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Abstract 

In this paper, we study the Darboux vector of a non-null curve in Minkowski    

4-space .4
1E  We also give a relation between the Darboux vector and harmonic 

curvatures. We find a relation between ccr-curves and harmonic curvatures of 
this curve. Further, we obtained some results for space-like and time-like 
vectors. We also show that if the ratios of the curvatures of a non-null curve are 
constant, then those of the ccr-curve are also constant. 

1. Introduction 

Let ( )4321 ,,, xxxxX =  and ( )4321 ,,, yyyyY =  be two non-zero 

vectors in Minkowski 4-space .4
1E  For 4

1, E∈YX  

,, 44332211 yxyxyxyxYX +++−=  
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is called Lorentzian inner product. The couple { },,4
1E  is called 

Lorentzian space. Then the vector X of 4
1E  is called (i) time-like if 

,0, <XX  (ii) space-like if 0, >XX  or ,0=X  (iii) null (or light-like) 

vector if .0,0, ≠= XXX  

Similarly, an arbitrary curve ( )sα=α  in 4
1E  can be locally be space-

like, time-like or null, if all of its velocity vectors ( )sα′  are, respectively, 

space-like, time-like or null. Also, recall the norm of a vector X is given by 
., XXX =  Therefore, X is a unit vector if .1, ±=XX  Next, 

vectors YX ,  in 4
1E  are said to be orthogonal if .0, =YX  The velocity 

of the curve α  is given by .α′  Thus, a space-like or a time-like α  is said 

to be parametrized by arclength function s, if ,1, ±=α′α′  [2]. 

2. Basic Definitions 

Definition 1. Let 4
1: E→α I  be a curve in 4

1E  and 321 ,, kkk  be the 

Frenet curvatures of .α  Then for the unit tangent vector ( )sV α′=1  over 

M the th-i  e-curvature function 41, ≤≤ imi  is defined by 

( )

,

42,

2,

1,0

1
2221

1
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where .1, ±==ε iii VV  

Definition 2. Let 4
1: E→α I  be a unit speed non-null curve. The 

curve α  is called Frenet curve of osculating order ( )4, ≤dd  if its th-4  

order derivatives ( ) ( ) ( ) ( )ssss ivαα ′′′α ′′α′ ,,,  are linearly independent and 

( ) ( ) ( ) ( ) ( )sssss viv ααα ′′′α ′′α′ ,,,,  are no longer linearly independent for all 
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.Is ∈  For each Frenet curve of order 4, one can associate an 
orthonormal 4-frame { }4321 ,,, VVVV  along α  (such that ( ) 1Vs =α′ ) 

called the Frenet frame R→I:,, 321 kkk  called the Frenet curvatures, 

such that the Frenet formulas is defined in the usual way; 
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 (2) 

where ,,, 321 VVV  and 4V  are orthogonal vectors satisfying equations: 

,1, 11 −=VV  

( ),42,1, ≤≤= iVV ii  

and ∇  is the Levi-Civita connection of .4
1E  

Definition 3. Let ( ) ( ),,,,,,,, 43214321 yyyyYxxxxX ==  and 

( )4321 ,,, zzzzZ =  be vectors in the space .4
1E  The vector product in 

Minkowski space-time is defined with the determinant 

,

4321

4321

4321

4321

zzzz

yyyy

xxxx

eeee

ZYX

−

−=ΛΛ  

where ,,, 321 eee  and 4e  are coordinate direction vectors [5]. 
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3. Harmonic Curvatures and Darboux Vector in 4
1E  

Definition 4. Let α  be a non-null curve of osculating order 4. The 
harmonic functions 

,20,: ≤≤→ jIH j R  

defined by  

{ ( ) } ,

,,0

1
221

2
1

10

1 +
−−−

ε
ε+∇=

==

j

j
jjjjvj HHH

HH

k
k

k
k

 

are called the harmonic curvatures of .α  Here, 321 ,, kkk  are Frenet 

curvatures of ∇α,  is the Levi-Civita connection and ,1, ±==ε jjj VV  

[1]. 

Definition 5. Let α  be a non-null curve of osculating order 4. Then 
α  is called a general helix of 2kran  if 

,2
2

1
cHi

i
=∑

=

 

holds, where 0≠c  is a real constant. 

We have the following result. 

Corollary 1. If α  is a general helix of ,2kran  then 

.2
2

2
1 cHH =+  

Proof. By the use of above definition we obtain. 
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Theorem 2. Let α  be a non-null curve of osculating order 4 in ,4
1E  

then 

( )

( ) ( ) ( )

( ) ( )
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Here, the th-i  e-curvature function im  and ( ).41,1, ≤≤±==ε iVV iii  

Proof. By using definition of the th-i  e-curvature function im  we get 

the result.  

