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Abstract 

It is known that the classifications problems for matrix or more higher order tensor data are 
often met in many real-world applications. If using classical SVM-type methods for such 
problems, it needs to reshape matrix or tensor data into vectors, which may lead to the 
destruction of structure information contained in data. In order to overcome the limitation, 
this paper considers the classification problem with matrices as inputs directly and proposes 
a novel classification method named as least square support matrix machine (LSSMM). By 
means of bilevel programming (BP), an iteratively implemented algorithm (BP-LSSMM) for 
LSSMM is suggested. Experiment results indicate that BP-LSSMM is an effective and 
competitive classifier for matrix data classification. 

Keywords: support matrix machine, least squares technology, matrix data 
classification, bilevel programming, iterative algorithm. 
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1. Introduction 

In the past decades, numerous SVM-type classification methods have 
been proposed and successfully applied to many fields. All these methods 
can be divided into two types. One is solving the Wolfe dual forms, such 
as support vector machine (SVM) [1, 2], twin support vector machine 
(TSVM) [3], improved TSVM (ITSVM) [4] and so on. Another is solving 
the primal problems, such as least square SVM (LS-SVM) [5], sparse 
least square SVM [6], least squares twin multi-class SVM [7], structural 
least square TSVM [8] and so on [9-11]. The use of least squares 
technology can reduce the computation time (training time and testing 
time) of classifiers by avoiding quadratic programming problems (QPPs). 

However, in a wide range of real applications, such as image 
classification and electroencephalogram (EEG) classification, the input 
samples are represented as matrices naturally rather than vectors or 
scalars. In general, the structure information of the original matrix 
samples is useful and informative for data analysis tasks such as 
classification. One typical structure information is the correlation 
between columns or rows in the matrix samples. How to classify matrix 
data is an important research topic for pattern recognition and machine 
learning [12, 13]. Although vector-based classifiers and their variants 
have achieved satisfactory performance in many cases, they may lack 
efficiency in managing matrix data by simply reformulating them into 
vectors. The main reasons are as follows: (1) When we reformulate a 
matrix as a vector, the dimensionality of this vector is often very high, 
which may leads to the cause of dimensionality problem and the small 
sample size problem (the dimension of input data is much higher than 
the number of input data). (2) With the increase of dimensionality, the 
computation time will increase drastically. (3) When a matrix is collapsed 
as a vector, the spatial correlations of the matrix will be lost. In order to 
solve these problems, in recent years, a lot of researchers have been 
conducted on tensor-based approaches for image data analysis and some 
linear classifiers have been developed for pattern classification, for 
details, see [14-19]. 
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Motivated by the above works, in this paper, we will study a matrix 
form generalization of SVM and simultaneously consider to seek a low-
rank weighting matrix for matrix data classification. By means of bilevel 
programming (BP), we first propose a general framework for this 
generalization named as support matrix machine based on BP (BP-SMM) 
and then by means of least squares (LS) technology, we discuss the least 
squares solutions of BP-SMM and suggest a new classification method 
called as BP-LSSMM. The use of least squares technology aims to reduce 
the computation time of the proposed method. In order to verify the 
effectiveness of BP-LSSMM, a series of comparative experiments with 
SMM [19] are performed on Palm400, ORL [20], and Yale [21] three data 
sets. 

The rest of the paper is organized as follows. In Section 2, 
background and related works are introduced. In Section 3, general 
framework of SMM based on bilevel programming (BP-SMM) is provided. 
In Section 4, the least square version of BP-SMM is considered and an 
iteratively algorithm (BP-LSSMM) is proposed with detailed derivation. 
Experiments and results analysis are performed in Section 5 and some 
conclusions are given in Section 6. 

2. Preliminaries 

This section recalls some basic concepts and basic results used in the 
sequel, for details, see [8, 22-24]. 

