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Abstract

Let Dic(a, b) be the generalized dicyclic group. In this paper, we show that if Dic(a, b) has
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1. Introduction

In 1967, Addm [1] conjectured that any two Cayley graphs of Z,, are
isomorphic if and only if they are isomorphic by an automorphism of Z,,.

A counter example to this conjecture was quickly found in 1970 by Elspas
and Turner [6]. Posteriorly, Muzychuk completed the problem of
determining which values of m have the property that any two Cayley

graphs of Z,, are isomorphic if and only if they are isomorphic by an
automorphism of Z,,, proving that if m is square free, then Z,, [8] and
Zs,, 9] have this property. The only other values of m with this property
are 8 and 9 [2]. Adéms conjecture was quickly generalized to the
following problem.

Problem 1.1.

For which finite groups G is it true that any two Cayley graphs of G

are isomorphic if and only if they are isomorphic by an automorphism of

G?
A finite group G with this property will be called a Cayley isomorphic

group (for brevity CI-group ) with respect to graphs.

This problem are studied by many authors. Godsil [7] proved that Z 12,

is a CI-group with respect to graphs for p a prime. Babai [3] showed that
the nonabelian group of order 2p is a Cl-group with respect to graphs,
and the author [4] showed that the nonabelian group of order pq, p and
q distinct primes, is a CI-group with respect to graphs if and only if
q = 2 or 3. While some other results on the above problem are known,
other than the above mentioned results of Muzychuk there are no known
Cl-groups with respect to graphs where the order of the group has more
than three prime factors. In this paper, we show that if the generalized
dicyclic group Dic(a, b) has order 2ks,k > 1,k € 2N +1,s >1 or 2", r > 2,

then Dic(a, b) is a Cayley isomorphic group with respect to graphs.
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2. Preliminary Results

Definition 2.2. Let G be a finite group and let S be a subset of G which

is closed under inversion and does not contain the identity. Then, the
graph T = I'(G; S) given by V(') = G and E(') = {(j, h): j'h e S} is
called Cayley graph.

Definition 2.3. Let G be a finite group. For g € G, define f, : G > G
by fg(h) = gh. Then Gr, = {f, : g € G} is itself a group, the left regular

representation of G and is isomorphic to G.

Remark 2.4. Clearly if I'(G, S) is a Cayley graph on G, then hiheS

and (gh)'gh' € S are equivalent statements, so that fg € Aut(),

where Aut(I') is the automorphism group of I'. Therefore, G; < Aut(T).

We make some comments about of the normalizer N 4,,r)(Gr,). It

well known that for the normalizer of G;, in S, we have
NSG (GL) = GL X Aut(G)
Thus, we have

N au(r)(Gr) = (G, x Aut(G)) (") Aut(r)

=G, x(Aut(G)ﬂAut(F)) 2.1)
= G, x Aut(G, S),
where Aut(G, S) = {o € Aut(G)| aS = S}.
Let H be a subgroup of Gy,. From (2.1), we deduce that

N aus(r)(H) = Ng, (H) % Aut(G, H, S), (2.2)

where Aut(G, H, S) = {a € Aut(G, S)|aHa ™" = H}.
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Definition 2.5. Let G be the finite group and let T' be some Cayley
graph of G. We shall say that I' is a Cayley isomorphic graph (for brevity
Cl-graph) of G if given any Cayley graph I'" of G such that T' is

isomorphic to I/, then I' and I'" are isomorphic by some o € Aut(G).

The following characterization of the CI-graph was proven by Babai
and will be used in this paper.

Lemma 2.6 (Babai [3]). For a Cayley graph T of a finite group G, the

following are equivalent:

(1) T is a Cl-graph of G;

(2) given a permutation ¢ € Si such that $Gro' < Aut(T), Gy, and
0Gro~ are conjugate in Aut(T).

Other characterization of Cl-graph we may find in the following

lemma:

Lemma 2.7. For a Cayley graph T of a finite group G, the following are

equivalent:
(1) T is a Cl-graph of G;
(2) given a permutation ¢ € Sg such that ¢oh € Aut(T') for some

h e Ng,(Gr).

