 1 ε+=≥+= kkrqprN

Rewriting the above running times in terms of k yields the following list
of asymptotic running times:

ALI H. HAKAMI and MOHAMMED H. HAKAMI 42

Method Asymptotic running time

Lattice factoring method () ()pT ε−
ε− = 1

1exp k

Elliptic curve method (()) ()() 414.1
2/1

2/12/1 log414.1exp pTp >⋅ k

Number field sieve (() (()) (() ()) 902.1
3.1

3/23/1 1902.1exp pT ε+
ε+ >ε+⋅ k

We are particularly interested in the exponential component of the

running times, which is tracked in Figure 13.1. Notice that when ,2
1=ε

then all three algorithms run in time close to ().2/1 pT

Practical comparison to ECM. Of particular interest in Figure 13.1

is the point at (),2
1i.e.,log =ε= pr where ECM, LFM, and NFS

have similar asymptotic running times. We refer the reader to

Comparison of subexponential running times of current factoring
methods as a function of r. Both axes are logarithmic, and polynomial
time factors are suppressed.

Figure 13.1. Asymptotic comparison of LFM with ECM and NFS.

Figure 12.1 for the sample running times with the lattice factoring
method on similar inputs.

Since some of the larger integers that we are attempting to factor
exceed 1000 bits, it is unlikely that current implementations of the

A STUDY OF SOME METHODS FOR FINDING … 43

number field sieve will perform efficiently. This leaves only the elliptic
curve method for a practical comparison. Below, we reproduce a table of
some example running times [52, 48] for factorizations performed by ECM.

size of p running time with 1=r predicted run time for large r

64 bits 53 seconds :8=r 848 seconds

96 bits 2 hours :9=r 50 seconds

128 bits 231 hours :10=r 7000 r hours

Clearly, the elliptic curve method easily beats the lattice factoring
method for small integers. However, LFM scales polynomially while ECM
scales exponentially. Based on the two tables above, we conjecture that
the point at which our method will be faster than ECM in practice is for

,qpN r= where p and q are somewhere around 400 bits and .20≈r

14. Conclusions

We showed that for cryptographic applications, integers of the form

qpN r= should be used with care. In particular, we showed that the

problem of factoring such N becomes easier as r get bigger. For example,
when pr logε= for a fixed constant 0>ε the integer N can be factored

in polynomial time. Hence, if p and q are k bit primes, the integer

qpN k= can be factored by a polynomial time algorithm. Even when

pr log≈ such integers can be factored in time that is asymptotically

faster than the best current methods. For much smaller r, our algorithm
provides an efficient method for factoring N provided a “hint” of
appropriate quality is available.

Our experiments show that when the factors p and q are small (e.g.,
under 100 bits) the algorithm is impractical and cannot compete with the
ECM. However, the algorithm scales better; we conjecture that as soon as
p and q exceed 400 bits each, it performs better than ECM when r is
sufficiently large.

ALI H. HAKAMI and MOHAMMED H. HAKAMI 44

Surprisingly, our results do not seem to follow directly from
Coppersmith’s results on finding small roots of bivariate polynomials
over the integers. Instead, we extend the univariate root-finding
technique. It is instructive to compare our results to the case of
unbalanced RSA where pqN = is the product of two primes of different

size, say p is much larger than q. Suppose p is a prime on the order of .sq
Then, the larger s is, the more bits of q are needed to efficiently factor N.

In contrast, we showed that when ,qpN r= the larger r is, the fewer bits
of p are needed.

One drawback of the lattice factoring method is that for each guess of
the most significant bits of p, the LLL algorithm has to be used to reduce
the resulting lattice.

It is an interesting open problem to devise a method that will enable
us to run LLL once and test multiple guesses for the MSBs of p. This will
significantly improve the algorithm’s running time. A solution will be
analogous to techniques that enable one to try multiple elliptic curves at
once in the ECM. Another question is to generalize the LFM to integers

of the form ,srqpN = where r and s are approximately the same size.

Acknowledgements

The authors are grateful to the referees and the editors for the
careful reading of the manuscript. The remarks and the corrections
motivated the authors to make some valuable improvements.

References

 [1] M. Bellare and P. Rogaway, Optimal Asymmetric Encryption, In Proceedings
Eurocrypt 94, Lecture Notes in Computer Science, Vol. 950, Springer-Verlag,
pp. 92-111, 1994.

 [2] D. Bleichenbacher, Chosen Ciphertext Attacks Against Protocols based on the RSA
Encryption Standard PKCS #1, In Proceedings Crypto 98, Lecture Notes in
Computer Science, Vol. 1462, Springer-Verlag, pp. 1-12, 1998.

A STUDY OF SOME METHODS FOR FINDING … 45

 [3] D. Bleichenbacher, On the Security of the KMOV Public Key Cryptosystem,
In Proceedings Crypto 97, Lecture Notes in Computer Science, Vol. 1294, Springer-
Verlag, pp. 235-248, 1997.

 [4] D. Boneh, Finding Smooth Integers using CRT Decoding, In Proceedings STOC 2000,
pp. 265-272, Portland, Oregon, 2000.

