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Abstract

It is known that the classifications problems for matrix or more higher order tensor data are
often met in many real-world applications. If using classical SVM-type methods for such
problems, it needs to reshape matrix or tensor data into vectors, which may lead to the
destruction of structure information contained in data. In order to overcome the limitation,
this paper considers the classification problem with matrices as inputs directly and proposes
a novel classification method named as least square support matrix machine (LSSMM). By
means of bilevel programming (BP), an iteratively implemented algorithm (BP-LSSMM) for
LSSMM is suggested. Experiment results indicate that BP-LSSMM is an effective and
competitive classifier for matrix data classification.
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1. Introduction

In the past decades, numerous SVM-type classification methods have
been proposed and successfully applied to many fields. All these methods
can be divided into two types. One is solving the Wolfe dual forms, such
as support vector machine (SVM) [1, 2], twin support vector machine
(TSVM) [3], improved TSVM (ITSVM) [4] and so on. Another is solving
the primal problems, such as least square SVM (LS-SVM) [5], sparse
least square SVM [6], least squares twin multi-class SVM [7], structural
least square TSVM [8] and so on [9-11]. The use of least squares
technology can reduce the computation time (training time and testing

time) of classifiers by avoiding quadratic programming problems (QPPs).

However, in a wide range of real applications, such as image
classification and electroencephalogram (EEG) classification, the input
samples are represented as matrices naturally rather than vectors or
scalars. In general, the structure information of the original matrix
samples is useful and informative for data analysis tasks such as
classification. One typical structure information is the correlation
between columns or rows in the matrix samples. How to classify matrix
data is an important research topic for pattern recognition and machine
learning [12, 13]. Although vector-based classifiers and their variants
have achieved satisfactory performance in many cases, they may lack
efficiency in managing matrix data by simply reformulating them into
vectors. The main reasons are as follows: (1) When we reformulate a
matrix as a vector, the dimensionality of this vector is often very high,
which may leads to the cause of dimensionality problem and the small
sample size problem (the dimension of input data is much higher than
the number of input data). (2) With the increase of dimensionality, the
computation time will increase drastically. (3) When a matrix is collapsed
as a vector, the spatial correlations of the matrix will be lost. In order to
solve these problems, in recent years, a lot of researchers have been
conducted on tensor-based approaches for image data analysis and some
linear classifiers have been developed for pattern classification, for
details, see [14-19].
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Motivated by the above works, in this paper, we will study a matrix
form generalization of SVM and simultaneously consider to seek a low-
rank weighting matrix for matrix data classification. By means of bilevel
programming (BP), we first propose a general framework for this
generalization named as support matrix machine based on BP (BP-SMM)
and then by means of least squares (LS) technology, we discuss the least
squares solutions of BP-SMM and suggest a new classification method
called as BP-LSSMM. The use of least squares technology aims to reduce
the computation time of the proposed method. In order to verify the
effectiveness of BP-LSSMM, a series of comparative experiments with
SMM [19] are performed on Palm400, ORL [20], and Yale [21] three data

sets.

The rest of the paper is organized as follows. In Section 2,
background and related works are introduced. In Section 3, general
framework of SMM based on bilevel programming (BP-SMM) is provided.
In Section 4, the least square version of BP-SMM is considered and an
iteratively algorithm (BP-LSSMM) is proposed with detailed derivation.
Experiments and results analysis are performed in Section 5 and some

conclusions are given in Section 6.
2. Preliminaries

This section recalls some basic concepts and basic results used in the
sequel, for details, see [8, 22-24].

2.1. Notations

Let A e RP*? be a matrix with rank(A)=r < min(p, q). The

condensed singular value decomposition (SVD) [21, 22] of the matrix A is
- T _N" . T
A= UAZAVA = Zizch(A)uLVL ’

where Uy = [y, -+, u,] € R and V4 = [vq, -+, v, ] € RY" are column
orthogonal matrices, ZA: diag(cy(A), -+, 6,(A))and 61(A)>-->06,.(A)>0

are all nonzero singular values of the matrix A.
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For any given 1 > 0, let
S, 1= diag((o1(4) = 1), -+, (o,(4) - %)),

D[A]=UaS (Y, VA,

where the plus function (x), = max{x, 0} for all x € R. D.[A] is often
called a singular value thresholding (SVT) operator. In fact, if 0 < © < 5,(A),
then

8L, 1= diag(o1(4) ~ 1, -, 5,(4) - 1),

DJA]= )" (oi(A) =t
If 6,(A) < 1 < 6;(A), then there exists 1 < ¢ < r, such that
61(4) 2 -+ 2 64(A) > T 2 041(4), -+, 5,(A).
In this case,

S:[Y, 1= diag(o1(4) - = -, 6;(4) = %, 0, -, 0),

DA]= Y (oi(4)- ]
If © > 61(A), then S;[Y 1= D[A] = 0,

The Frobenius norm of the matrix A is defined as ||A||F =

ro 9 . . r
,lzizl 67 (A). The nuclear norm of A is defined as |4],,. = Zi:l ci(A).

