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Abstract 

In this work, we present the adjacency and generalized inverse matrices of the 
three optimal ( ) 444 ×  semi-Latin squares. These matrices are then used in 
conjunction with each other to discriminate amongst the squares by computing 
and comparing the variance of adjacency induced by the treatments in each 
square with those of the other squares, with the aid of MATLAB. The square 
which minimizes both the maximum variance of adjacency and the number of 
distinct values of the variance of adjacency amongst the squares, and where tie 
occurs, also have a minimum value of this variance is considered most 
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preferable, and so on. Results show that the square, 2Ω  is the most preferable 

for experimentation, while 1Ω  is preferable to ,3Ω  which is consistent with 

earlier results by Uto and Chigbu [23]. 

1. Introduction 

Designs for experiments are generally assessed for purposes of 
preference on the basis of some well-defined criteria known as optimality 
criteria, which follows from the corresponding efficiency factor. Some of 
the popular optimality criteria include the A-, D- and E-criteria, each of 
them being a function of the canonical efficiency factors of the design. 
Given a class of designs ,Ω  any design Ω∈ω  which maximizes the 

value of the efficiency factor among all the designs in Ω  is said to be 
optimal in ;Ω  see Bailey and Royle [5]. 

A ( ) 444 ×  semi-Latin square is a row-column design which has 

four rows and four columns with four treatments per row-column 
intersection. There are sixteen treatments in the design which are 
allocated to the plots in a manner that each treatment appears once in 
each row and once in each column; see, for example, Bailey and Chigbu 
[4], Bailey [2, 3], as well as Bailey and Royle [5]. Semi-Latin squares have 
been found useful for experiments in diverse fields; ranging from 
agriculture and industry to consumer testing; see Preece and Freeman 
[18], as well as Bailey [2, 3] for some of its uses. 

The semi-Latin squares considered in this work, ,, 21 ΩΩ  and 3Ω  

which are given in Figures 1, 2, and 3, respectively, have been found to be 
A-, D- and E-optimal by Chigbu [8]. Though equally optimal with respect 
to the aforementioned criteria, these designs have different treatment 
concurrences which suggests some inherent differences existing among 
them; see Chigbu [8, 9]. Chigbu [9] found the best, the most preferable, of 
these squares using an analytic approach by obtaining the variance of 
elementary contrasts of treatments for each square and comparing the 
resulting contrasts with minimum variances among the squares; but this 
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approach did not induce a proper ordering of the squares. Sequel to this, 
Chigbu [10] adopted a numerical approach which involves computation of 
generalized inverses of the information matrices of these squares and 
thus ascertained the same square due to Chigbu [9] as the best and rated 
the other two the same on a common basis. Uto and Chigbu [23] 
distinguished each of these squares from another using a near regular 
graph design approach by computing the variance of the difference in 
concurrences between pairs of treatments for each square and comparing 
the results for minimum variance among the squares. Their best design 
corresponds to the one of Chigbu [9, 10]. 

In this paper, we set out to further distinguish among these squares 
with a view to ordering them to know which should be preferred to the 
other for experimentation using a different approach, which involves 
computing the variance of adjacency for each treatment in each of these 
designs and then comparing the results for each design with those of the 
other competing designs. 

2. Preliminaries 

A semi-Latin square has its treatments orthogonal to both the rows 
and columns; by ignoring the rows and columns, the resulting design is a 
doubly-resolvable incomplete-block design, which is its quotient block 
design; see Bailey [2]. Hence, a semi-Latin square is usually assessed for 
efficiency as a binary incomplete-block design where each row-column 
intersection is regarded as a block of its equivalent incomplete-block 

design, and symbols its treatments. There are 2n  blocks each of size ,k  

and kn  treatments each occurring n times in the design; see Bailey [2, 3] 
as well as Bailey and Royle [5]. 