 [5] D. Boneh, Simplified OAEP for the RSA and Rabin Functions, In Proceedings Crypto
2001, Lecture Notes in Computer Science, Vol. 2139, Springer-Verlag, pp. 275-291,
2001.

 [6] D. Boneh, Twenty years of attacks on the RSA cryptosystem, Notices of the AMS
46(2) (1999), 203-213.

 [7] D. Boneh, R. DeMillo and R. Lipton, On the Importance of Checking Cryptographic
Protocols for Faults, In Proceedings Eurocrypt 97, Lecture Notes in Computer
Science, Vol. 1233, Springer-Verlag, pp. 37-51, 1997. 90 BIBLIOGRAPHY91.

 [8] D. Boneh and G. Durfee, Cryptanalysis of RSA with Private Key d Less than

,292.0N In Proceedings Eurocrypt 99, Lecture Notes in Computer Science,
Vol. 1592, Springer-Verlag, pp. 1-11, 1999.

 [9] D. Boneh and G. Durfee, Cryptanalysis of RSA with private key d less than ,292.0N
IEEE Transactions on Information Theory 46(4) (2000), 1339-1349.

 [10] D. Boneh, G. Durfee and Y. Frankel, An Attack on RSA Given a Small Fraction of
the Private Key Bits, In Proceedings Asiacrypt 98, Lecture Notes in Computer
Science, Vol. 1514, Springer-Verlag, pp. 25-34, 1998.

 [11] D. Boneh, G. Durfee and N. Howgrave-Graham, Factoring qpN r= for Larger,
In Proceedings Crypto 99, Lecture Notes in Computer Science, Vol. 1666, Springer-
Verlag, pp. 326-337, 1999.

 [12] D. Boneh and R. Venkatesan, Breaking RSA may not be Equivalent to Factoring,
In Proceedings Eurocrypt 98, Lecture Notes in Computer Science, Vol. 1403,
Springer-Verlag, pp. 59-71, 1998.

 [13] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz and A. Sahai, Exposure-Resilient
Functions and All-or-Nothing Transforms, In Proceedings Eurocrypt 2000, Lecture
Notes in Computer Science, Vol. 1807, Springer-Verlag, pp. 453-469, 2000.

 [14] S. Cavallar, B. Dodson, A. K. Lenstra, W. Lioen, P. L. Montgomery, B. Murphy, H. te
Riele, K. Aardal, J. Gilchrist, G. Guillerm, P. Leyland, J. Marchand, F. Morain, A.
Muffett, C. Putnam, C. Putnam and P. Zimmermann, Factorization of 512-bit RSA
Key using the Number Field Sieve, In Proceedings Eurocrypt 2000, Lecture Notes in
Computer Science, Vol. 1807, Springer-Verlag, 2000, Factorization announced in
August, 1999.

 [15] D. Coppersmith, Modifications to the number field sieve, Journal of Cryptology
6 (1993), 169-180.

 [16] D. Coppersmith, Small solutions to polynomial equations, and low exponent RSA
vulnerabilities, Journal of Cryptology 10 (1997), 233-260.

ALI H. HAKAMI and MOHAMMED H. HAKAMI 46

 [17] D. Coppersmith, Finding Small Solutions to Small Degree Polynomials,
In Proceedings Cryptography and Lattice Conference, Lecture Notes in Computer
Science, Vol. 2146, Springer-Verlag, 2001.

 [18] D. Coppersmith, M. Franklin, J. Patarin and M. Reiter, Low Exponent RSA with
Related Messages, In Proceedings Eurocrypt 96, Lecture Notes in Computer Science,
Vol. 1070, Springer-Verlag, pp. 1-9, 1996.

 [19] D. Coppersmith, S. Halevi and C. S. Jutla, ISO 9796 and the New Forgery Strategy,
Presented at Rump Session of Crypto 99, 1999.

 [20] S. Coron, D. Naccache and J. P. Stern, On the Security of RSA Padding,
In Proceedings Crypto 99, Lecture Notes in Computer Science, Vol. 1666, Springer-
Verlag, pp. 1-18, 1999.

 [21] R. Cramer and V. Shoup, A Practical Public Key Cryptosystem Provably Secure
Against Adaptive Chosen Ciphertext Attack, Advances in Cryptology-Crypto 98,
Lecture Notes in Computer Science, Vol. 1462, Springer-Verlag, pp. 13-25, 1998.

 [22] G. Durfee and P. Nguyen, Cryptanalysis of the RSA Schemes with Short Secret
Exponent from Asiacrypt 99, In Proceedings Asiacrypt 2000, Lecture Notes in
Computer Science, Vol. 1976, Springer-Verlag, pp. 14-29, 2000.

 [23] A. Fujioke, T. Okamoto and S. Miyaguchi, ESIGN: An Efficient Digital Signature
Implementation for Smartcards, In Proceedings Eurocrypt 91, Lecture Notes in
Computer Science, Vol. 547, Springer-Verlag, pp. 446-457, 1991.

 [24] C. F. Gauss, Disquisitiones Arithmeticae, Leipzig, 1801.

