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Abstract

In this paper, we study the Darboux vector of a non-null curve in Minkowski
4-space Ef We also give a relation between the Darboux vector and harmonic

curvatures. We find a relation between ccr-curves and harmonic curvatures of
this curve. Further, we obtained some results for space-like and time-like
vectors. We also show that if the ratios of the curvatures of a non-null curve are

constant, then those of the ccr-curve are also constant.
1. Introduction

Let X = (xq, xg9, x3, x4) and Y = (y;, ¥2, ¥3, ¥4) be two non-zero

vectors in Minkowski 4-space Ef .For X, Y e ]EiL

(X,Y) = — %131 + X9¥9 + X3)3 + X4V,

2010 Mathematics Subject Classification: 53C40, 53C42.

Keywords and phrases: Darboux vector, Darboux vertex, constant curvature ratios,
harmonic curvatures, i-th e-curvature function.

Received February 24, 2016

© 2016 Scientific Advances Publishers



82 ESEN IYIGUN

is called Lorentzian inner product. The couple {Ef,(, )} is called
Lorentzian space. Then the vector X of Ef is called (1) time-like if
(X, X) < 0, (il) space-like if (X, X) > 0 or X = 0, (iii) null (or light-like)
vector if (X, X) =0, X # 0.

Similarly, an arbitrary curve o = a(s) in ]E;i1 can be locally be space-
like, time-like or null, if all of its velocity vectors o'(s) are, respectively,
space-like, time-like or null. Also, recall the norm of a vector X is given by
|| = m Therefore, X is a unit vector if (X, X) = +1. Next,
vectors X, Y in E{ are said to be orthogonal if (X,Y) = 0. The velocity
of the curve a is given by ||a/|. Thus, a space-like or a time-like o is said

to be parametrized by arclength function s, if (o, o') = 1, [2].
2. Basic Definitions

Definition 1. Let o : I — Ef be a curve in ]‘EjiL and kq, ko, k3 be the
Frenet curvatures of a. Then for the unit tangent vector V; = a/(s) over

M the i-th e-curvature function m;, 1 <i < 4 is defined by

0, 1=1
mi =1 =2 M
d € .
[E (mi_q)+ 8i—2mi—2ki—2:|ﬁ’ 2<i<4

where g; = (V;, V;) = £1.

Definition 2. Let a: I — Ef be a unit speed non-null curve. The
curve o is called Frenet curve of osculating order d, (d < 4) if its 4-th
order derivatives a'(s), a'(s), a"(s), o'’(s) are linearly independent and

a'(s), a’(s), a”(s), a'’(s), a’(s) are no longer linearly independent for all
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s e I. For each Frenet curve of order 4, one can associate an
orthonormal 4-frame {V;, Vy, Vs, V4} along o (such that a'(s) = V)
called the Frenet frame k;, kg, k3 : I —> R called the Frenet curvatures,

such that the Frenet formulas is defined in the usual way;
Vi V1 = eak Vs,
VVl V2 = _Slklvl + 83k2V3,

@)
VV1V3 = —82k2V2 + 84]€3V4,

Vv Vy = —e3k3Vs,
where Vi, Vy, V3, and V, are orthogonal vectors satisfying equations:
M, Vi) = -1,
Vi, Vi) =1, (2<i<4),
and V is the Levi-Civita connection of Ef.

Definition 3. Let X = (x17 X9, X3, x4)7 Y = (ylv Y2, Y3, y4)7 and

Z = (2, 29, 23, 24) be vectors in the space Ef. The vector product in

Minkowski space-time is defined with the determinant

—€ €2 €3 €4
X1 X9 X3 X4
XAYANZ = — ,
Y1 Yo Y3 Y4
<1 22 <3 2

where e, ey, e3, and ey are coordinate direction vectors [5].
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3. Harmonic Curvatures and Darboux Vector in E;

Definition 4. Let o be a non-null curve of osculating order 4. The

harmonic functions

Hj:1->R, 0<5j<2

defined by
Hy=0, H =™,
ko
e
Hj ={V, (Hj 1)+ 8j—2Hj—2kj}k,—],
Jj+1

are called the harmonic curvatures of a. Here, ki, k9, kg are Frenet
curvatures of a, V 1is the Levi-Civita connection and ¢ j= (Vj, Vj> = %1,

[1].