The spectral norm of A is defined as |4 = 61(A), which is the largest

spec
singular value of A. The inner product of two same order matrices

A, B € RP*Y is defined as < A, B > = tr(A” B), where tr(-) denotes the

trace of a matrix. It is evident that ||A||% =tr(ATA)=< A, A>.
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Due to the non-differentiability of the nuclear norm function

e : BY*Y — R, we consider its sub-differential in this paper:

oA|,, ={UAVY +Z:Z e RP,ULYZ =0,V Z=0,|Z],.. <1

nuc spec

2.2. Support matrix machine (SMM)

This subsection briefly recalls SMM, for details, see [19]. Let
{(X;, ¥;)}iu; € RP*Y x{£1} be a set of matrix data, where X; e RP*?
and y; € {1} are the matrix input sample and class label of the i-th

data, respectively. SMM aims to seek a classification hyperplane
fX)=<W,X>+b=tr(WI'X)+b =0, (1)

where W e RP*? is a weighting matrix and b € R is a threshold, by

considering the following unconstrained optimization problem:
.1 92 n T
%}Ibl 5 "W”F + T"W”nuc + CZi:l {1 —JYi [tr(W Xi ) + b]}+’ (2)

where C, 1 > 0 are trade-off parameters, Z?Zl {1- yi[tr(WTXi)+ b}, is

the hinge loss function and %”W”% +1|W| . is a penalty function. Here

nuc

the use of the nuclear norm |W| aims to seek a low-rank weighting

nuc
matrix. It is known that the hinge loss function enjoys the large margin
principle and simultaneously embodies sparseness and robustness, which
are two desirable properties for a good classifier.

Due to the existence of the nuclear norm function |-|  and the plus

nuc

function, the problem (2) is a non-smooth optimization problem. By using
ADMM algorithm (see [19]), we can obtain (W*, b"). Consequently, for a

bxq

new input sample XeR , 1ts class label Yg can be determined by

yg = sign( < W*, X > + b") = sign(tr(W*7X) + b*).
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3. SMM Based on Bilevel Programming (BP-SMM)

In this section, we will extend and improve SMM by means of bilevel
programming. The notations used in this section are same as in Section 2
unless special statements. The basic idea of bilevel programming is that
the decision variables of the upper-level problem are the parameters of
the lower-level problem and the (parameter) optimal solution of the
lower-level problem is a response for the upper-level problem. To this

end, let
1 2 n T
HW, b) = 5 W7 + €Y 1 - yiltr(WIX;) + b,
G(S) = S|, 0

then the problem (2) can be transformed into the constrained

optimization problem:

I/Ir/ngns HW, b)+ G(S)

st. S-W =0. 3)
Considering the augmented Lagrange function of the problem (3)
LW, b, S, A) = HW, b)+ G(S) + < A, (S - W) > + p|S - W3,
= HW, b) - tr(ATW) + %IIS - W3
+G(S) + tr(ATS) + %IIS - W],
and according to augmented Lagrange multiplier (ALM) method, we now

that the problem (3) is equivalent to the following unconstrained

optimization problem:
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: AT . Plie w2 Tayv, Pla w2
WrgugAH(W,b) tr(A W)+2||S W% + G(S) + tr(A S)+2||S W%,

s Uy 0y

4)

where p > 0 is an adjustable parameter and A € R”*? is a multiplier

matrix.