Proof. Assume that ' is a CI-graph of G. According to Lemma 2.6, given
a permutation ¢ € S; such that ¢G.¢™' < Aut(T'), G, and ¢G ¢~ are
conjugate in Aut(T'), i.e., there exists g € Aut(I') such that
-1 _ -1
8Grg ™ =¢Gro . (2.3)

From (2.3), we obtain
0'gGre™'o = Gr. (2.4)

Therefore, we may assert that ¢ ‘g =h e Ng,;(Gr). The converse

implication follows applying newly the last lemma. So we are done. O
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Therefore, combining the Lemmas 2.6 and 2.7 we obtain:

Proposition 2.8. For a Cayley graph T of a finite group G, the following

are equivalent:
(1) T is a Cl-graph of G;

(2) given a permutation ¢ € Si such that $Gro' < Aut(T), Gy, and

0GLo L are conjugate in Aut(T);

(8) given a permutation ¢ € Sg such that ¢Oh € Aut(T') for some
h e Ng,(Gpr).

Let R be a field of characteristic p or a complete discrete valuation
ring with residue field of characteristic p. We recall that a minimal
p-subgroup @ of G relative to which the indecomposable RG-module U is

projective is called a vertex of U, and it is defined up to conjugacy in G.

Moreover, an RQ-module Z for which U is a summand of Indg (Z) is

called a source of U, and given the vertex Q it is defined up to conjugacy
by elements of Ng(Z). If Z = R we say that U has trivial source.

The following lemma is well known.

Lemma 2.9. A vertex of the trivial RG-module R is a Sylow p-subgroup
of G.

The following lemma will be used in this paper.

Lemma 2.10. Let G be a finite group and let P be a p-subgroup of G. If
P € Syl,(Ng(P)), then P e Syl,(G).

Proof. According to the last lemma, the p-subgroup P is a vertex of the

trivial RNq(P)-module. Since the Green correspondent of the trivial
RN (P)-module is the trivial RG-module, applying again the Lemma 2.9
the result follows. O
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3. Some Properties of the Group Dic(a, b)
Let Dic(a, b) = (a, b : af =% bab ! = g%, % = ps = 1) be the

finite group, where k, s, and u are integers with £ >1 and s > 1. The

positive integer d is a divisor of u# —1 and 1 is the multiplicative order

of u modulo dk. The group is called generalized dicyclic group. Let
j=1Isq + 1,0 <r' <lIs. Observe that for all element g = bjai(O <i<dk-1,
0<j<dls-1) wehave
g = bial = blagipip) = aufibj _ aufibzsq+r' _ gWlithayr
Thus, for every element g € Dic(a, b), we may write g = a'b’(0 < i <
dk -1, 0 < j < ls—1). Therefore, we may assert that |Dic(a, b)| = dkls.

Remark 3.11. Observe that when w =-1 and s =1, the group is

dihedral or general quaternion group accordingto d =1 or d = 2.

Center of the Group
We denote the center of the group by Z(Dic(a, b)). Let d* be the

greatest common divisor of £ and MT_l In [5] was proved that

k
=P
Z(Dic(a, b)) = (g € Dic(a, b) : g = a?" bP),
where B=0,...,dd" -1,8 =0, ..., s — 1. Hence, we have
|Z(Dic(a, b)) = dd"s. (3.1)

Remark 3.12. Let I,,,,(Dic(a, b)) be inner automorphisms group. Then,

from (3.1), we have |I,,,,(Dic(a, b))| = k'l, k' = %
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Proposition 3.13. Let Dic(a, b) be the generalized dicyclic group. Then
for the conjugacy classes aiDiC(a’b)(gcd(i, dk) =1) and bjDiC(a’b)(l <j<ls,
ged(j, dls) = 1), we have

|aiDic(a,b)| -1 and |bjDic(a,b)| = K(k = d* = ged(k, u-1 ).

