THE DARBOUX VECTOR OF A NON-NULL CURVE IN \mathbb{E}_1^4

ESEN İYIGÜN

Department of Mathematics Faculty of Arts and Science Uludag University 16059, Bursa Turkey e-mail: esen@uludag.edu.tr

Abstract

In this paper, we study the Darboux vector of a non-null curve in Minkowski 4-space \mathbb{E}_1^4 . We also give a relation between the Darboux vector and harmonic curvatures. We find a relation between ccr-curves and harmonic curvatures of this curve. Further, we obtained some results for space-like and time-like vectors. We also show that if the ratios of the curvatures of a non-null curve are constant, then those of the ccr-curve are also constant.

1. Introduction

Let $X = (x_1, x_2, x_3, x_4)$ and $Y = (y_1, y_2, y_3, y_4)$ be two non-zero vectors in Minkowski 4-space \mathbb{E}_1^4 . For $X, Y \in \mathbb{E}_1^4$

$$\langle X, Y \rangle = -x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4,$$

Received February 24, 2016

@ 2016 Scientific Advances Publishers

²⁰¹⁰ Mathematics Subject Classification: 53C40, 53C42.

Keywords and phrases: Darboux vector, Darboux vertex, constant curvature ratios, harmonic curvatures, i-th e-curvature function.

is called *Lorentzian inner product*. The couple $\{\mathbb{E}_1^4, \langle, \rangle\}$ is called *Lorentzian space*. Then the vector X of \mathbb{E}_1^4 is called (i) time-like if $\langle X, X \rangle < 0$, (ii) space-like if $\langle X, X \rangle > 0$ or X = 0, (iii) null (or light-like) vector if $\langle X, X \rangle = 0$, $X \neq 0$.

Similarly, an arbitrary curve $\alpha = \alpha(s)$ in \mathbb{E}_1^4 can be locally be spacelike, time-like or null, if all of its velocity vectors $\alpha'(s)$ are, respectively, space-like, time-like or null. Also, recall the norm of a vector X is given by $||X|| = \sqrt{|\langle X, X \rangle|}$. Therefore, X is a unit vector if $\langle X, X \rangle = \pm 1$. Next, vectors X, Y in \mathbb{E}_1^4 are said to be orthogonal if $\langle X, Y \rangle = 0$. The velocity of the curve α is given by $||\alpha'||$. Thus, a space-like or a time-like α is said to be parametrized by arclength function s, if $\langle \alpha', \alpha' \rangle = \pm 1$, [2].

2. Basic Definitions

Definition 1. Let $\alpha : I \to \mathbb{E}_1^4$ be a curve in \mathbb{E}_1^4 and k_1, k_2, k_3 be the Frenet curvatures of α . Then for the unit tangent vector $V_1 = \alpha'(s)$ over M the *i*-th *e*-curvature function $m_i, 1 \le i \le 4$ is defined by

$$m_{i} = \begin{cases} 0, & i = 1 \\ \frac{\varepsilon_{1}\varepsilon_{2}}{k_{1}}, & = 2 \\ \left[\frac{d}{dt}(m_{i-1}) + \varepsilon_{i-2}m_{i-2}k_{i-2}\right]\frac{\varepsilon_{i}}{k_{i-1}}, & 2 < i \le 4 \end{cases},$$
(1)

where $\varepsilon_i = \langle V_i, V_i \rangle = \pm 1$.

Definition 2. Let $\alpha : I \to \mathbb{E}_1^4$ be a unit speed non-null curve. The curve α is called Frenet curve of osculating order d, $(d \leq 4)$ if its 4-th order derivatives $\alpha'(s)$, $\alpha''(s)$, $\alpha'''(s)$, $\alpha^{iv}(s)$ are linearly independent and $\alpha'(s)$, $\alpha''(s)$, $\alpha^{iv}(s)$, $\alpha^{v}(s)$ are no longer linearly independent for all

 $s \in I$. For each Frenet curve of order 4, one can associate an orthonormal 4-frame $\{V_1, V_2, V_3, V_4\}$ along α (such that $\alpha'(s) = V_1$) called the Frenet frame $k_1, k_2, k_3 : I \to \mathbb{R}$ called the Frenet curvatures, such that the Frenet formulas is defined in the usual way;

$$\begin{cases} \nabla_{V_1} V_1 = \varepsilon_2 k_1 V_2, \\ \nabla_{V_1} V_2 = -\varepsilon_1 k_1 V_1 + \varepsilon_3 k_2 V_3, \\ \nabla_{V_1} V_3 = -\varepsilon_2 k_2 V_2 + \varepsilon_4 k_3 V_4, \\ \nabla_{V_1} V_4 = -\varepsilon_3 k_3 V_3, \end{cases}$$
(2)

where V_1 , V_2 , V_3 , and V_4 are orthogonal vectors satisfying equations:

$$\langle V_1, V_1 \rangle = -1,$$

 $\langle V_i, V_i \rangle = 1, \quad (2 \le i \le 4),$

and ∇ is the Levi-Civita connection of \mathbb{E}_1^4 .