Incomplete block designs are usually, associated with four matrices: 
the incidence matrix denoted by N, whose ( ) th-, ji  entries are the 

number of times treatment i appears in block j; the concurrence matrix 
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NN ′; the information matrix NNrIL ′−=
k
1  (r being the number of 

replications of each treatment in the design = n, the number of rows or 
columns of a semi-Latin square; I a conformable identity matrix); and the 
variance-covariance matrix Q. The variance-covariance matrix is any 
generalized-inverse of L. The concurrence matrix is important in 
developing the theory of incomplete block designs. Generally, while the 
concurrence matrix summarizes the design, the variance-covariance 
matrix summarizes the analysis; see Chigbu [7]. 

The adjacency matrix is like the concurrence matrix except that the 
leading diagonal entries are all zeros. The information matrix L is a    
sub-rank matrix of order ( )( ) ttLt ,1rank −≤  being the number of 

treatments in the kn=design  for this work. In particular,                  

( ) 1rank −= tL  for connected designs, but for disconnected designs 

( ) ;1rank −< tL  see, for example, Onukogu and Chigbu [14], Chigbu [7], 

as well as Cameron et al. [6]. The L matrix is thus singular and non-
invertible; hence, its generalized inverse is usually sought. 

The adjacency and generalized matrices have found several 
applications. For instance, while the adjacency matrix (as well as its 
powers) plays a prominent role in graph theory, where it is used to 
determine the number of circuits as well as the number of distinct paths 
of certain lengths from the i-th to the j-th vertex of its variety-
concurrence graph; see, for example, Paterson [15], Wild [24], 
Raghavarao [19], as well as Onukogu and Chigbu [14]; the generalized 
inverse matrix plays an important role in linear algebra in determining 
the solutions of linear equations when the coefficient matrix has no 
inverse; see, for example, Searle [21], Penrose [16] and Greville [12]. 
Moreover, the generalized inverse matrix is used to find the variance of 
contrasts between pairs of treatments for connected designs; see, for 
example, Cameron et al. [6], Chigbu [7, 9, 10] as well as Onukogu and 
Chigbu [14]. The most widely known type of generalized inverse matrix is 
the Moore-Penrose generalized inverse. 
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A   α  a 1 B β  b 2 C γ  c 3 D δ  d 4 

B   γ  d 2 A δ  c 1 D α  b 4 C β  a 3 

C   δ  b 4 D γ  a 3 A β  d 2 B α  c 1 

D β  c 3 C α  d 4 B δ  a 1 A γ  b 2 

Figure 1. The semi-Latin square, .1Ω  

1A  2A  α  a 1B  2B  β  b 1C  2C  γ  c 1D  2D  δ  d 

1B   2B  γ  d 1A   2A  δ  c 1D  2D  α  b 1C  2C  β  a 

1C   2C  δ  b 1D  2D  γ  a 1A  2A  β  d 1B  2B  α  c 

1D  2D  β  c 1C  2C  α  d 1B  2B  δ  a 1A  2A  γ  b 

Figure 2. The semi-Latin square, .2Ω  

A α  a 1 B β  b 2 C γ  c 3 D δ  d 4 

B γ  d 2 A δ  c 1 D α  b 4 C β  a 3 

C δ  b 4 D γ  a 3 A β  d 1 B α  c 2 

D β  c 3 C α  d 4 B δ  a 2 A γ  b 1 

Figure 3. The semi-Latin square, .3Ω  

3. Definitions 

Definition 3.1 (Connected design). A connected design is one in 
which all elementary contrasts of treatments are estimable. 
Equivalently, a design is said to be connected if, given any two 
treatments α  and ,β  it is possible to construct a chain of treatments 

β=αααα=α n,,,, 210 …  such that every consecutive pair of 

treatments in the chain occurs together in a block. 
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Definition 3.2 (Variety-concurrence graph). The variety-concurrence 
graph, ( ),G  of a block design   is a graph with treatments as vertices 

and the number of edges between any two treatments iτ  and ( )jij ≠τ  

equals the number of blocks which iτ  and jτ  occur together in .  

Definition 3.3 (Adjacency matrix). The adjacency matrix of the 
variety-concurrence graph of an incomplete-block design is the square 
matrix, A, of order t, whose ( ) th-, ji  entry ( )ji ≠  is the number of lines 

joining the points i and j, taken to be zero if .ji =  It is given by 

,rINNA −′=   (3.3.1) 

where N is the treatment-by-block incidence matrix of order bt ×  (t and b 
denoting the number of treatments and blocks, respectively, in the 
design); NN ′  the tt ×  concurrence matrix; r the number of replications 
of each treatment in the design = n in this work; and I a conformable 
identity matrix. 