If the matrices Wand A are viewed as parameters and let
G1(S) = G(S) + tr(ATS) + %MS - W%,

then the problem (4) can be transformed into the following bilevel

programming problem:
: _ T P _ 2
jnin, HW, b)—te(A" W) + 9 IS - W%
s.t. mSin G,(S). ()

In addition, similar to the iterative thresholding (IT) method, we can get

an iterative formula by considering the equality constraint S — W = 0:
Alk+1) _ Ak) _ p(S(k) _ W(k)). (6)

By means of the iterative formula (6), A can be viewed as a parameter of
the upper-level problem of the problem (5) and then the problem (5) can

be simplified as:
. T p 2
min HW, b) - tr(A" W) + E"S - W%

s.t. msin G;(S). (7)
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4. Least Squares Solutions of BP-SMM (BP-LSSMM)

In this section, we mainly discuss the solving method of the problem
(7). We firstly solve the lower-level problem of the problem (7) and then
upper-level problem with least square technique. To this end, we need
the following three results:

Theorem 1. Let F : RP*? — R be a differentiable function and put

dF(B) dF(B)  dF(B) ;
aB Ly ap, b VBEETY

where B = [by, -+, by ] and b; € RP,i =1, -, q. Then

d<A B> d<B A>

_ _ pxq.
W = =5 A, VA, B e RP¥,;

d|B pxq
(Z)W—2B,VB€R .

Proof. (1) Let A = [a;, -, a;] and B = [by, ---, b, ], where q;, b; € R?,
i=1,--,q. Then

i ATBY =S oTh =S b7 = tr(BTA) =
<A, B>=tr(ATB) = Zi=1a’ b = Zi:lbl a; =tr(BTA)=<B, A >.

d<A B> d<B A>
Consequently, = =aqa;

db; db; J

for j=1,--,q, which

indicates that the first conclusion is true.

(2) Let B = [by, -+, b, ]. By the definition of Frobenius norm, it can
be deduced that

IBIE - w(BTE) = Y b7t - 30 by,

=1

d|B|
Consequently, b, - 2b; for j=1,-,q, which shows that the
J

second conclusion is true.
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Theorem 2. If a function F : RP*? —» R is subdifferential and has a

local minimum point at X* € RP*Y, then 0 € oF(X™).

Proof. This theorem can be proved by using the similar way of Theorem
10.1 in [25]. Theorem 2 indicates that X* € RP*? can be viewed as an

approximation of the local minimal solution if 0 € dF(X™).

Theorem 3. For any given W, A € RP*? and p, © > 0, let S™ = %DT(pW -A).

Then 0 € 6G1(S*)

Proof. Considering the SVD of the matrix pW — A:

oW — A = UZVT,

where U e RP? and V e R are column orthogonal matrices,
> = diag(oy, -+, 6;), 01 2+ 20, >0 and ¢ = rank(pW — A). Without

loss of generality, we assume that o1 > - 2 6; > 1 > 07,1 2 o; > 0. Put
ZO: diag(cla T Gl)’ le diag(GHl’ ) 6t),
U=[Uy U], Uy e RP, U e RPD,
V=[Vo. V1], Vp e R, v, e ROUD,

Then Ul U; =0, Vi’V = 0 and

2

pW — A = [Uy, Uy ] Vo, i 1" = UOZOVOT + UllelT,

2,

P 1 A=l AT = [ LS -l
8" = SDpW = A) = ~US(pW = AWVT = Up[ - (D =<))WV,

which indicates that %UO(ZO_ tI;)V{ is the condensed SVD of the

matrix S”*. Consequently,
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8G1(S* ) = 6G1(S)|S=S*

= 10||S]|,1yel g_g* +PST = (PW - A)

nuc

=tUoVy +Z:Z e RP9, U5Z =0,VoZ =0, |Z]

+U(Q = VG (U0 ) Vi +U1 Y V')

={1Z:Z € RP9,UJZ = 0, VoZ = 0, |7, <1} —UllelT-

<1}

spec

spec

Taking Z = %UllelT, it has UYZ =0, 2V, =0, |Z]. = %cm <1

and then tZ -U; 21 Vi’ =0 e dG,(S*). So, the conclusion of the
theorem is true.
According to Theorems 2 and 3, S* = %DT (pW - A) can be viewed as

an approximate parameter optimal solution of the lower-level problem of
the problem (7) for given W, A € R”*? and p, © > 0. Proceeding to the

next step, we have the following iterative formula:

S = S D (pw) - L) ®

Substituting S* =%DT(pW—A) into the problem (7), it has the

following single level optimization problem:
.1 n * 2
min o (W, W)+ € (1= (W, X;) + b)), = (A, W)+ £[S" - W

)
Next, we solve the problem (9) by means of least squares technique.
To this end, we use smooth function Z?zl(l—yi((W, Xi>+b))2 to

approximate the hinge loss function and get the following smooth

unconstrained optimization problem:
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.1 C 2 2
min o (W, W) + 5 D (= yi(W, Xp) + ) — (A W)+ B|S" - W