Definition 3. Let $X = (x_1, x_2, x_3, x_4)$, $Y = (y_1, y_2, y_3, y_4)$, and $Z = (z_1, z_2, z_3, z_4)$ be vectors in the space \mathbb{E}_1^4 . The vector product in Minkowski space-time is defined with the determinant

$$X\Lambda Y\Lambda Z = -\begin{vmatrix} -e_1 & e_2 & e_3 & e_4 \\ x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \\ z_1 & z_2 & z_3 & z_4 \end{vmatrix},$$

where e_1 , e_2 , e_3 , and e_4 are coordinate direction vectors [5].

ESEN İYIGÜN

3. Harmonic Curvatures and Darboux Vector in \mathbb{E}_1^4

Definition 4. Let α be a non-null curve of osculating order 4. The harmonic functions

$$H_j: I \to \mathbb{R}, \quad 0 \le j \le 2,$$

defined by

$$\begin{split} H_0 &= 0, \quad H_1 = \frac{k_1}{k_2}, \\ H_j &= \{ \nabla_{v_1}(H_{j-1}) + \varepsilon_{j-2} H_{j-2} k_j \} \frac{\varepsilon_j}{k_{j+1}}, \end{split}$$

are called the harmonic curvatures of α . Here, k_1 , k_2 , k_3 are Frenet curvatures of α , ∇ is the Levi-Civita connection and $\varepsilon_j = \langle V_j, V_j \rangle = \pm 1$, [1].

Definition 5. Let α be a non-null curve of osculating order 4. Then α is called a general helix of *rank* 2 if

$$\sum_{i=1}^2 H_i^2 = c,$$

holds, where $c \neq 0$ is a real constant.

We have the following result.

Corollary 1. If α is a general helix of rank 2, then

$$H_1^2 + H_2^2 = c$$

Proof. By the use of above definition we obtain.

Theorem 2. Let α be a non-null curve of osculating order 4 in \mathbb{E}_1^4 , then

$$\begin{cases} \nabla_{V_1} V_1 = \frac{\varepsilon_1}{m_2} V_2, \\ \nabla_{V_1} V_2 = -\frac{\varepsilon_2}{m_2} V_1 + \frac{(m_2)'}{m_3} V_3, \\ \nabla_{V_1} V_3 = -\varepsilon_2 \varepsilon_3 \frac{(m_2)'}{m_3} V_2 + \left(\frac{m_3(m_3)' + \varepsilon_2 \varepsilon_3 m_2(m_2)'}{m_3 m_4}\right) V_4, \\ \nabla_{V_1} V_4 = \left(\frac{-\varepsilon_3 \varepsilon_4 m_3(m_3)' - \varepsilon_2 \varepsilon_4 m_2(m_2)'}{m_3 m_4}\right) V_3. \end{cases}$$

Here, the *i*-th *e*-curvature function m_i and $\varepsilon_i = \langle V_i, V_i \rangle = \pm 1, (1 \le i \le 4).$

Proof. By using definition of the *i*-th *e*-curvature function m_i we get the result.

Theorem 3. Let α be a non-null curve of osculating order 4 in \mathbb{E}_1^4 , then

$$\begin{cases} \nabla_{V_1} V_1 = \varepsilon_2 k_2 H_1 V_2, \\ \nabla_{V_1} V_2 = -\varepsilon_1 k_2 H_1 V_1 + \varepsilon_3 \frac{k_1}{H_1} V_3, \\ \nabla_{V_1} V_3 = -\varepsilon_2 \frac{k_1}{H_1} V_2 + \varepsilon_2 \varepsilon_4 \frac{H_1'}{H_2} V_4, \\ \nabla_{V_1} V_4 = -\varepsilon_2 \varepsilon_3 \frac{H_1'}{H_2} V_3. \end{cases}$$

Here, H_1 , H_2 are harmonic curvatures of α and $\varepsilon_i = \langle V_i, V_i \rangle = \pm 1$, $(1 \le i \le 4)$.