Definition 5. Let o be a non-null curve of osculating order 4. Then

o 1s called a general helix of rank 2 if

=1
holds, where ¢ # 0 is a real constant.
We have the following result.

Corollary 1. If o is a general helix of rank 2, then
HE + H? = .

Proof. By the use of above definition we obtain.
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Theorem 2. Let o be a non-null curve of osculating order 4 in Ef,

then

&
Vi Vi = LV,
w'i Mg 2

€9 (mg)
Vy Vo = ——=2V, + —22V,,
Ve ms 1 ms 3

Vi, Vo = —gggq —=24
s 23ms mgmy

(mg) Vy + mgs(ms) + egegmg(mg) jw,

Vi V, = — g3e4mg(mg) — egegmg(my) %
o mgmy &

Here, the i-th e-curvature function m; and ¢; = (V;,V;) = £1,(1 < i < 4).

Proof. By using definition of the i-th e-curvature function m; we get

the result. O

Theorem 3. Let o be a non-null curve of osculating order 4 in Ef,

then
vVl Vl = 82]€2H1V2,

k
VVIV2 = —81]€2H1V1 + €3 FIIV3,

Ky

VVlVS = —&9 Hl

V2 + €98&y g—;V4,

H;
VVIV4 = —E&9¢&3 H—2V3

Here, Hy, Hy are harmonic curvatures of o and g; =(V;, V;) = +1,

(1<i<a).

Proof. By using definition of harmonic curvatures, we get the result.

0
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Theorem 4. Let o : I — ]‘EjiL be a non-null curve of osculating order 4
given the Frenet frame {Vi, Vo, V3, V,}. If m;, 2 <1 < 4, are the i-th
e-curvature functions and H;,1 <i <2 are the harmonic curvatures,

then the following hold:

2
det(ms, ms, my) =0 < Zsz = constant.
i=1

Proof. The proof can seen by using the definitions of i-th e-curvature

function m; and harmonic curvatures H;. g

Definition 6. Let o be a non-null curve of osculating order 4 in Ef,

with Frenet curvatures %, kg, k3. Let us denote

ag = koks,

k
a €1 éao, (k'2 * 0),

k
Q9 = &9 ﬁal, (k3 * O)

The Darboux vector in E{ is defined by
D(s) = agVq + a1V + agVs,
where {V;, Vy, V3} is the Frenet frame of a.
Lemma 5. The derivative of the Darboux vector D(s) is
D'(s) = apVq + a1V + ajVs,
7.

Definition 7. The point a(sy) is called Darboux vertex of o if the

first derivative of the Darboux vector D(s) is vanishing at that point [4].
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Theorem 6. Let o be a non-null curve of osculating order 4 in Ef,

with Frenet curvature k; and harmonic curvatures Hy, Hy. Let us denote

a ki Hy
0 =~ €2 ,
H\H,
k Hy
a1 = €189 H,
ki
Ay = €189 H,’

where Hy # 0 and Hy # 0.

Proof. By using definition of harmonic curvatures, we get the result.
O

We obtain the following definition.

Definition 8. Let a: 1 — Ef be a non-null curve of osculating

order 4. The harmonic functions

Hi:I->R, 1<j<2

defined by
a
H =g —-
1 51 a )
aqH
Hg =g aZkl ,
(VL]

where & = (V}, Vi) = £1; a9, a, a3 € R and k; is Frenet curvatures of

.

Theorem 7. Let o be a non-null curve of osculating order 4 in Ef,

with Frenet curvatures ki, ko, k3. The curve has a Darboux vertex at point

a(s) if and only if
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Corollary 8. If o : I — E{ has a Darboux vertex at the point a(sy),

then o is a general helix of order 3, [4].

4. Constant Curvature Ratios in Ef

Definition 9. A curve o : I —> ]Ei1 is said to have constant curvature

ratios (that is to say, it is a ccr-curve) if all the quotients Si(;g_+lj are
i

constant (k; = 0). Here; k;, k;,1, (1 <i < 2), are Frenet curvatures of a,
and g; = (V;, V;) = £1, 1 < i < 4).

