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Abstract 

Let ( )baDic ,  be the generalized dicyclic group. In this paper, we show that if ( )baDic ,  has 

order 1,12,1,2 ≥+∈> ss Nkkk  or ,2,2 >rr  then ( )baDic ,  is a Cayley isomorphic 
group with respect to graphs. 
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1. Introduction 

In 1967, Ádám [1] conjectured that any two Cayley graphs of mZ  are 

isomorphic if and only if they are isomorphic by an automorphism of .mZ  

A counter example to this conjecture was quickly found in 1970 by Elspas 
and Turner [6]. Posteriorly, Muzychuk completed the problem of 
determining which values of m have the property that any two Cayley 
graphs of mZ  are isomorphic if and only if they are isomorphic by an 

automorphism of ,mZ  proving that if m is square free, then mZ  [8] and 

m2Z  [9] have this property. The only other values of m with this property 

are 8 and 9 [2]. Ádáms conjecture was quickly generalized to the 
following problem. 

Problem 1.1. 

For which finite groups G is it true that any two Cayley graphs of G 
are isomorphic if and only if they are isomorphic by an automorphism of 
G? 

A finite group G with this property will be called a Cayley isomorphic 

group (for brevity CI-group ) with respect to graphs. 

This problem are studied by many authors. Godsil [7] proved that 2
pZ  

is a CI-group with respect to graphs for p a prime. Babai [3] showed that 
the nonabelian group of order 2p is a CI-group with respect to graphs, 
and the author [4] showed that the nonabelian group of order ppq,  and 

q distinct primes, is a CI-group with respect to graphs if and only if 
2=q  or 3. While some other results on the above problem are known, 

other than the above mentioned results of Muzychuk there are no known 
CI-groups with respect to graphs where the order of the group has more 
than three prime factors. In this paper, we show that if the generalized 

dicyclic group ( )baDic ,  has order 1,12,1,2 ≥+∈> ss Nkkk  or ,2,2 >rr  

then ( )baDic ,  is a Cayley isomorphic group with respect to graphs. 
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2. Preliminary Results 

Definition 2.2. Let G be a finite group and let S be a subset of G which 
is closed under inversion and does not contain the identity. Then, the 

graph ( )SG;Γ=Γ  given by ( ) GV =Γ  and ( ) {( ) }ShjhjE ∈=Γ −1:,  is 

called Cayley graph. 

Definition 2.3. Let G be a finite group. For ,Gg ∈  define Gfg :  G→  

by ( ) .ghhfg =  Then { }GgfG gL ∈= :  is itself a group, the left regular 

representation of G and is isomorphic to G. 

Remark 2.4. Clearly if ( )SG,Γ  is a Cayley graph on G, then Shh ∈′−1  

and ( ) Shggh ∈′−1  are equivalent statements, so that ∈gf  ( ),ΓAut  

where ( )ΓAut  is the automorphism group of .Γ  Therefore, ( ).Γ≤ AutGL  

We make some comments about of the normalizer ( )( ).LAut GN Γ  It 

well known that for the normalizer of LG  in ,GS  we have 

( ) ( ).GAutGGN LLSG =  

Thus, we have 

( )( ) ( ( )) ( )Γ=Γ AutGAutGGN LLAut ∩  

( ( ) ( ))Γ= AutGAutGL ∩  (2.1) 

( ),, SGAutGL =  

where ( ) { ( ) }.:, SSGAutSGAut =α∈α=  

Let H be a subgroup of .LG  From (2.1), we deduce that 

( )( ) ( ) ( ),,, SHGAutHNHN LGAut =Γ   (2.2) 

where ( ) { ( ) }.,:,, 1 HHSGAutSHGAut =αα∈α= −  
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Definition 2.5. Let G be the finite group and let Γ  be some Cayley 
graph of G. We shall say that Γ  is a Cayley isomorphic graph (for brevity 
CI-graph) of G if given any Cayley graph Γ′  of G such that Γ  is 
isomorphic to ,Γ′  then Γ  and Γ′  are isomorphic by some ( ).GAut∈α  

The following characterization of the CI-graph was proven by Babai 
and will be used in this paper. 