2.1. Notations 

Let qpRA ×∈  be a matrix with ( ) ( ).,minrank qprA ≤=  The 

condensed singular value decomposition (SVD) [21, 22] of the matrix A is 

( ) ,
1

T
iii

r

i
T
AAA uAVUA νσ== ∑∑ =

 

where [ ] rp
rA RuuU ×∈= ,,1  and [ ] rq

rA RV ×∈= νν ,,1  are column 

orthogonal matrices, ( ( ) ( ))AA rA σσ=∑ ,,diag 1  and ( ) ( ) 01 >σ≥≥σ AA r  

are all nonzero singular values of the matrix A.  
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For any given ,0>τ  let 

[ ] ( ( )( ) ( )( ) ),,,diag 1 ++τ τ−στ−σ=∑ AAS rA
 

[ ] [ ] ,T
AAA VSUAD ∑ττ =  

where the plus function ( ) { }0,max xx =+  for all [ ]ADRx τ∈ .  is often 

called a singular value thresholding (SVT) operator. In fact, if ( ),0 Arσ≤τ<  

then 

[ ] ( ( ) ( ) ),,,diag 1 τ−στ−σ=∑τ AAS rA
 

[ ] ( )( ) .
1

T
iii

r

i
uAAD ντ−σ= ∑ =τ  

If ( ) ( ),1 AAr σ<τ<σ  then there exists ,1 rt <<  such that 

( ) ( ) ( ) ( ).,,11 AAAA rtt σσ≥τ>σ≥≥σ +  

In this case, 

[ ] ( ( ) ( ) ),0,,0,,,diag 1 τ−στ−σ=∑τ AAS tA
 

[ ] ( )( ) .
1

T
iii

t

i
uAAD ντ−σ= ∑ =τ  

If ( ),1 Aσ≥τ  then [ ] [ ] .0 rrA ADS ×ττ ==∑  

The Frobenius norm of the matrix A is defined as =FA  

( ).2
1 Ai

r
i σ∑ =

 The nuclear norm of A is defined as ( ).1 AA i
r
inuc σ= ∑ =

  

The spectral norm of A is defined as ( ),1 AA spec σ=  which is the largest 

singular value of A. The inner product of two same order matrices 
qpRBA ×∈,  is defined as ( ),tr, BABA T=><  where ( )⋅tr  denotes the 

trace of a matrix. It is evident that ( ) ,tr2 AAAA T
F <==  .>A  
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Due to the non-differentiability of the nuclear norm function 

,: RR qp
nuc →⋅ ×  we consider its sub-differential in this paper: 

{ }.1,0,0,: ≤==∈+=∂ ×
specA

T
A

qpT
AAnuc ZZVZURZZVUA  

2.2. Support matrix machine (SMM) 

This subsection briefly recalls SMM, for details, see [19]. Let 

{( )} { }1, 1 ±×∈ ×
=

qpn
iii RyX  be a set of matrix data, where qp

i RX ×∈  

and { }1±∈iy  are the matrix input sample and class label of the i-th 

data, respectively. SMM aims to seek a classification hyperplane 

( ) ( ) ,0tr, =+=+><= bXWbXWXf T   (1) 

where qpRW ×∈  is a weighting matrix and Rb ∈  is a threshold, by 
considering the following unconstrained optimization problem: 

{ [ ( ) ]} ,tr12
1min

1
2

, +=
+−+τ+ ∑ bXWyCWW i

T
i

n

inucFbW
 (2) 

where 0, >τC  are trade-off parameters, { [ ( ) ]}+=
+−∑ bXWy i

T
i

n
i tr11  is 

the hinge loss function and nucF WW τ+2
2
1  is a penalty function. Here 

the use of the nuclear norm nucW  aims to seek a low-rank weighting 

matrix. It is known that the hinge loss function enjoys the large margin 
principle and simultaneously embodies sparseness and robustness, which 
are two desirable properties for a good classifier. 