Definition 3.4 (Moore-Penrose generalized inverse). Given a matrix 

,, nmMA ∈  the Moore-Penrose generalized inverse of A, denoted ,+A  is 

the unique matrix in mnM ,  satisfying the conditions: 

(1) ,AAAA =+  

(2) ,+++ = AAAA  

(3) ( ) ,++ =′ AAAA  

(4) ( ) ;AAAA ++ =′  

see, for example, Penrose [16], Plemmons and Cline [17], Searle [21], Fill 
and Fishkind [11], as well as Rakha [20]. 
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4. Methods 

The adjacency matrix, 3,2,1; =−′= inINNA iii  of the variety-

concurrence graph for the semi-Latin squares ( ),3,2,1=Ω ii  

respectively, under consideration were adapted from Uto and Chigbu 
[22], which were generated with the aid of MATLAB. Subsequently, the 

generalized inverse 3,2,1, =+ iLi  of the respective information matrix 

3,2,1;1 =′−= − iNNnIL iii k  was generated also via MATLAB. 

We note that for connected designs, the matrix ( ),aJL +  a being a 

scalar multiple and J an all-ones matrix is non-singular and invertible 
for any 0≠a  and its inverse 

( ) ,1−+ += aJLL   (4.1) 

is a generalized inverse of L, the information matrix; see, for example, 

Cameron et al. [6] and Chigbu [10]. Each generalized inverse ,+iL  

3,2,1=i  in this work was obtained by setting 1=a  in Equation (4.1). 

Hence 

( ) .3,2,1,1 =∀+= −+ iJLL ii   (4.2) 

Each generalized inverse +
iL  satisfies the Moore-Penrose inverse 

properties given in the preceding section with respect to the iL  and even 

the ( )JL +  matrices. In some algebraic sense, the all-ones matrix, J, in 

conjunction with an identity matrix, I, of the same order span some 
subspace of the real vector space associated with each design. The all-
ones matrix is analogous to the sum of all the zero-one matrices of order 
sixteen that make up the association scheme on the set of sixteen 
treatments of each of the semi-Latin squares; see Chigbu [10] and 
Cameron et al. [6]. 
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Again, we note that design optimality criteria are real-valued 

functions of the matrix +L  that it is desirable to minimize; see Cameron 
et al. [6]. Moreover, we remind that a G-optimal design minimizes the 
maximum variance of the estimate of a surface (response), given by 

[ ( ( ) )],maxmin 1 xMx ξ′ −  where x ′  is a p-component row vector with 
components corresponding to the entries of each row of the design matrix, 

X; and ( ),1 ξ−M  the inverse of the information matrix; see, for example, 
Onukogu [13], Atkinson and Donev [1] as well as Onukogu and Chigbu 
[14]. 

Furthermore, as given by Cameron et al. [6], a design is optimal if the 
number of its distinct pairwise treatment variances is fewest when 
compared with those of the others in the same class with it. 

We then computed for each design, using MATLAB, the variance of 
adjacency induced by each treatment, j in the design, given by 

( ) k,njuLuA jjj ,,2,1,Var …=′= +   (4.3) 

where ju′  denotes an kn -component row vector with components the 

entries of the j-th row of the adjacency matrix, A, of the variety-

concurrence graph of the design; and ,+L  the generalized inverse of the 
information matrix of the design, as given in Equation (4.2). The results 
of the computed variances were then compared with each other amongst 
the squares. The square which satisfies the property: 

[ ( )]jj uLu +′maxmin  over all the squares, and also has a minimum 

number of distinct values of this variance amongst them becomes the 
most preferable. In particular, if tie occurs, the square having a 
minimum variance is the most preferable, and so on. 