Corollary 9. (a) For i =1, the ccr-curve is g9¢g ma(my) _
mg

’
ma\m m
malmg) | my

(b) For i = 2, the ccr-curve is €9€3e .

mg ) my

Proof. The proof can be easily seen by using the definitions of i-th
O

e-curvature function m; and ccr-curve.

€

Corollary 10. (a) For i =1, the ccr-curve is 77
1

(b) For i = 2, the ccr-curve is 1212[2 .
(c) If the vector V; is time-like, then the ccr-curve is I_{—l, where
e = (W1, V1) = -1
(d) If the vector Vj is space-like, then the ccr-curve is HLI, where
6 = (Vi Vi) = 1.
Proof. The proof can be easily seen by using the definitions of
O

harmonic curvature and ccr-curve.
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Corollary 11. Let o : I — ]EiL is a ccr-curve. If

’

€ L = constant, HHi = constant,
'H, Hyky

then

1 r_ HlHi !_
(81 Hlj =0 (H2k1) =0

Proof. The proof is obvious.

2
Theorem 12. o is a ccr-curve in Ef = ZSiHiQ = constant.

=1

89

Proof. By using the definitions of a general helix of rank 2 and

cer-curve, this completes the proof of the theorem.

O

Theorem 13. Let o: I — Ef is a non-null curve. Frenet frame

Vi, Vo, Va3, V4} and curvature functions ki, ko, kg, (kg = 0). If k =1

and kg, k3 are both constants, then

2
4 ko2
VVIVvl + {8182 + €9€3 H—%valvl = 0.

Proof. k; =1, from Equation (1), we have

2 3 2 4 3
VV1V1 = 82V2 = Vvl‘/l = 82VV1V2 = VVIVl = SQVV1V2 = VV1V1 = SQVV1V2.

Since
V%,lVl = —8182V1 + 8283k2V3,
we have

V%,lVl = —81V2 - Sgk%VQ + 828384k2k3V4,
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and
V%,l V) = (— €169 — 8283/€§ )V%/IVl - 8284k2k§V3, 3)
where
V%/1V2 = —g1g9Vy — 8283k§V2 + e384koksVy,
v?,l Vy = —81V?,1 Vi - s3k§v%,lvl — e4kok2 Vs,

and from Equation (3) H; = constant, H{ = 0 that is k3 = 0. Thus we

have

ViV - ( ek W2
w1 (—&189 — £983k3 ) v

or since kg = , we obtain

L
H,y
4 K )o2
VV1V1 + | €1€g9 + €9E3 F VVlVl =0.
1
Corollary 14. (i) If the vector V; is time-like, then
2
ViV —vi v+ vy — o
vl i g2 M 1 :
1
(11) If the vector Vy is time-like, then
2
vivi—viv —Mov2yo_g
vl vl H12 vl ’

(i1i) If the vector V3 is time-like, then

e

2
4 2 kM g2y
VV]_Vl + VV]_V]- H12 VVlVl =
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5. An Example

Example 1. Let us consider the following non-null curve in the space

Ef
a(s) = (\/Es, V3, sin s, cos s).
Vi(s) = a/(s) = («/5, 0, cos s, — sin s),
where (a'(s), a/(s)) = -1, which shows a(s) is an unit speed time-like

curve. Thus ||a/(s)]| = 1. We express the following differentiations:
a’(s) = (0, 0, — sin s, — cos s),
a"(s) = (0, 0, — cos s, sin s),
ai’(s) = (0, 0, sin s, cos s).

Moreover, we have the first curvature, the second, the third curvature,

harmonic curvature and i-th e-curvature function m; of a(s) as

Fi(s) =1, ka(s) =2, k3(s) =0,

mo = —1, mg = 0,

H1:%, H, = 0.

Now, we will calculate ccr-curve of a(s) in Ef. If the vector V; is time-

like, then g = -1

k
£ k_z = -2 = constant,
1
k
€9 -3 = 0 = constant.
kg

Thus, o(s) is a cer-curve in Ei.
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