Due to the existence of the nuclear norm function nuc⋅  and the plus 

function, the problem (2) is a non-smooth optimization problem. By using 

ADMM algorithm (see [19]), we can obtain ( )., ∗∗ bW  Consequently, for a 

new input sample ,~ qpRX ×∈  its class label Xy ~  can be determined by 

( ) ( ( ) ).~trsign~,sign~ ∗∗∗∗ +=+><= bXWbXWy T
X  
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3. SMM Based on Bilevel Programming (BP-SMM) 

In this section, we will extend and improve SMM by means of bilevel 
programming. The notations used in this section are same as in Section 2 
unless special statements. The basic idea of bilevel programming is that 
the decision variables of the upper-level problem are the parameters of 
the lower-level problem and the (parameter) optimal solution of the 
lower-level problem is a response for the upper-level problem. To this 
end, let 

( ) { [ ( ) ]} ,tr12
1,

1
2

+=
+−+= ∑ bXWyCWbWH i

T
i

n

iF  

( ) ,nucSSG τ=  

then the problem (2) can be transformed into the constrained 
optimization problem: 

( ) ( )SGbWH
SbW

+,min
,,

 

.0.. =− WSts  (3) 

Considering the augmented Lagrange function of the problem (3) 

( ) ( ) ( ) ( ) 2,,,,, FWSWSSGbWHSbWL −ρ+>−Λ<++=Λ  

 ( ) ( ) 2
2tr, F

T WSWbWH −ρ+Λ−=  

( ) ( ) ,2tr 2
F

T WSSSG −ρ+Λ++  

and according to augmented Lagrange multiplier (ALM) method, we now 
that the problem (3) is equivalent to the following unconstrained 
optimization problem: 
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( ) ( ) ( ) ( ) ,2tr2tr,min 22
,,, F

T
F

T
SbW

WSSSGWSWbWH −ρ+Λ++−ρ+Λ−
Λ

 

(4) 

where 0>ρ  is an adjustable parameter and qpR ×∈Λ  is a multiplier 

matrix. 

If the matrices W and Λ  are viewed as parameters and let 

( ) ( ) ( ) ,2tr 2
1 F

T WSSSGSG −ρ+Λ+=  

then the problem (4) can be transformed into the following bilevel 
programming problem: 

( ) ( ) 2
,, 2tr,min F

T
bW

WSWbWH −ρ+Λ−
Λ

 

( ).min.. 1 SGts
S

 (5) 

In addition, similar to the iterative thresholding (IT) method, we can get 
an iterative formula by considering the equality constraint :0=− WS  

( ) ( ) ( ( ) ( ) ).1 kkkk WS −ρ−Λ=Λ +   (6) 

By means of the iterative formula (6), Λ  can be viewed as a parameter of 
the upper-level problem of the problem (5) and then the problem (5) can 
be simplified as: 

( ) ( ) 2
, 2tr,min F

T
bW

WSWbWH −ρ+Λ−  

( ).min.. 1 SGts
S

 (7) 
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4. Least Squares Solutions of BP-SMM (BP-LSSMM) 

In this section, we mainly discuss the solving method of the problem 
(7). We firstly solve the lower-level problem of the problem (7) and then 
upper-level problem with least square technique. To this end, we need 
the following three results: 

Theorem 1. Let RRF qp →×:  be a differentiable function and put 

( ) [ ( ) ( ) ] ,,,,
1

qp
q

RBdb
BdF

db
BdF

dB
BdF ×∈∀=  

where [ ]qbbB ,,1=  and .,,1, qiRb p
i =∈  Then 

(1) ;,,,, qpRBAAdB
ABd

dB
BAd ×∈∀=

><
=

><  

(2) .,2
2

qpF RBBdB
Bd ×∈∀=  

Proof. (1) Let [ ]qaaA ,,1=  and [ ],,,1 qbbB =  where ,, p
ii Rba ∈  

.,,1 qi =  Then 

( ) ( ) .,trtr,
11

><=====>< ∑∑ ==
ABABabbaBABA T

i
T
i

q

ii
T
i

q

i
T  

Consequently, j
jj

adb
ABd

db
BAd

=
><

=
>< ,,  for ,,,1 qj =  which 

indicates that the first conclusion is true. 