(10)

It is well known that (A, B) = (vec(A), vec(B)) for any A, B e RP*,
where vec(-) denotes the vectorization of a matrix. In order to facilitate

theoretical deduction, we transform the problem (10) into the vector
version. Let

w = vec(W), s = vec(S™), vy = vec(A), x; = vec(X;) e RP?,i =1, -, n,
X =[xy, -+, x,] € RPT", D = diag(y;, -+, 5,,) € RV,
€= (1’ ) 1)T € Rn’ Yy = (yl’ Tt yn)t < Rn’
then the problem (10) can be equivalently written as
. 1,2 C T 2 p 2
min F(w, b) = Z|w|” + = e - D(X" w+be)|” = {y, wy+ S |ls = »|".
w,b 2 2 2

OF(w, b) _ 0F(w, b) _

Letting = 0, it can be deduced that
ow ob
1+p) 0 xxT Xe |\[w] [ps+7y Xy
+ C] = + C] . @11
0 0 eTXT eTe b 0 eTy
Put
1 0
N =(1+p) e RparDx(pa+1) pr _ [XT o] e R(Pa+D),
0 0

then (11) can be rewritten as

(N + CMTM){W] - pP+cMTy,. (12)

b
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It is evident that the matrix N+ CMTM is a symmetric nonnegative

definite matrix. Without loss of generality, we assume that N + CM Ty

is nonsingular; otherwise, it can be regularized by using
N +CMTM + 81 instead of N + CMTM, where [ is an identity matrix

of appropriate dimensions and & > 0 is a sufficiently small number.

Consequently, it can be deduced from (12) that

H — (VoMM P+ cMTy),
b

and then an iterative formula can be obtained
W(k+1)

| (N + ecmTu) (PO + cMTy). (13)
b +

By using the iterative procedure described above, we can get the class

label of a new matrix input. Specific algorithm is as follows.
Algorithm 1. BP-LSSMM

Step 1. Initialization. Given ¢ > 0 and parameters C, p, T > 0. Let T be
the maximum number of iterations and k = 0. Take arbitrarily

AF, Wk, S* e RP*9 and b* < R.

Step 2. Calculate the matrices N and M.
Step 3. Update A¥) by (6).

Step 4. Update S%) by (8).

Step 5. Vectorization. Calculate w* = vec(W*), W0 = vec(A(k)) and

s = vee(S1)).
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ps®) 4 )

Step 6. Calculate the matrix p) -
0

Step 7. Update w®) and p®) by (13).
Step 8. Calculate the matrix W**!.

Step 9. If ”S(’”l) — kD)

‘ < ¢ or T is achieved, stop iteration and put
o0

W* « Wk and p* « b(l”l); otherwise, put k¥ < k£ +1 and return to

Step 3.

Step 10. For a new matrix input X , 1ts class label Y§ can be obtained

by yg = sign(tr(W*TX) +b*).

5. Experiments

In order to demonstrate the effectiveness of the proposed
BP-LSSMM, in this section, we will perform a series of comparative
experiments with SMM on Palm400, ORL, and Yale three datasets. All
the experiments are implemented by using 5-fold cross-validation method
and in MATLAB (R2013a) running on a PC with system configuration
Intel(R) Core(TM) 13 (2.53GHz) with 2GB of RAM.

Palm400 dataset includes 8000 palm pictures of 400 individuals, each
individual has 20 palm images, the first ten copies and the last ten copies
are taken at different time. ORL face dataset contains 400 face images of
40 individuals taken between April 1992 and April 1994 at different
times, light and facial expressions. Each individual has 10 face images.
Yale dataset contains 165 face images of 15 individuals with 11 images
for each one. We choose randomly three pairs for each dataset with the
original number according to different details and list them into Table 1.
In addition, we crop Palm100 images into 16 x 16 pixels, ORL images
into 14 x 11.5 pixels, and Yale images into 15 x 12 pixels.
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Table 1. Selected parameters for classifiers