5. Results and Discussion 

The adjacency matrices ,, 21 AA  and 3A  of the variety-concurrence 

graph of the respective semi-Latin squares ,, 21 ΩΩ  and 3Ω  are 

presented in Tables 1, 2, and 3. 
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Table 1. The incidence matrix, 1A  for 1Ω  

0 1 1 2 0 1 1 2 0 1 1 0 0 1 1 0 

1 0 1 2 1 0 1 0 1 0 1 0 1 0 1 2 

1 1 0 2 1 1 0 0 1 1 0 2 1 1 0 0 

2 2 2 0 2 0 0 0 0 0 2 0 0 2 0 0 

0 1 1 2 0 1 1 2 0 1 1 0 0 1 1 0 

1 0 1 0 1 0 1 2 1 0 1 2 1 0 1 0 

1 1 0 0 1 1 0 2 1 1 0 0 1 1 0 2 

2 0 0 0 2 2 2 0 0 2 0 0 0 0 2 0 

0 1 1 0 0 1 1 0 0 1 1 2 0 1 1 2 

1 0 1 0 1 0 1 2 1 0 1 2 1 0 1 0 

1 1 0 2 1 1 0 0 1 1 0 2 1 1 0 0 

0 0 2 0 0 2 0 0 2 2 2 0 2 0 0 0 

0 1 1 0 0 1 1 0 0 1 1 2 0 1 1 2 

1 0 1 2 1 0 1 0 1 0 1 0 1 0 1 2 

1 1 0 0 1 1 0 2 1 1 0 0 1 1 0 2 

=1A  

0 2 0 0 0 0 2 0 2 0 0 0 2 2 2 0 
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Table 2. The incidence matrix, 2A  for 2Ω  

0 4 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

4 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 

1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 

0 0 1 1 0 4 1 1 0 0 1 1 0 0 1 1 

0 0 1 1 4 0 1 1 0 0 1 1 0 0 1 1 

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 

1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 

0 0 1 1 0 0 1 1 0 4 1 1 0 0 1 1 

0 0 1 1 0 0 1 1 4 0 1 1 0 0 1 1 

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 

1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 

0 0 1 1 0 0 1 1 0 0 1 1 0 4 1 1 

0 0 1 1 0 0 1 1 0 0 1 1 4 0 1 1 

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 

=2A  

1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 
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Table 3. The incidence matrix, 3A  for 3Ω  

0 1 1 4 0 1 1 0 0 1 1 0 0 1 1 0 

1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 2 

1 1 0 1 1 1 0 1 1 1 0 2 1 1 0 0 

4 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 

0 1 1 0 0 1 1 4 0 1 1 0 0 1 1 0 

1 0 1 1 1 0 1 1 1 0 1 2 1 0 1 0 

1 1 0 1 1 1 0 1 1 1 0 0 1 1 0 2 

0 1 1 0 4 1 1 0 0 1 1 0 0 1 1 0 

0 1 1 0 0 1 1 0 0 1 1 2 0 1 1 2 

1 0 1 1 1 0 1 1 1 0 1 2 1 0 1 0 

1 1 0 1 1 1 0 1 1 1 0 2 1 1 0 0 

0 0 2 0 0 2 0 0 2 2 2 0 2 0 0 0 

0 1 1 0 0 1 1 0 0 1 1 2 0 1 1 2 

1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 2 

1 1 0 1 1 1 0 1 1 1 0 0 1 1 0 2 

=3A  

0 2 0 0 0 0 2 0 2 0 0 0 2 2 2 0 

The generalized inverse matrices ,, 21
++ LL  and +

3L  of the information 

matrix of these squares are given in Tables 4, 5, and 6, respectively. 

 

 

 

 

 

 

 

 

 



Table 4. The generalized inverse matrix +
1L  of the information matrix of the square 1Ω  

   0.3112 – 0.0117 – 0.0117     0.0195 – 0.0221 – 0.0117 – 0.0117    0.0195 – 0.0430 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 – 0.0430 

– 0.0117    0.3112 – 0.0117     0.0195 – 0.0117 – 0.0430 – 0.0117 – 0.0430 – 0.0117 – 0.0430 – 0.0117 – 0.0430 – 0.0117 – 0.0221 – 0.0117    0.0195 