Lemma 2.6 (Babai [3]). For a Cayley graph Γ  of a finite group G, the 
following are equivalent: 

(1) Γ  is a CI-graph of G; 

(2) given a permutation GS∈φ  such that ( ) LL GAutG ,1 Γ≤φφ −  and 
1−φφ LG  are conjugate in ( ).ΓAut  

Other characterization of CI-graph we may find in the following 
lemma: 

Lemma 2.7. For a Cayley graph Γ  of a finite group G, the following are 
equivalent: 

(1) Γ  is a CI-graph of G; 

(2) given a permutation GS∈φ  such that ( )Γ∈φ Auth  for some 

( ).LS GNh G∈  

Proof. Assume that Γ  is a CI-graph of G. According to Lemma 2.6, given 

a permutation GS∈φ  such that ( ) LL GAutG ,1 Γ≤φφ −  and 1−φφ LG  are 

conjugate in ( ),ΓAut  i.e., there exists ( )Γ∈ Autg  such that 

.11 −− φφ= LL GggG   (2.3) 

From (2.3), we obtain 

.11
LL GggG =φφ −−   (2.4) 

Therefore, we may assert that ( ).1
LS GNhg G∈=φ−  The converse 

implication follows applying newly the last lemma. So we are done.  
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Therefore, combining the Lemmas 2.6 and 2.7 we obtain: 

Proposition 2.8. For a Cayley graph Γ  of a finite group G, the following 
are equivalent: 

(1) Γ  is a CI-graph of G; 

(2) given a permutation GS∈φ  such that ( ) LL GAutG ,1 Γ≤φφ −  and 
1−φφ LG  are conjugate in ( );ΓAut  

(3) given a permutation GS∈φ  such that ( )Γ∈φ Auth  for some 

( ).LS GNh G∈  

Let R be a field of characteristic p or a complete discrete valuation 
ring with residue field of characteristic p. We recall that a minimal            
p-subgroup Q of G relative to which the indecomposable RG-module U is 
projective is called a vertex of U, and it is defined up to conjugacy in G. 

Moreover, an RQ-module Z for which U is a summand of ( )ZIndG
Q  is 

called a source of U, and given the vertex Q it is defined up to conjugacy 
by elements of ( ).ZNG  If RZ =  we say that U has trivial source. 

The following lemma is well known. 

Lemma 2.9. A vertex of the trivial RG-module R is a Sylow p-subgroup    
of G. 

The following lemma will be used in this paper. 

Lemma 2.10. Let G be a finite group and let P be a p-subgroup of G. If 
( ( )),PNSylP Gp∈  then ( ).GSylP p∈  

Proof. According to the last lemma, the p-subgroup P is a vertex of the 
trivial ( )PRNG -module. Since the Green correspondent of the trivial 

( )PRNG -module is the trivial RG-module, applying again the Lemma 2.9 

the result follows.   
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3. Some Properties of the Group ( )baDic ,  

Let ( ) 1,,:,, 1 ===== − dlsduls baababbababaDic kk  be the 

finite group, where ,, sk  and u are integers with 1>k  and .1≥s  The 

positive integer d is a divisor of 1−u  and l is the multiplicative order     
of u modulo .kd  The group is called generalized dicyclic group. Let 

lsqj = .0, lsrr <′≤′+  Observe that for all element ( ,10 −≤≤= kdiabg ij  

)10 −≤≤ dlsj  we have 

.rqiurlsqujujjijij babababbababg
jijij ′+′+− ===== k  

Thus, for every element ( ),, baDicg ∈  we may write ( ≤≤= ibag ji 0  

).10,1 −≤≤− lsjdk  Therefore, we may assert that  ( ) ., lsdbaDic k=   

Remark 3.11. Observe that when 1−=u  and ,1=s  the group is 

dihedral or general quaternion group according to 1=d  or .2=d  

Center of the Group 

We denote the center of the group by ( )( )., baDicZ  Let ∗d  be the 

greatest common divisor of k  and .1
d

u −  In [5] was proved that 

( )( ) ( ) ,:,, δ
β

∗=∈= lbagbaDicgbaDicZ d
k

 

where .1,,0,1,,0 −=δ−=β ∗ sdd ……  Hence, we have 

( )( ) ., sddbaDicZ ∗=   (3.1) 

Remark 3.12. Let ( )( )baDicInn ,  be inner automorphisms group. Then, 

from (3.1), we have ( )( ) .,,
∗

=′′=
d

lbaDicInn
kkk  
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Proposition 3.13. Let ( )baDic ,  be the generalized dicyclic group. Then 

for the conjugacy classes ( ) ( )( )1,gcd, =kdia baiDic  and ( )( ,1, lsjb bajDic <≤  

( ) ),1,gcd =dlsj  we have 

( ) ( ) ( ( ).1gcd,,,
d

ud
d

bandla bajDicbaiDic −==′′== ∗
∗

k,kkk  

Proof. Let ia  with ( )( ).1,gcd =kdi  Then for any element ( )baDicba yx ,∈  

we have 

( ) ( ) .1 yiuyxiyx abaaba =−  

Since ly ≤≤0  the result follows. Furthermore, 

( ) ( ) ( ) .11 juxyxjyx bababba −− =  

We may assert that ( ) ( )
∗

∗ −=′′=−
dd

uuxuddxu 11  by assumption. So we 

are done.  