Dataset Classifier Parameters Parameters values
ORL (3,8) SMM &P T 22.1.1, 0.1
(10%2) BP-LSSMM &P T 23.1.1, 0.1
ORL (5,1) SMM &P T 2%.1.1,0.1
(10%2) BP-LSSMM P T 23.1.1, 0.1
ORL (5,4) SMM &P T 2%.1.1,0.1
(10°2) BP-LSSMM 6P T 23.1.1, 0.1
Palm400 (7,37) SMM &Pt 2211, 3
(20*2) BP-LSSMM 6P T 23’ 1.1, 8
Palm400 (1,37) SMM 6Pt 23.1.1, 8
(20*2) BP-LSSMM 6P T 23’ 1.1, 8
Palm400 (5,28) SMM 6P T 2211, 3
(20*2) BP-LSSMM &GP T 23’ 1.1, 8
Yale (1,8) SMM 6Pt 274 11,1
(11*2) BP-LSSMM 6P T 2*4’ 1.1,1
Yale (3,7) SMM cp, T 1,1.1,1
11%2) BP-LSSMM Pt 1,1.1,1
Yale (6,8) SMM 6Pt 26 11,1
(11%2) BP-LSSMM &GP T 26 11,1

It is known that the performance of classifiers seriously depends on
the choice of parameters. In order to facilitate the comparison, take

€= 10_3, § =10 in all experiments and select the other parameters

involved in classifiers from 278 to 28 by grid search. The selected results
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are listed in Table 1, where (a*2) denotes that there are a photos for

each class of two classes. The experiment results are listed in Table 2,

where Acc, Error, and Time denote the classification accuracy, the

accuracy error, and the running time of classifiers, respectively.

Table 2. Comparative results on nine experiment datasets

Datasets Classifiers Acc Error Time(s)
ORL (3,8) SMM 98.125 + 1.88 0.00 1.0797
BP-LSSMM 90.00 £ 0.00 0.00 0.6689

ORL (5,1) SMM 96.25 + 2.50 0.003 1.3931
BP-LSSMM 100.00 + 0.00 0.00 0.6254

ORL (5,4) SMM 97.375 + 1.625 0.007 1.0152
BP-LSSMM 80.00 £ 0.00 0.05 0.6025

Palm400 SMM 97.51 = 1.875 0.0091 2.4662
(7.37) BP-LSSMM 100.00  0.00 0.00 0.4067
Palm400 SMM 93.75 + 6.25 0.0195 3.0333
1,37) BP-LSSMM 100.00 + 0.00 0.01 0.4054
Palm400 SMM 96.25 = 3.75 0.0125 2.7071
(5.28) BP-LSSMM 97.50 = 2.50 0.0031 0.4118
Yale (1,8) SMM 85.625 +5.625 0.0051 2.7610
BP-LSSMM 85.00 + 0.14 0.050 0.4426

Yale (3,7) SMM 93.75 1.25 7.8125¢-04 2.8663
BP-LSSMM 90.00 + 0.00 0.0187 0.4874

Yale (6,8) SMM 82.50 + 6.25 0.0324 3.2894
BP-LSSMM 80.00 £ 0.00 0.0313 0.4514

We can see from Table 2 that for Palm400 experiment datasets, the
classification accuracy of BP-LSSMM achieves 100% for pairs (7,37) and
(1,37) and is higher than that of SMM for pair (5,38). At the same time,
the running time of BP-LSSMM is faster than that of SMM at least 6

times. For Yale experiment datasets, although the classification accuracy
of BP-LSSMM is lower than that of SMM 3.75% the maximum and
0.625% the minimum, the running time of BP-LSSMM is faster than
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that of SMM at least 5.8 times. For ORL experiment datasets, the
classification accuracy of BP-LSSMM achieves 100% for pair (5,1) and is
lower than that of SMM for pairs (3,8) and (5,4). But the running time of
BP-LSSMM is faster than that of SMM at least 1.6 times.

According to the above analysis, we can conclude that the proposed
BP-LSSMM is an feasibly and competitively quick classification method

for matrix data.
6. Conclusion

In this paper, a novel quick classification method BP-LSSMM for
matrix data is proposed by means of bilevel programming and least
squares technique. The main advantage of the proposed method is to
reduce the running time of classifiers and meanwhile protect the
structure information of matrix samples. Experiment results show that
the proposed BP-LSSMM is a feasibly and competitively quick classifier
for matrix data classification. But, we only consider linear BP-LSSMM in

this paper, not involve nonlinear case, which is the next step in our work.

References

[1] V. N. Vapnik, Statistical Learning Theory, Springer, 1998.

[2] V. Vapnik, The Nature of Statistical Learning Theory, New York, NY, USA:
Springer-Verlag, 1995.

[3] Jayadeva, R. Khemchandani and S. Chandra, Twin support vector machines for
pattern classification, IEEE Transactions on Pattern Analysis and Machine
Intelligence 29(5) (2007), 905-910.