– 0.0117 – 0.0117    0.3112     0.0195 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 – 0.0221    0.0195 – 0.0117 – 0.0117 – 0.0430 – 0.0430 

   0.0195    0.0195   0.0195     0.3320    0.0195 – 0.0430 – 0.0430 – 0.0430 – 0.0430 – 0.0430    0.0195 – 0.0430 – 0.0430    0.0195 – 0.0430 – 0.0430 

– 0.0221 – 0.0117 – 0.0117     0.0195    0.3112 – 0.0117 – 0.0117    0.0195 – 0.0430 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 – 0.0430 

– 0.0117 – 0.0430 – 0.0117 – 0.0430 – 0.0117    0.3112 – 0.0117    0.0195 – 0.0117 – 0.0221 – 0.0117    0.0195 – 0.0117 – 0.0430 – 0.0117 – 0.0430 

– 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117    0.3112    0.0195 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 – 0.0221    0.0195 

   0.0195 – 0.0430 – 0.0430 – 0.0430   0.0195    0.0195    0.0195    0.3320 – 0.0430    0.0195 – 0.0430 – 0.0430 – 0.0430 – 0.0430    0.0195 – 0.0430 

– 0.0430 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 – 0.0430    0.3112 – 0.0117 – 0.0117    0.0195 – 0.0221 – 0.0117 – 0.0117    0.0195 

– 0.0117 – 0.0430 – 0.0117 – 0.0430 – 0.0117 – 0.0221 – 0.0117   0.0195 – 0.0117    0.3112 – 0.0117    0.0195 – 0.0117 – 0.0430 – 0.0117 – 0.0430 

– 0.0117 – 0.0117 – 0.0221    0.0195 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117    0.3112    0.0195 – 0.0117 – 0.0117 – 0.0430 – 0.0430 

– 0.0430 – 0.0430    0.0195 – 0.0430 – 0.0430    0.0195 – 0.0430 – 0.0430    0.0195    0.0195   0.0195    0.3320    0.0195 – 0.0430 – 0.0430 – 0.0430 

– 0.0430 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 – 0.0430 – 0.0221 – 0.0117 – 0.0117    0.0195    0.3112 – 0.0117 – 0.0117     0.0195 

– 0.0117 – 0.0221 – 0.0117   0.0195 – 0.0117 – 0.0430 – 0.0117 – 0.0430 – 0.0117 – 0.0430 – 0.0117 – 0.0430 – 0.0117    0.3112 – 0.0117     0.0195 

– 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 – 0.0221    0.0195 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117    0.3112     0.0195 

=+
1L  

– 0.0430    0.0195 – 0.0430 – 0.0430 – 0.0430 – 0.0430    0.0195 – 0.0430    0.0195 – 0.0430 – 0.0430 – 0.0430    0.0195    0.0195    0.0195    0.3320 

 

 

 

 

 

 

 

 



Table 5. The generalized inverse matrix +
2L  of the information matrix of the square 2Ω  

0.3320 0.0820 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 

0.0820 0.3320 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 

– 0.0117 – 0.0117    0.3008 – 0.0117 – 0.0117 – 0.0117 – 0.0326 – 0.0117 – 0.0117 – 0.0117 – 0.0326 – 0.0117 – 0.0117 – 0.0117 – 0.0326 – 0.0117 

– 0.0117 – 0.0117 – 0.0117    0.3008 – 0.0117 – 0.0117 – 0.0117 – 0.0326 – 0.0117 – 0.0117 – 0.0117 – 0.0326 – 0.0117 – 0.0117 – 0.0117 – 0.0326 

– 0.0430 – 0.0430 – 0.0117 – 0.0117    0.3320    0.0820 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 

– 0.0430 – 0.0430 – 0.0117 – 0.0117    0.0820    0.3320 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 

– 0.0117 – 0.0117 – 0.0326 – 0.0117 – 0.0117 – 0.0117    0.3008 – 0.0117 – 0.0117 – 0.0117 – 0.0326 – 0.0117 – 0.0117 – 0.0117 – 0.0326 – 0.0117 