 [25] O. Goldreich, Foundations of Cryptography – Fragments of a Book.

 [26] D. Gordon, Discrete Logarithms in GF(p) using the number field sieve, SIAM J.
Discrete Math. 6 (1993), 124-138.

 [27] G. Hardy and E. Wright, An Introduction to the Theory of Numbers, Fourth Edition,
Oxford Clarendon Press, 1975.

 [28] J. Håstad, Solving simultaneous modular equations of low degree, SIAM Journal on
Computing 17(2) (1998), 336-341.

 [29] C. Hermite, Extraits de lettres de M. Hermite à M. Jacobi sur différents objets de la
théorie des nombres, deuxième letter, J. Reine Agnew., Math. 40 (1850), 279-290.

 [30] N. Howgrave-Graham, Computational Mathematics Inspired by RSA, Ph.D. Thesis,
University of Bath, 1999.

 [31] N. Howgrave-Graham, Extending LLL to Gaussian integers, Unpublished
Manuscript, March 1998.

http://www.bath.ac.uk/~mapnahg/pub/gauss.ps

 [32] N. Howgrave-Graham, Finding Small Roots of Univariate Modular Equations
Revisited, In Proceedings Cryptography and Coding, Lecture Notes in Computer
Science, Vol. 1355, Springer-Verlag, pp. 131-142, 1997.

A STUDY OF SOME METHODS FOR FINDING … 47

 [33] C. Jutla, On Finding Small Solutions of Modular Multivariate Polynomial Equations,
In Proceedings Eurocrypt 98, Lecture Notes in Computer Science, Vol. 1403,
Springer-Verlag, pp. 158-170, 1998.

 [34] P. Kocher, Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
other Systems, In Proceedings Crypto’ 96, Lecture Notes in Computer Science,
Vol. 1109, Springer-Verlag, pp. 104-113.

 [35] A. Korkine and G. Zolotareff, Sur les formes quadratiques, Math. Ann. 6 (1873),
336-389.

 [36] L. Lagrange, Recherches d’arithmétique, Mouv. Mém. Acad., 1773.

 [37] A. Lenstra and H. W. Lenstra Jr., Algorithms in Number Theory, In Handbook of
Theoretical Computer Science (Volume A: Algorithms and Complexity), Chapter 12,
pp. 673-715, 1990.

 [38] H. W. Lenstra Jr., Factoring integers with elliptic curves, Annuals of Mathematics
126 (1987), 649-673.

 [39] A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography,
CRC Press, 1996.

 [40] H. Minkowski, Geometrie der Zahlen, Teubner-Verlag, Leipzig, 1896.

 [41] P. Nguyen and J. Stern, Lattice Reduction in Cryptology: An Update, In Algorithmic
Number Theory – Proceedings of ANTS IV, Lecture Notes in Computer Science,
Vol. 1838, Springer-Verlag, 2000.

 [42] P. Nguyen and J. Stern, The Two Faces of Lattices in Cryptology, In Proceedings
Cryptography and Lattices Conference, Lecture Notes in Computer Science,
Vol. 2146, Springer-Verlag, 2001.

 [43] I. Niven, H. Zuckerman and H. Montgomery, An Introduction to the Theory of
Numbers, Jon Wiley & Sons, Fifth Edition, pp. 87-88, 1991.

 [44] T. Okamoto and S. Uchiyama, A New Public Key Cryptosystem as Secure as
Factoring, In Proceedings Eurocrypt 98, Lecture Notes in Computer Science,
Vol. 1403, Springer-Verlag, pp. 310-318, 1998.

 [45] W. Press, S. Teukolsky, W. Vetterling and B. Flannery, Numerical Recipes in C: The
Art of Scientific Computing, Second Edition, Cambridge University Press, pp. 347-393,
1997.

 [46] R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and
public-key cryptosystems, Communications of the ACM 21(2) (1978), 120-126.

 [47] V. Shoup, Number Theory Library (NTL).

http://www.shoup.net/ntl/

 [48] R. Silverman and S. Wagstaff, A practical analysis of the elliptic curve factoring
algorithm, Mathematics of Computation 61 (1993).

 [49] D. Stinson, Cryptography: Theory and Practice, CRC Press, 1994.

ALI H. HAKAMI and MOHAMMED H. HAKAMI 48

 [50] H. Sun, W. Yang and C. Laih, On the Design of RSA with Short Secret Exponent,
In Proceedings Asiacrypt 99, Lecture Notes in Computer Science, Vol. 1716,
Springer-Verlag, pp. 150-164, 1999.

 [51] T. Takagi, Fast RSA-Type Cryptosystem Modulo ,qpk In Proceedings Crypto 98,
Lecture Notes in Computer Science, Vol. 1462, Springer-Verlag, pp. 318-326, 1998.

 [52] E. Verheul and H. van Tilborg, Cryptanalysis of less short RSA secret exponents,
Applicable Algebra in Engineering, Communication, and Computing 8 (1997),
425-435.

 [53] M. Wiener, Cryptanalysis of short RSA secret exponents, IEEE Transactions on
Information Theory 36(3) (1990), 553-558.

g