[4] Y. H. Shao, C. H. Zhang, X. B. Wang and N. Y. Deng, Improvements on twin support
vector machines, IEEE Transactions on Neural Networks 22(6) (2011), 962-968.

[6] M. Arun Kumar and M. Gopal, Least squares twin support vector machines for

pattern classification, Expert Systems with Applications 36 (2009), 7535-7543.

[6] Danilo Avilar Silva, Juliana Peixoto Silva and Ajalmar R. Rocha Neto, Novel
approaches using evolutionary computation for sparse least square support vector
machines, Neurocomputing 168(30) (2015), 908-916.



LEAST SQUARES SUPPORT MATRIX MACHINES .../ IJAMML 4:1 (2016) 1-18 17

(7

(8]

9]

[10]

(11]

(12]

[13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]
(21]
(22]

Jalal A. Nasiri, Nasrollah Moghadam Charkari and Saeed Jalili, Least squares twin
multi-class classification support vector machine, Pattern Recognition 48(3) (2015),
984-992.

Yitian Xu, Xianli Pan, Zhijian Zhou, Zhiji Yang and Yuqun Zhang, Structural least
square twin support vector machine for classification, Applied Intelligence 42(3)
(2015), 527-536.

Xiaopeng Hua and Shifei Ding, Weighted least squares projection twin support
vector machines with local information, Neurocomputing 160(21) (2015), 228-237.

Shifei Ding and Xiaopeng Hua, Recursive least squares projection twin support
vector machines for nonlinear classification, Neurocomputing 130(23) (2014), 3-9.

Jianhui Guo, Ping Yi, Ruili Wang, Qiaolin Ye and Chunxia Zhao, Feature selection
for least squares projection twin support vector machine, Neurocomputing 144(20)
(2014), 174-183.

J. Q. Gao, L. Y. Fan, L. Li and L. Z. Xu, A practical application of kernel-based fuzzy
discriminant analysis, Int. J. Appl. Math. Comput. Sci. 23(4) (2013), 887-903.

J. Q. Gao, L. Z. Xu, A. Shi and F. C. Huang, A kernel-based block matrix
decomposition approach for the classification of remotely sensed images, Applied
Mathematics and Computation 228 (2014), 531-545.

C. Hou et al., Multiple rank multi-linear SVM for matrix data classification, Pattern
Recognition 47 (2014), 454-469.

R. Khemchandani, A. Karpatne and S. Chandra, Proximal support tensor machines,
International Journal of Machine Learning and Cybernetics 4(6) (2013), 703-712.

D. Tao, X. Li, W. Hu, S. J. Maybank and X. Wu, General tensor discriminant
analysis and Gabor features for gait recognition, IEEE Trans. Pattern Anal. Mach.
Intell. 29(10) (2007), 1700-1715.

D. Tao, M. Song, X. Li, J. Shen, J. Sun, X. Wu, C. Faloutsos and S. J. Maybank,
Bayesian tensor approach for 3-D face modeling, IEEE Trans. Circuits Syst. Video
Technol. 18(10) (2008), 1397-1410.

D. Tao, J. Sun, J. Shen, X. Wu, X. Li, S. J. Maybank and C. Faloutsos, Bayesian
tensor analysis, IEEE International Joint Conference on Date of Conference Neural
Networks (2008), 1-8.

Luo Luo, Yubo Xie, Zhihua Zhang and Wu-Jun Li, Support Matrix Machines,
Proceedings of the 32nd International Conference on Machine Learning (2015),
938-947.

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
http://cve.yale.edu/projects/yalefaces/yalefaces.html.

Zi Qiang Shi, Ji Qing Han and TieRan Zheng, Soft margin based low-rank audio
signal classification, Neural Processing Letters 42(2) (2015), 291-299.



18 Wenjing Xia and Liya Fan / IJAMML 4:1 (2016) 1-18

[23] dJian-Feng Cai, J. Emmanuel Cand‘es and Zuowei Shen, A singular value
thresholding algorithm for matrix completion, STAM Journal on Optimization 20(4)
(2010), 1956-1982.

[24] Pan-Pan Zheng, Jun Feng, Zhan Li and Ming-quan Zhou, A novel SVD and LS-SVM
combination algorithm for blind watermarking, Neurocomputing 142(22) (2014),
520-528.

[25] R. Tyrrell Rochafellar and Roger S-B Wets, Variational Analysis, New York,
Springer, 1998.