– 0.0117 – 0.0117 – 0.0117 – 0.0326 – 0.0117 – 0.0117 – 0.0117    0.3008 – 0.0117 – 0.0117 – 0.0117 – 0.0326 – 0.0117 – 0.0117 – 0.0117 – 0.0326 

– 0.0430 – 0.0430 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117    0.3320    0.0820 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 

– 0.0430 – 0.0430 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117    0.0820    0.3320 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 

– 0.0117 – 0.0117 – 0.0326 – 0.0117 – 0.0117 – 0.0117 – 0.0326 – 0.0117 – 0.0117 – 0.0117    0.3008 – 0.0117 – 0.0117 – 0.0117 – 0.0326 – 0.0117 

– 0.0117 – 0.0117 – 0.0117 – 0.0326 – 0.0117 – 0.0117 – 0.0117 – 0.0326 – 0.0117 – 0.0117 – 0.0117    0.3008 – 0.0117 – 0.0117 – 0.0117 – 0.0326 

– 0.0430 – 0.0430 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117    0.3320    0.0820 – 0.0117 – 0.0117 

– 0.0430 – 0.0430 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117    0.0820    0.3320 – 0.0117 – 0.0117 

– 0.0117 – 0.0117 – 0.0326 – 0.0117 – 0.0117 – 0.0117 – 0.0326 – 0.0117 – 0.0117 – 0.0117 – 0.0326 – 0.0117 – 0.0117 – 0.0117    0.3008 – 0.0117 

=+
2L  

– 0.0117 – 0.0117 – 0.0117 – 0.0326 – 0.0117 – 0.0117 – 0.0117 – 0.0326 – 0.0117 – 0.0117 – 0.0117 – 0.0326 – 0.0117 – 0.0117 – 0.0117   0.3008 

 

 

 

 

 

 

 

 

 

 



 

Table 6. The generalized inverse matrix +
3L  of the information matrix of the square 3Ω  

    0.3320 – 0.0117 – 0.0117     0.0820 – 0.0430 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 – 0.0430 

– 0.0117 0.3060 – 0.0169 – 0.0117 – 0.0117 – 0.0378 – 0.0065 – 0.0117 – 0.0117 – 0.0378 – 0.0169 – 0.0430 – 0.0117 – 0.0273 – 0.0065    0.0195 

– 0.0117 – 0.0169     0.3060 – 0.0117 – 0.0117 – 0.0065 – 0.0378 – 0.0117 – 0.0117 – 0.0065 – 0.0273    0.0195 – 0.0117 – 0.0169 – 0.0378 – 0.0430 

   0.0820 – 0.0117 – 0.0117     0.3320 – 0.0430 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 – 0.0430 

– 0.0430 – 0.0117 – 0.0117 – 0.0430     0.3320 – 0.0117 – 0.0117    0.0820 – 0.0430 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 – 0.0430 

– 0.0117 – 0.0378 – 0.0065 – 0.0117 – 0.0117    0.3060 – 0.0169 – 0.0117 – 0.0117 – 0.0273 – 0.0065    0.0195 – 0.0117 – 0.0378 – 0.0169 – 0.0430 

– 0.0117 – 0.0065 – 0.0378 – 0.0117 – 0.0117 – 0.0169    0.3060 – 0.0117 – 0.0117 – 0.0169 – 0.0378 – 0.0430 – 0.0117 – 0.0065 – 0.0273    0.0195 

– 0.0430 – 0.0117 – 0.0117 – 0.0430    0.0820 – 0.0117 – 0.0117    0.3320 – 0.0430 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 – 0.0430 

– 0.0430 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 – 0.0430    0.3112 – 0.0117 – 0.0117    0.0195 – 0.0221 – 0.0117 – 0.0117    0.0195 

– 0.0117 – 0.0378 – 0.0065 – 0.0117 – 0.0117 – 0.0273 – 0.0169 – 0.0117 – 0.0117    0.3060 – 0.0065    0.0195 – 0.0117 – 0.0378 – 0.0169 – 0.0430 

– 0.0117 – 0.0169 – 0.0273 – 0.0117 – 0.0117 – 0.0065 – 0.0378 – 0.0117 – 0.0117 – 0.0065    0.3060    0.0195 – 0.0117 – 0.0169 – 0.0378 – 0.0430 