LA
d* d

Proof. Let a' with (ged(i, dk) = 1). Then for any element a*b” e Dic(a, b)

we have

(@*b”)a' (a®b? ) = ol

Since 0 < y <[ the result follows. Furthermore,

(a*b? Wl (a*p? ) = ¢*0-wp],

We may assert that (1 —u)x = dd*u'x(v' = 1-u ) by assumption. So we
dd*

are done. O
Lemma 3.14. Let Dic(a, b) be the generalized dicyclic group.

(1) If ged(d, k) = 1, then |Aut(Dic(a, b))| = dke(dk)p(dls), where ¢ is
the Euler’s phi function.

(2) If ged(d, k) = d, then |Aut(Dic(a, b))| = dko(dk)o(ls).
Proof. (1) We claim that in such case b/ ¢ bP@0)(j c {1, ..., dls -1},
ged(j, dls) = 1. Moreover, we may see that any o e Aut(Dic(a, b)) is
given by oafa)= al, ged(i, dk) =1 and a(b) = a*b!, x =0,..., dk-1;
ged(j, dls) = 1. Assume that A = {a' : ged(i, dk) =1} and B = {a"b’ :
x =0, ..., dk —1; ged(j, dls) = 1}. Thus, we may write |A| = ¢(dk) and

|B| = dko(dls). Since a(a) = a' € A and B(b) = a*b’ e B the result follows.
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(2) Here b/ ¢ bP(®) if and onlyif (j e {1, ..., Is - 1}), ged(j, dls) = 1.

Thus, proceeding as in the case (1) the assertion follows. O
Lemma 3.15. Let Dic(a, b) be the generalized dicyclic group. Then
Aut(Dic(a, b)) is a solvable group.

Proof. We check two cases.
Case I: ged(k, d) =1

According to the last lemma, we have |Aut(Dic(a, b))| = dko(dk)p(dls).
Let H be a subgroup of Aut(Dic(a, b)) given by H = (a e Aut(Dic(a, b))
la(a) = a, a(b) = b/(ged(j, dls) = 1,1 < j < dls —1). We claim that H is
abelian group of order ¢(dis). We consider the subgroup H; = (B
Aut(Dic(a, b))|B(a) = a'(ged(i, dk) =1, i = 1), B(b) = b’ (ged(j, dlk) = 1),

al ¢ qDic(a.d) o pi ¢ bDic(a’b)). We may assert that H; is also abelian

Mq, qefl,..,1l}. Hence

1,,,(Dic(a, b))H; is normal subgroup of Aut(Dic(a, b)) of order dkop(dk).

group whose order 1is given by

Thus, we may write
Aut(Dic(a, b)) = I, (Dic(a, b))H; x H. (3.2)

Since I,,,,(Dic(a, b)), H; and H are solvable groups, from (3.2) the result

follows.
Case II: ged(k, d) = d

Proceeding as in the last case the assertion follows. O
4. Main Results

Theorem 4.16. Let Dic(a, b) be the generalized dicyclic group, where

d=1 [1=2,8s>21 and k>1 is an odd number. Assume that

[(Dic(a, b), S) is a Cayley graph on Dic(a, b) and that 2" denote the
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highest power of 2 dividing |(fy)|. Then (fy)x (szr ) is the largest
normal w-subgroup of a Hall n-subgroup in Aut(T'), being n the set of all

the odd prime divisors of k and s.
Proof. Let us write G for Aut(I') and we write H for (f,) x ( fb ,r ). Firstly,
we observe that (fb2r> < Z(Dic(a, b); ). Assume now that P < H is a
Sylow p-subgroup. Since P is a normal Sylow p-subgroup of Dic(a, b);,
from (2.2), it follows that
Ng(P) = Ng(Dic(a, b); ) = Dic(a, b); x Aut(Dic(a, b), S). (4.1)
By Lemma 3.15, it follows that Aut(Dic(a, b)) is a solvable group, so

Aut(Dic(a, b), S) is also solvable. Since Dic(a, b); is solvable, from (4.1),
we deduce that Ng(Dic(a, b); ) is solvable. Thus, the Hall n-subgroups

of Ng(Dic(a, b);) there exist. Let H be a fixed Hall n-subgroup of
Aut(Dic(a, b), S) and let P be a Sylow p-subgroup of H. Then we may
assert that the semidirect product @ = P x P is a Sylow p-subgroup of
Ng(P). Hence, we may write

Ng(@) = PxN,

where N is the normalizer of P in Aut(Dic(a, b), S).