Theorem 3. Let α  be a non-null curve of osculating order 4 in ,4
1E  

then 
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Here, 21, HH  are harmonic curvatures of α  and ,1, ±==ε iii VV  

( ).41 ≤≤ i  

Proof. By using definition of harmonic curvatures, we get the result. 
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Theorem 4. Let 4
1: E→α I  be a non-null curve of osculating order 4 

given the Frenet frame { }.,,, 4321 VVVV  If ,42, ≤≤ imi  are the th-i       

e-curvature functions and 21, ≤≤ iHi  are the harmonic curvatures, 

then the following hold: 

( ) .0,,det 2
2

1
432 antconstHmmm i

i
=⇔=′′′ ∑

=

 

Proof. The proof can seen by using the definitions of th-i e-curvature 

function im  and harmonic curvatures .iH   

Definition 6. Let α  be a non-null curve of osculating order 4 in ,4
1E  

with Frenet curvatures .,, 321 kkk  Let us denote 
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The Darboux vector in 4
1E  is defined by 

( ) ,322110 VaVaVasD ++=  

where { }321 ,, VVV  is the Frenet frame of .α  

Lemma 5. The derivative of the Darboux vector ( )sD  is 

( ) ,322110 VaVaVasD ′+′+′=′  

[7]. 

Definition 7. The point ( )0sα  is called Darboux vertex of α  if the 

first derivative of the Darboux vector ( )sD  is vanishing at that point [4]. 
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Theorem 6. Let α  be a non-null curve of osculating order 4 in ,4
1E  

with Frenet curvature 1k  and harmonic curvatures ., 21 HH  Let us denote 
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where 01 ≠H  and .02 ≠H  

Proof. By using definition of harmonic curvatures, we get the result. 

  

We obtain the following definition. 

Definition 8. Let 4
1: E→α I  be a non-null curve of osculating 

order 4. The harmonic functions 

,21,: ≤≤→ jIH j R  

defined by 
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where RaaaVV ∈±==ε 210111 ,,;1,  and 1k  is Frenet curvatures of 
.α  

Theorem 7. Let α  be a non-null curve of osculating order 4 in ,4
1E  

with Frenet curvatures .,, 321 kkk  The curve has a Darboux vertex at point 

( )sα  if and only if 

( ).21,0
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Corollary 8. If 4
1: E→α I  has a Darboux vertex at the point ( ),0sα  

then α  is a general helix of order 3, [4]. 

4. Constant Curvature Ratios in 4
1E  

Definition 9. A curve 4
1: E→α I  is said to have constant curvature 

ratios (that is to say, it is a ccr-curve) if all the quotients 





ε +

i
i

i k
k 1  are 

constant ( ).0≠ik  Here; ( ),21,, 1 ≤≤+ iii kk  are Frenet curvatures of ,α  

and ( ).41,1, ≤≤±==ε iVV iii  

Corollary 9. (a) For ,1=i  the ccr-curve is ( ) .
3

22
32 m

mm ′
εε  

(b) For ,2=i  the ccr-curve is ( )
( )

.
4
2

4
42

33
432 m

m
mm

mm
ε+′

′
εεε  

Proof. The proof can be easily seen by using the definitions of th-i     

e-curvature function im  and ccr-curve.  

Corollary 10. (a) For ,1=i  the ccr-curve is .
1
1

H
ε  

(b) For ,2=i  the ccr-curve is .
12
11
kH
HH ′  

(c) If the vector 1V  is time-like, then the ccr-curve is ,1
1H

−  where 

.1, 111 −==ε VV  

(d) If the vector 1V  is space-like, then the ccr-curve is ,1
1H  where 

.1, 111 ==ε VV  

Proof. The proof can be easily seen by using the definitions of 
harmonic curvature and ccr-curve.  
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Corollary 11. Let 4
1: E→α I  is a ccr-curve. If 
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1
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Proof. The proof is obvious.  

Theorem 12. α  is a ccr-curve in .2
2

1

4
1 antconstHii

i
=ε⇔ ∑

=
E  

Proof. By using the definitions of a general helix of 2kran  and      

ccr-curve, this completes the proof of the theorem. 

 

Theorem 13. Let 4
1: E→α I  is a non-null curve. Frenet frame 

{ }4321 ,,, VVVV  and curvature functions ( ).0,,, 4321 =kkkk  If 11 =k  

and 32, kk  are both constants, then 
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Proof. ,11 =k  from Equation (1), we have  
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and 

( ) ,3
2
32421

22
232211

4
11

VVV VV kkk εε−∇εε−εε−=∇  (3) 

where 

,432432
2
2322212

2
1

VVVVV kkk εε+εε−εε−=∇  

,3
2
3241

22
231

2
12

3
111

VVVV VVV kkk ε−∇ε−∇ε−=∇  

and from Equation (3) 0,constant 11 =′= HH  that is .03 =k  Thus we 

have 

( ) ,1
22

232211
4

11
VV VV ∇εε−εε−=∇ k  

or since ,
1

1
2 H

k
k =  we obtain 
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Corollary 14. (i) If the vector 1V  is time-like, then 
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(ii) If the vector 2V  is time-like, then 
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(iii) If the vector 3V  is time-like, then 
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5. An Example 

Example 1. Let us consider the following non-null curve in the space 
4
1E  

( ) ( ).cos,sin,3,2 ssss =α  

( ) ( ) ( ),sin,cos,0,21 ssssV −=α′=  

where ( ) ( ) ,1, −=α′α′ ss  which shows ( )sα  is an unit speed time-like 

curve. Thus ( ) .1=α′ s  We express the following differentiations: 

( ) ( )

( ) ( )

( ) ( )
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Moreover, we have the first curvature, the second, the third curvature, 
harmonic curvature and th-i e-curvature function im  of ( )sα  as 
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Now, we will calculate ccr-curve of ( )sα  in .4
1E  If the vector 1V  is time-

like, then 11 −=ε  
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Thus, ( )sα  is a ccr-curve in .4
1E  
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