Proof. By using definition of harmonic curvatures, we get the result.

ESEN İYIGÜN

Theorem 4. Let $\alpha : I \to \mathbb{E}_1^4$ be a non-null curve of osculating order 4 given the Frenet frame $\{V_1, V_2, V_3, V_4\}$. If $m_i, 2 \le i \le 4$, are the *i*-th *e*-curvature functions and $H_i, 1 \le i \le 2$ are the harmonic curvatures, then the following hold:

$$\det(m'_2, m'_3, m'_4) = 0 \Leftrightarrow \sum_{i=1}^2 H_i^2 = constant$$

Proof. The proof can seen by using the definitions of *i*-th *e*-curvature function m_i and harmonic curvatures H_i .

Definition 6. Let α be a non-null curve of osculating order 4 in \mathbb{E}_1^4 , with Frenet curvatures k_1, k_2, k_3 . Let us denote

$$\begin{cases} a_0 = k_2 k_3, \\ a_1 = \varepsilon_1 \frac{k_1}{k_2} a_0, & (k_2 \neq 0), \\ a_2 = \varepsilon_2 \frac{k_2}{k_3} a_1, & (k_3 \neq 0). \end{cases}$$

The Darboux vector in $\, \mathbb{E}_1^{\, 4} \,$ is defined by

$$D(s) = a_0 V_1 + a_1 V_2 + a_2 V_3,$$

where $\{V_1, V_2, V_3\}$ is the Frenet frame of α .

Lemma 5. The derivative of the Darboux vector D(s) is

$$D'(s) = a'_0 V_1 + a'_1 V_2 + a'_2 V_3,$$

[7].

Definition 7. The point $\alpha(s_0)$ is called Darboux vertex of α if the first derivative of the Darboux vector D(s) is vanishing at that point [4].

Theorem 6. Let α be a non-null curve of osculating order 4 in \mathbb{E}_1^4 , with Frenet curvature k_1 and harmonic curvatures H_1 , H_2 . Let us denote

$$\begin{cases} a_0 = \varepsilon_2 \frac{k_1 H_1'}{H_1 H_2}, \\ a_1 = \varepsilon_1 \varepsilon_2 \frac{k_1 H_1'}{H_2}, \\ a_2 = \varepsilon_1 \varepsilon_2 \frac{k_1^2}{H_1}, \end{cases}$$

where $H_1 \neq 0$ and $H_2 \neq 0$.

Proof. By using definition of harmonic curvatures, we get the result.

We obtain the following definition.

Definition 8. Let $\alpha: I \to \mathbb{E}_1^4$ be a non-null curve of osculating order 4. The harmonic functions

$$H_i: I \to \mathbb{R}, \quad 1 \le j \le 2,$$

defined by

$$\begin{cases} H_1 = \varepsilon_1 \frac{a_1}{a_0}, \\ H_2 = \varepsilon_1 \frac{a_2 H_1'}{a_0 k_1}, \end{cases}$$

where $\varepsilon_1 = \langle V_1, V_1 \rangle = \pm 1$; $a_0, a_1, a_2 \in R$ and k_1 is Frenet curvatures of α .

Theorem 7. Let α be a non-null curve of osculating order 4 in \mathbb{E}_1^4 , with Frenet curvatures k_1 , k_2 , k_3 . The curve has a Darboux vertex at point $\alpha(s)$ if and only if

$$\varepsilon_i \left(\frac{k_i}{k_{i+1}}\right)' = 0, \quad (1 \le i \le 2).$$

Corollary 8. If $\alpha : I \to \mathbb{E}_1^4$ has a Darboux vertex at the point $\alpha(s_0)$, then α is a general helix of order 3, [4].

4. Constant Curvature Ratios in \mathbb{E}_1^4

Definition 9. A curve $\alpha : I \to \mathbb{E}_1^4$ is said to have constant curvature ratios (that is to say, it is a ccr-curve) if all the quotients $\varepsilon_i\left(\frac{k_{i+1}}{k_i}\right)$ are constant $(k_i \neq 0)$. Here; $k_i, k_{i+1}, (1 \le i \le 2)$, are Frenet curvatures of α , and $\varepsilon_i = \langle V_i, V_i \rangle = \pm 1, (1 \le i \le 4)$.