Lemma 3.14. Let ( )baDic ,  be the generalized dicyclic group. 

(1) If ( ) ,1,gcd =kd  then ( )( ) ( ) ( ),, dlsddbaDicAut ϕϕ= kk  where ϕ  is 

the Euler’s phi function. 

(2) If ( ) ,,gcd dd =k  then ( )( ) ( ) ( )., lsddbaDicAut ϕϕ= kk  

Proof. (1) We claim that in such case ( )( { },1,,1, −∈∈/ dlsjbb baDicj …  

( ) .1,gcd =dlsj  Moreover, we may see that any ( )( )baDicAut ,∈α  is 

given by ( ) ( ) 1,gcd, ==α kdiaa i  and ( ) ;1,,0, −==α kdxbab jx …  

( ) .1,gcd =dlsj  Assume that { ( ) }1,gcd: == kdiaA i  and { :jxbaB =  

( ) }.1,gcd;1,,0 =−= dlsjdx k…  Thus, we may write ( )kdA ϕ=  and 

( ).dlskϕ= dB  Since ( ) Aaa i ∈=α  and ( ) Bbab jx ∈=β  the result follows. 
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(2) Here ( )baDicj bb ,∈/  if and only if { }( ) ( ) .1,gcd,1,,1 =−∈ dlsjlsj …  

Thus, proceeding as in the case (1) the assertion follows.  

Lemma 3.15. Let ( )baDic ,  be the generalized dicyclic group. Then 

( )( )baDicAut ,  is a solvable group. 

Proof. We check two cases. 

Case I: ( ) 1,gcd =dk  

According to the last lemma, we have ( )( ) ( ) ( )., dlsddbaDicAut ϕϕ= kk  

Let H be a subgroup of ( )( )baDicAut ,  given by ( )( )baDicAutH ,∈α=  

( ) ( ) ( ( ) .11,1,gcd, −≤≤==α=α dlsjdlsjbbaa j  We claim that H is 

abelian group of order ( ).dlsϕ  We consider the subgroup ∈β=1H  

( )( ) ( ) ( ( ) ) ( ) ( ( ) ),1,gcd,1,1,gcd, ==β≠==β kk dljbbidiaabaDicAut ji  
( )baDici aa ,∈/  or ( ) .,baDicj bb ∈/  We may assert that 1H  is also abelian 

group whose order is given by ( ) { }.,,1, lqql
dd …∈ϕ k  Hence 

( )( ) 1, HbaDicInn  is normal subgroup of ( )( )baDicAut ,  of order ( ).kk dd ϕ  

Thus, we may write 

( )( ) ( )( ) .,, 1 HHbaDicIbaDicAut nn =   (3.2) 

Since ( )( ) 1,, HbaDicInn  and H are solvable groups, from (3.2) the result 

follows. 

Case II: ( ) dd =,gcd k  

Proceeding as in the last case the assertion follows.  

4. Main Results 

Theorem 4.16. Let ( )baDic ,  be the generalized dicyclic group, where 

,1=d  1,2 ≥= sl  and 1>k  is an odd number. Assume that 

( )( )SbaDic ,,Γ  is a Cayley graph on ( )baDic ,  and that r2  denote the 
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highest power of 2 dividing .bf  Then r
b

a ff 2×  is the largest 

normal π -subgroup of a Hall π-subgroup in ( ),ΓAut  being π  the set of all 

the odd prime divisors of k  and s. 

Proof. Let us write G for ( )ΓAut  and we write H for .2r
b

a ff ×  Firstly, 

we observe that ( ( ) ).,2 Lb
baDicZf r ≤  Assume now that HP ≤  is a 

Sylow p-subgroup. Since P is a normal Sylow p-subgroup of ( ) ,, LbaDic  

from (2.2), it follows that 

( ) ( ( ) ) ( ) ( )( ).,,,, SbaDicAutbaDicbaDicNPN LLGG ==   (4.1) 