– 0.0430 – 0.0430     0.0195 – 0.0430 – 0.0430    0.0195 – 0.0430 – 0.0430    0.0195    0.0195    0.0195    0.3320    0.0195 – 0.0430 – 0.0430 – 0.0430 

– 0.0430 – 0.0117 – 0.0117 – 0.0430 – 0.0430 – 0.0117 – 0.0117 – 0.0430 – 0.0221 – 0.0117 – 0.0117    0.0195    0.3112 – 0.0117 – 0.0117    0.0195 

– 0.0117 – 0.0273 – 0.0169 – 0.0117 – 0.0117 – 0.0378 – 0.0065 – 0.0117 – 0.0117 – 0.0378 – 0.0169 – 0.0430 – 0.0117    0.3060 – 0.0065    0.0195 

– 0.0117 – 0.0065 – 0.0378 – 0.0117 – 0.0117 – 0.0169 – 0.0273 – 0.0117 – 0.0117 – 0.0169 – 0.0378 – 0.0430 – 0.0117 – 0.0065    0.3060    0.0195 

=+
3L  

– 0.0430    0.0195 – 0.0430 – 0.0430 – 0.0430 – 0.0430    0.0195 – 0.0430    0.0195 – 0.0430 – 0.0430 – 0.0430    0.0195    0.0195    0.0195    0.3320 
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The frequency distribution of the variance of adjacency, ( )jAVar  

induced by each of the sixteen (16) treatments in each square are 
displayed in Table 7. 

Table 7. The frequency distribution of the variance of adjacency, 
( )jAVar  induced by the various treatments in ,, 21 ΩΩ  and 3Ω  

Design ( )jAVar  Frequency 

2.8125 12 
1Ω  

5.8125 4 

1.3125 8 
2Ω  

5.8125 8 

2.0625 8 

2.8125 2 3Ω  

5.8125 6 

From Table 7, it is obvious that; in :1Ω  twelve treatments induce a 

variance of adjacency equal to 2.8125, which is the minimum for this 
design, while a maximum variance of 5.8125 is being induced by its 
remaining four treatments; for ,2Ω  there also exists two distinct 

variances of 1.3125 and 5.8125, each with multiplicity eight; and for ,3Ω  

there are three distinct variances, which are: 2.0625, 2.8125, and 5.8125, 
with multiplicities of eight, two, and six, respectively. 

Also, from Table 7, we observe that, for each square, the maximum 
variance is the same, 5.8125. But for each of 1Ω  and ,2Ω  there are two 

distinct variances: 2.8125 and 5.8125 for 3125.1;1Ω  and 5.8125 for .2Ω  

In ,1Ω  the variance of 2.8125 is induced by the treatments ,,, βα B,a,A  

,,,,, δγ Dc,Cb  and d, while the remaining treatments 1, 2, 3, and 4 

induce the variance of 5.8125. Again, in ,2Ω  the variance of 1.3125 is 

induced by the following treatments: ,,,,,,, δγβα cba  and d, while 

,,,,,,, 1212121 DCCBBAA  and 2D  induce a variance of 5.8125. 
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Contrary to this, for ,3Ω  there are three distinct variances: 2.0625, 

2.8125, and 5.8125, which are induced by ;,;,,,,,,, DCdcba δγβα  and 

,4,3,2,,1, BA  respectively. Hence, 1Ω  and 2Ω  are to be preferred to 

.3Ω  Again, for ,2Ω  the minimum value of this variance is 1.3125, which 

is less than that of .8125.2,1Ω  Thus, 2Ω  is to be preferred to .1Ω  

6. Conclusion 

We have ordered the semi-Latin squares, ,, 21 ΩΩ  and 3Ω  considered 

in this work, in the order of preference, for purposes of experimentation. 
Based on our results in Section 5, it suffices to conclude that amongst the 
squares, 2Ω  is the most preferable one for experimentation, which is 

consistent with earlier results by Chigbu [9, 10] as well as Uto and 
Chigbu [23]; while 1Ω  is to be preferred to ,3Ω  as found by Uto and 

Chigbu [23]. 
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