Corollary 9. (a) For
$$i = 1$$
, the ccr-curve is $\varepsilon_2 \varepsilon_3 \frac{m_2(m_2)'}{m_3}$.
(b) For $i = 2$, the ccr-curve is $\varepsilon_2 \varepsilon_3 \varepsilon_4 \frac{m_3(m_3)'}{(m_2)'m_4} + \varepsilon_4 \frac{m_2}{m_4}$.

Proof. The proof can be easily seen by using the definitions of *i*-th *e*-curvature function m_i and ccr-curve.

Corollary 10. (a) For
$$i = 1$$
, the ccr-curve is $\frac{\varepsilon_1}{H_1}$.

(b) For
$$i = 2$$
, the ccr-curve is $\frac{H_1H'_1}{H_2k_1}$.

(c) If the vector V_1 is time-like, then the ccr-curve is $\frac{-1}{H_1}$, where $\varepsilon_1 = \langle V_1, V_1 \rangle = -1$.

(d) If the vector V_1 is space-like, then the ccr-curve is $\frac{1}{H_1}$, where $\varepsilon_1 = \langle V_1, V_1 \rangle = 1$.

Proof. The proof can be easily seen by using the definitions of harmonic curvature and ccr-curve. $\hfill \Box$

Corollary 11. Let $\alpha : I \to \mathbb{E}_1^4$ is a ccr-curve. If

$$\left(\varepsilon_1 \frac{1}{H_1}\right) = constant, \quad \left(\frac{H_1H_1'}{H_2k_1}\right) = constant,$$

then

$$\left(\epsilon_1 \frac{1}{H_1}\right)' = 0, \quad \left(\frac{H_1H_1'}{H_2k_1}\right)' = 0.$$

Proof. The proof is obvious.

Theorem 12. α is a ccr-curve in $\mathbb{E}_1^4 \Leftrightarrow \sum_{i=1}^2 \varepsilon_i H_i^2 = constant.$

Proof. By using the definitions of a general helix of $rank \ 2$ and ccr-curve, this completes the proof of the theorem.

Theorem 13. Let $\alpha : I \to \mathbb{E}_1^4$ is a non-null curve. Frenet frame $\{V_1, V_2, V_3, V_4\}$ and curvature functions $k_1, k_2, k_3, (k_4 = 0)$. If $k_1 = 1$ and k_2, k_3 are both constants, then

$$\nabla_{V_1}^4 V_1 + \left(\varepsilon_1 \varepsilon_2 + \varepsilon_2 \varepsilon_3 \frac{k_1^2}{H_1^2}\right) \nabla_{V_1}^2 V_1 = 0.$$

Proof. $k_1 = 1$, from Equation (1), we have

$$\nabla_{V_1}V_1 = \varepsilon_2 V_2 \Rightarrow \nabla_{V_1}^2 V_1 = \varepsilon_2 \nabla_{V_1} V_2 \Rightarrow \nabla_{V_1}^3 V_1 = \varepsilon_2 \nabla_{V_1}^2 V_2 \Rightarrow \nabla_{V_1}^4 V_1 = \varepsilon_2 \nabla_{V_1}^3 V_2.$$

Since

$$\nabla_{V_1}^2 V_1 = -\varepsilon_1 \varepsilon_2 V_1 + \varepsilon_2 \varepsilon_3 k_2 V_3,$$

we have

$$\nabla_{V_1}^3 V_1 = -\varepsilon_1 V_2 - \varepsilon_3 k_2^2 V_2 + \varepsilon_2 \varepsilon_3 \varepsilon_4 k_2 k_3 V_4,$$

 and

$$\nabla_{V_1}^4 V_1 = \left(-\varepsilon_1 \varepsilon_2 - \varepsilon_2 \varepsilon_3 k_2^2\right) \nabla_{V_1}^2 V_1 - \varepsilon_2 \varepsilon_4 k_2 k_3^2 V_3,\tag{3}$$

where

$$\begin{split} \nabla^2_{V_1} V_2 &= -\varepsilon_1 \varepsilon_2 V_2 - \varepsilon_2 \varepsilon_3 k_2^2 V_2 + \varepsilon_3 \varepsilon_4 k_2 k_3 V_4, \\ \nabla^3_{V_1} V_2 &= -\varepsilon_1 \nabla^2_{V_1} V_1 - \varepsilon_3 k_2^2 \nabla^2_{V_1} V_1 - \varepsilon_4 k_2 k_3^2 V_3, \end{split}$$

and from Equation (3) $H_1 = \text{constant}, H_1' = 0$ that is $k_3 = 0$. Thus we have

$$\nabla_{V_1}^4 V_1 = \left(-\varepsilon_1 \varepsilon_2 - \varepsilon_2 \varepsilon_3 k_2^2 \right) \nabla_{V_1}^2 V_1,$$

or since $k_2 = \frac{k_1}{H_1}$, we obtain

$$\nabla^4_{V_1}V_1 + \left(\varepsilon_1\varepsilon_2 + \varepsilon_2\varepsilon_3 \frac{k_1^2}{H_1^2}\right)\nabla^2_{V_1}V_1 = 0.$$