(2) Let [ ].,,1 qbbB =  By the definition of Frobenius norm, it can 

be deduced that 

( ) .tr 2
11

2
i

q

ii
T
i

q

i
T

F bbbBBB ∑∑ ==
===  

Consequently, j
j
F bdb

Bd
2

2
=  for ,,,1 qj =  which shows that the 

second conclusion is true. 
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Theorem 2. If a function RRF qp →×:  is subdifferential and has a 

local minimum point at ,qpRX ×∗ ∈  then ( ).0 ∗∂∈ XF  

Proof. This theorem can be proved by using the similar way of Theorem 

10.1 in [25]. Theorem 2 indicates that qpRX ×∗ ∈  can be viewed as an 

approximation of the local minimal solution if ( ).0 ∗∂∈ XF  

Theorem 3. For any given qpRW ×∈Λ,  and ,0, >τρ  let ( ).1 Λ−ρ
ρ

= τ
∗ WDS  

Then ( ).0 1
∗∂∈ SG  

Proof. Considering the SVD of the matrix :Λ−ρW  

,TVUW ∑=Λ−ρ  

where tpRU ×∈  and tqRV ×∈  are column orthogonal matrices, 
( ) 0,,,diag 11 >σ≥≥σσσ=∑ tt  and ( ).rank Λ−ρ= Wt  Without 

loss of generality, we assume that .011 >σ≥σ≥τ>σ≥≥σ + tll  Put 

( ) ( ),,,diag,,,diag 1110 tll σσ=σσ= +∑∑  

[ ] ( ),,,, 1010
ltplp RURUUUU −×× ∈∈=  

[ ] ( ).,,, 1010
ltqlq RVRVVVV −×× ∈∈=  

Then 0,0 0110 == VVUU TT  and 

[ ] [ ] ,,, 11100010

1

0
10

TTT VUVUVVUUW ∑∑∑
∑

+=















=Λ−ρ  

( ) ( ) [ ( )] ,111
000
T

l
T VIUVWUSWDS τ−

ρ
=Λ−ρ

ρ
=Λ−ρ

ρ
= ∑ττ

∗  

which indicates that ( ) T
l VIU 000

1 τ−
ρ ∑  is the condensed SVD of the 

matrix .∗S  Consequently, 
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( ) ( ) ∗=
∗ ∂=∂ SSSGSG 11  

( )Λ−ρ−ρ+∂τ= ∗
= ∗ WSS SSnuc  

{ }1,0,0,: 0000 ≤==∈+τ= ×
spec

TqpT ZZVZURZZVU  

( ) ( )TTT
l VUVUVIU 111000000 ∑∑∑ +−τ−+  

{ } .1,0,0,: 11100
T

spec
Tqp VUZZVZURZZ ∑−≤==∈τ= ×  

Taking ,1
111
TVUZ ∑τ

=  it has 11,0,0 100 ≤σ
τ

=== +lspec
T ZZVZU  

and then ( ).0 1111
∗∂∈=−τ ∑ SGVUZ T  So, the conclusion of the 

theorem is true. 

According to Theorems 2 and 3, ( )Λ−ρ
ρ

= τ
∗ WDS 1  can be viewed as 

an approximate parameter optimal solution of the lower-level problem of 

the problem (7) for given qpRW ×∈Λ,  and .0, >τρ  Proceeding to the 

next step, we have the following iterative formula: 

( ) ( ( ) ( ) ).11 kkk Λ−ρ
ρ

= τ
+ WDS   (8) 

Substituting ( )Λ−ρ
ρ

= τ
∗ WDS 1  into the problem (7), it has the 

following single level optimization problem: 

( ( )) .2,,1,2
1min 2

1, Fii
n

ibW
WSWbXWyCWW −ρ+Λ−+−+ ∗

+=∑  

 (9) 

Next, we solve the problem (9) by means of least squares technique.        

To this end, we use smooth function ( ( ))21 ,1 bXWy ii
n
i +−∑ =

 to 

approximate the hinge loss function and get the following smooth 
unconstrained optimization problem: 
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( ( )) .2,,12,2
1min 22

1, Fii
n

ibW
WSWbXWyCWW −ρ+Λ−+−+ ∗

=∑  

 (10) 

It is well known that ( ) ( )BecAecBA vv ,=,  for any ,, qpRBA ×∈  
where ( )⋅ecv  denotes the vectorization of a matrix. In order to facilitate 
theoretical deduction, we transform the problem (10) into the vector 
version. Let 

( ) ( ) ( ) ( ) ,,,1,,,, niRXecxecSecsWec pq
ii =∈=Λ=γ== ∗ vvvvw  

[ ] ( ) ,,,diag,,, 11
nn

n
npq

n RyyDRxxX ×× ∈=∈=  

( ) ( ) ,,,,1,,1 1
nt

n
nT RyyyRe ∈=∈=  

then the problem (10) can be equivalently written as 

( ) ( ) .2,22
1,min 222

,
wwwww

w
−ρ+γ−+−+= sbeXDeCbF T

b
 

Letting ( ) ( ) ,0,,
=

∂
∂

=
∂

∂
b

bFbF w
w
w  it can be deduced that 

( )
.