Therefore @ € Syl,,(Ng(®)), so we may assert that @ is a Sylow

p-subgroup of G by Lemma 2.10. Since the last statement hold for every
Sylow p;-subgroup (p; emn, i=1,...,|n) of H x H, we deduce that

H x H is Hall n-subgroup of G, which is what we need to prove. O

We now give our main results in this paper.

Theorem 4.17. Let Dic(a, b) be the dicyclic generalized group, where
d=1 s>21L,u=k-1 and k >1 is an odd number. Then Dic(a, b) is

Cl-group with respect to graphs.
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Proof. Assume that I is any Cayley graph on Dic(a, b). Let us write G
for Aut(l'). We will show that T' is a Cl-graph. Suppose that

¢Dic(a, b);, ¢1< G, where ¢ € SDic(a, b)- According to Theorem 4.16, we may
assert that (f, ) x (f o ) and ¢(f, ) x(f o )d)_l are largest normal & -subgroup
b b

of a Hall = -subgroup of G respective, where n is the set of all the odd prime
divisors of k and s. It well known that the Hall ©-subgroups of a finite

group (if they exist) are congugacy, so we may assert that for, some g € G, we
-1 _ ) -1 N N
have (fu) < (F )87 = W) x0F oo W7 e ) = ged(s )= 1,
x €{l, ..., k} holds. Hence, we have
gag™" = ga'p™! and gb? g7 = §(a®0/ ¥ §7. (4.2)

From (4.2), it follows that ¢_1g = aid)_lga_l. Therefore, we have

(07'g)? = (d'(07'g)a) (a (o g)a™). (4.3)

Thus, from (4.3), we obtain the following equality:

(07"l (97 g) ! = a (. (4.4)
Hence, from (4.4), we obtain

b(q)_lg)a”l(d)_lg)_lb_l _ ai+1. (4.5)
Applying (4.2) secund part, we deduce that the equality (4.5) is true if and
only if bd)*lg € (sz ), so we may assert that ¢ € G. Therefore, according
to Lemma 2.6, the Cayley graph I' is CI-graph. So we are done. O
Theorem 4.18. Let Dic(a, b) be the dicyclic generalized group with

|Dic(a, b)| = 2", r > 2. Then Dic(a, b) is CI-group with respect to graphs.
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Proof. Let us write G for Aut(I'). Assume that T is a Cayley graph on
Dic(a, b). We will prove that ' is CI-graph.

By assumption, we claim that Aut(Dic(a, b)) is a 2-group. Thus, we
may assert that Aut(Dic(a, b), S) is a 2-subgroup of Aut(Dic(a, b)).
Hence, from (2.1), we deduce that the normalizer Ng(Dic(a, b); ) is a
2-group. We will prove that Ng(Dic(a, b); ) is a Sylow 2-subgroup of G.

Let R be a field of characteristic 2. Then we may assert that
RAut(Dic(a, b), S) is an indecomposable RN (Dic(a, b); )-module with
vertex Dic(a, b); and trivial source. Assume that P is a Sylow
2-subgroup of G such that Ng(Dic(a, b); ) < P. Therefore, since RP is

indecomposable applying the Green correspondence, we deduce the

following holds:
P = Ng(Dic(a, b);, ).

Suppose that ¢Dic(a, b); ¢! < G, where ¢ e SDic(a, b)- We may

assert that Ng(¢Dic(a, b)Lcl)_l)eSylp(G). Since all the Sylow

2-subgroups are conjugacy in G it follows that Dic(a, b); and

¢Dic(a, b)r, d)_l are conjugacy. Thus, applying the Lemma 2.6, we
conclude that I' is a CI-graph, which is what we need to prove. O
Remark 4.19. It is well known that the quaternion group is CI-group

with respect to graphs. Observe that the quaternion group is a particular

case of Dic(a, b) under the conditions of the last theorem.
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