By Lemma 3.15, it follows that ( )( )baDicAut ,  is a solvable group, so 

( )( )SbaDicAut ,,  is also solvable. Since ( )LbaDic ,  is solvable, from (4.1), 

we deduce that ( ( ) )LG baDicN ,  is solvable. Thus, the Hall π -subgroups 

of ( ( ) )LG baDicN ,  there exist. Let H  be a fixed Hall π -subgroup of 

( )( )SbaDicAut ,,  and let P  be a Sylow p-subgroup of .H  Then we may 

assert that the semidirect product PPQ =  is a Sylow p-subgroup of 

( ).PNG  Hence, we may write 

( ) ,NPQNG =  

where N is the normalizer of P  in ( )( ).,, SbaDicAut  

Therefore ( ( )),QNSylQ Gp∈  so we may assert that Q is a Sylow      

p-subgroup of G by Lemma 2.10. Since the last statement hold for every 
Sylow ip -subgroup ( )π=π∈ ,,1, …ipi  of ,HH   we deduce that 

HH   is Hall π -subgroup of G, which is what we need to prove.  

We now give our main results in this paper. 

Theorem 4.17. Let ( )baDic ,  be the dicyclic generalized group, where 

,1=d  1,1 −=≥ kus  and 1>k  is an odd number. Then ( )baDic ,  is 

CI-group with respect to graphs. 
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Proof. Assume that Γ  is any Cayley graph on ( )., baDic  Let us write G 

for ( ).ΓAut  We will show that Γ  is a CI-graph. Suppose that 

( ) ,, 1 GbaDic L ≤φφ −  where ( )., baDicS∈φ  According to Theorem 4.16, we may 

assert that r
b

a ff 2×  and 1
2

−φ×φ r
b

a ff  are largest normal π -subgroup 

of a Hall π -subgroup of G respective, where π  is the set of all the odd prime 
divisors of k  and s. It well known that the Hall π -subgroups of a finite 
group (if they exist) are congugacy, so we may assert that for, some ,Gg ∈  we 

have 
( )

( ) ( ) ,1,gcd,gcd,11
222 ==φ×φ=× −− jiffgffg rjxir

baab
a sk  

{ }k,,1 …∈x  holds. Hence, we have 

( ) .and 1221211 −−−− φφ=φφ=
rr jxi baggbagag   (4.2) 

From (4.2), it follows that .111 −−− φ=φ gaag i  Therefore, we have 

( ) ( ( ) ) ( ( ) ).111121 −−−−− φφ=φ agaagag ii   (4.3) 

Thus, from (4.3), we obtain the following equality: 

( ) ( ) ( ).11111 +−−−+− =φφ ii agag   (4.4) 

Hence, from (4.4), we obtain 

( ) ( ) .111111 +−−−+− =φφ ii abgagb   (4.5) 

Applying (4.2) secund part, we deduce that the equality (4.5) is true if and 

only if ,2
1

bfgb ∈φ−  so we may assert that .G∈φ  Therefore, according 

to Lemma 2.6, the Cayley graph Γ  is CI-graph. So we are done.   

Theorem 4.18. Let ( )baDic ,  be the dicyclic generalized group with 

( ) ,2, rbaDic =  .2>r  Then ( )baDic ,  is CI-group with respect to graphs. 
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Proof. Let us write G for ( ).ΓAut  Assume that Γ  is a Cayley graph on 

( )., baDic  We will prove that Γ  is CI-graph.  

By assumption, we claim that ( )( )baDicAut ,  is a 2-group. Thus, we 

may assert that ( )( )SbaDicAut ,,  is a 2-subgroup of ( )( )., baDicAut  

Hence, from (2.1), we deduce that the normalizer ( ( ) )LG baDicN ,  is a     

2-group. We will prove that ( ( ) )LG baDicN ,  is a Sylow 2-subgroup of G. 

Let R be a field of characteristic 2. Then we may assert that 
( )( )SbaDicRAut ,,  is an indecomposable ( ( ) )LG baDicRN , -module with 

vertex ( )LbaDic ,  and trivial source. Assume that P is a Sylow                 

2-subgroup of G such that ( ( ) ) ., PbaDicN LG ≤  Therefore, since RP is 

indecomposable applying the Green correspondence, we deduce the 
following holds: 

( ( ) )., LG baDicNP =  

Suppose that ( ) ,, 1 GbaDic L ≤φφ −  where ( )., baDicS∈φ  We may 

assert that ( ( ) ) ( )., 1 GSylbaDicN pLG ∈φφ −  Since all the Sylow                

2-subgroups are conjugacy in G it follows that ( )LbaDic ,  and 

( ) 1, −φφ LbaDic  are conjugacy. Thus, applying the Lemma 2.6, we 

conclude that Γ  is a CI-graph, which is what we need to prove.    

Remark 4.19. It is well known that the quaternion group is CI-group 
with respect to graphs. Observe that the quaternion group is a particular 
case of ( )baDic ,  under the conditions of the last theorem. 
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