000

01














+













 γ+ρ
=










































+













 ρ+

ye

Xy
C

s

beeXe

XeXX
C

I

TTTT

T w
 (11) 

Put 

( ) ( ) ( ) [ ] ( ),,,
00

0
1 111 +×+×+ ∈=∈














ρ+= pqnTpqpq ReXMR

I
N  

( ),
0

1+∈












 γ+ρ
= pqR

s
P  

then (11) can be rewritten as 

( ) .yCMP
b

MCMN TT +=













+

w
  (12) 
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It is evident that the matrix MCMN T+  is a symmetric nonnegative 

definite matrix. Without loss of generality, we assume that MCMN T+  
is nonsingular; otherwise, it can be regularized by using 

IMCMN T δ++  instead of ,MCMN T+  where I is an identity matrix 

of appropriate dimensions and 0>δ  is a sufficiently small number. 
Consequently, it can be deduced from (12) that 

( ) ( ),
1

yCMPMCMN
b

TT ++=












 −w
 

and then an iterative formula can be obtained 

( )

( )
( ) ( ( ) ).

1

1

1

yCMPMCMN
b

TT ++=












 −

+

+
k

k

kw
 (13) 

By using the iterative procedure described above, we can get the class 
label of a new matrix input. Specific algorithm is as follows. 

Algorithm 1. BP-LSSMM 

Step 1. Initialization. Given 0>ε  and parameters .0,, >τρC  Let T be 

the maximum number of iterations and .0=k  Take arbitrarily 
qpRSW ×∈Λ kkk ,,  and .Rb ∈k  

Step 2. Calculate the matrices N and M. 

Step 3. Update ( )kΛ  by (6). 

Step 4. Update ( )kS  by (8). 

Step 5. Vectorization. Calculate ( ) ( ) ( ( ) )kkkk vvw Λ=λ= ecWec ,  and 

( ) ( ( ) ).kk v Secs =  
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Step 6. Calculate the matrix ( )
( ) ( )

.
0













 γ+ρ
=

kk
k

s
P  

Step 7. Update ( )kw  and ( )kb  by (13). 

Step 8. Calculate the matrix .1+kW  

Step 9. If ( ) ( ) ε<−
∞

++ 11 kk WS  or T is achieved, stop iteration and put 

( )1+∗ ← kWW  and ( );1+∗ ← kbb  otherwise, put 1+← kk  and return to 
Step 3. 

Step 10. For a new matrix input ,~X  its class label Xy ~  can be obtained 

by ( ( ) ).~trsign~ ∗∗ += bXWy T
X  

5. Experiments 

In order to demonstrate the effectiveness of the proposed                 
BP-LSSMM, in this section, we will perform a series of comparative 
experiments with SMM on Palm400, ORL, and Yale three datasets. All 
the experiments are implemented by using 5-fold cross-validation method 
and in MATLAB (R2013a) running on a PC with system configuration 
Intel(R) Core(TM) i3 (2.53GHz) with 2GB of RAM. 

Palm400 dataset includes 8000 palm pictures of 400 individuals, each 
individual has 20 palm images, the first ten copies and the last ten copies 
are taken at different time. ORL face dataset contains 400 face images of 
40 individuals taken between April 1992 and April 1994 at different 
times, light and facial expressions. Each individual has 10 face images. 
Yale dataset contains 165 face images of 15 individuals with 11 images 
for each one. We choose randomly three pairs for each dataset with the 
original number according to different details and list them into Table 1. 
In addition, we crop Palm100 images into 1616 ×  pixels, ORL images 
into 5.1114 ×  pixels, and Yale images into 1215 ×  pixels. 