Corollary 14. (i) If the vector V_1 is time-like, then

$$\nabla^4_{V_1} V_1 - \nabla^2_{V_1} V_1 + \frac{k_1^2}{H_1^2} \nabla^2_{V_1} V_1 = 0.$$

(ii) If the vector V_2 is time-like, then

$$\nabla_{V_1}^4 V_1 - \nabla_{V_1}^2 V_1 - \frac{k_1^2}{H_1^2} \nabla_{V_1}^2 V_1 = 0.$$

(iii) If the vector V_3 is time-like, then

$$\nabla^4_{V_1}V_1 + \nabla^2_{V_1}V_1 - \frac{k_1^2}{H_1^2}\nabla^2_{V_1}V_1 = 0.$$

90

5. An Example

Example 1. Let us consider the following non-null curve in the space \mathbb{E}_1^4

$$\alpha(s) = \left(\sqrt{2}s, \sqrt{3}, \sin s, \cos s\right).$$
$$V_1(s) = \alpha'(s) = \left(\sqrt{2}, 0, \cos s, -\sin s\right),$$

where $\langle \alpha'(s), \alpha'(s) \rangle = -1$, which shows $\alpha(s)$ is an unit speed time-like curve. Thus $\|\alpha'(s)\| = 1$. We express the following differentiations:

$$\begin{cases} \alpha''(s) = (0, 0, -\sin s, -\cos s), \\ \alpha'''(s) = (0, 0, -\cos s, \sin s), \\ \alpha^{iv}(s) = (0, 0, \sin s, \cos s). \end{cases}$$

Moreover, we have the first curvature, the second, the third curvature, harmonic curvature and *i*-th *e*-curvature function m_i of $\alpha(s)$ as

$$\begin{cases} k_1(s) = 1, & k_2(s) = \sqrt{2}, & k_3(s) = 0, \\ m_2 = -1, & m_3 = 0, \\ H_1 = \frac{1}{\sqrt{2}}, & H_2 = 0. \end{cases}$$

Now, we will calculate ccr-curve of $\alpha(s)$ in \mathbb{E}_1^4 . If the vector V_1 is time-like, then $\varepsilon_1 = -1$

$$\begin{cases} \varepsilon_1 \ \frac{k_2}{k_1} = -\sqrt{2} = \text{constant}, \\ \varepsilon_2 \ \frac{k_3}{k_2} = 0 = \text{constant}. \end{cases}$$

Thus, $\alpha(s)$ is a ccr-curve in \mathbb{E}_1^4 .

ESEN İYIGÜN

References

- E. İyigün and K. Arslan, On harmonic curvatures of curves in Lorentzian n-space, Commun. Fac. Sci. Univ. Ank. Series A1 54(1) (2005), 29-34.
- [2] B. O'neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
- [3] N. Ekmekçi, H. H. Hacisalihoğlu and K. İlarslan, Harmonic curvatures in Lorentzian space, Bull. Malaysian Math. Sc. Soc. (Second Series) 23 (2000), 173-179.
- [4] G. Öztürk, K. Arslan and H. H. Hacısalihoğlu, A characterization of ccr-curves in R^m , Proceedings of the Estonian Academy of Sciences 57(4) (2008), 217-224.
- [5] S. Yılmaz, E. Özyılmaz and M. Turgut, On the differential geometry of the curves in Minkowski space-time II, International Journal of Computational and Mathematical Sciences 3(2) (2009), 53-55.
- [6] A. F. Yalınız and H. H. Hacisalihoğlu, Null generalized helices in L^3 and L^4 , 3 and 4-dimensional Lorentzian space, Mathematical and Computational Applications 10(1) (2005), 105-111.
- [7] R. Uribe-Vargas, On singularities, 'Perestroikas' and differential geometry of space curves, L. Enseigement Mathematique 50 (2004), 69-101.