 



Wenjing Xia and Liya Fan / IJAMML 4:1 (2016) 1-18 14

Table 1. Selected parameters for classifiers 

Dataset Classifier Parameters Parameters values  

 ORL (3,8) SMM τρ,,c  
1.0,1.1,23  

 ( )210∗  BP-LSSMM τρ,,c  
1.0,1.1,23  

 ORL (5,1) SMM τρ,,c  
1.0,1.1,23  

 ( )210∗  BP-LSSMM τρ,,c  
1.0,1.1,23  

 ORL (5,4) SMM τρ,,c  
1.0,1.1,23  

 ( )210∗  BP-LSSMM τρ,,c  
1.0,1.1,23  

 Palm400 (7,37) SMM τρ,,c  
3,1.1,23  

 ( )220∗  BP-LSSMM τρ,,c  
3,1.1,23  

 Palm400 (1,37) SMM τρ,,c  
3,1.1,23  

 ( )220∗  BP-LSSMM τρ,,c  
3,1.1,23  

 Palm400 (5,28) SMM τρ,,c  
3,1.1,23  

 ( )220∗  BP-LSSMM τρ,,c  
3,1.1,23  

 Yale (1,8) SMM τρ,,c  
1,1.1,2 4−  

 ( )211∗  BP-LSSMM τρ,,c  
1,1.1,2 4−  

 Yale (3,7) SMM τρ,,c  1, 1.1, 1 

 ( )211∗  BP-LSSMM τρ,,c  1, 1.1, 1 

 Yale (6,8) SMM τρ,,c  
1,1.1,26  

 ( )211∗  BP-LSSMM τρ,,c  
1,1.1,26  

It is known that the performance of classifiers seriously depends on 
the choice of parameters. In order to facilitate the comparison, take 

83 10,10 −− =δ=ε  in all experiments and select the other parameters 

involved in classifiers from 82−  to 82  by grid search. The selected results 
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are listed in Table 1, where ( )2∗a  denotes that there are a photos for 

each class of two classes. The experiment results are listed in Table 2, 
where Acc, Error, and Time denote the classification accuracy, the 
accuracy error, and the running time of classifiers, respectively. 

Table 2. Comparative results on nine experiment datasets 

Datasets Classifiers Acc Error Time(s) 

ORL (3,8) SMM 

BP-LSSMM 

98.125 ± 1.88 

90.00 ± 0.00 

0.00 

0.00 

1.0797 

0.6689 

ORL (5,1) SMM 

BP-LSSMM 

96.25 ± 2.50 

100.00 ± 0.00 

0.003 

0.00 

1.3931 

0.6254 

ORL (5,4) SMM 

BP-LSSMM 

97.375 ± 1.625 

80.00 ± 0.00 

0.007 

0.05 

1.0152 

0.6025 

Palm400 
(7,37) 

SMM 

BP-LSSMM 

97.51 ± 1.875 

100.00 ± 0.00 

0.0091 

0.00 

2.4662 

0.4067 

Palm400 
(1,37) 

SMM 

BP-LSSMM 

93.75 ±  6.25 

100.00 ± 0.00 

0.0195 

0.01 

3.0333 

0.4054 

Palm400 
(5,28) 

SMM 

BP-LSSMM 

96.25  ±  3.75 

97.50  ±  2.50 

0.0125 

0.0031 

2.7071 

0.4118 

Yale (1,8) SMM 

BP-LSSMM 

85.625  ± 5.625 

85.00 ± 0.14 

0.0051 

0.050 

2.7610 

0.4426 

Yale (3,7) SMM 

BP-LSSMM 

93.75 ± 1.25 

90.00 ± 0.00 

7.8125e-04 

0.0187 

2.8663 

0.4874 

Yale (6,8) SMM 

BP-LSSMM 

82.50 ± 6.25 

80.00 ± 0.00 

0.0324 

0.0313 

3.2894 

0.4514 

We can see from Table 2 that for Palm400 experiment datasets, the 
classification accuracy of BP-LSSMM achieves 100% for pairs (7,37) and 
(1,37) and is higher than that of SMM for pair (5,38). At the same time, 
the running time of BP-LSSMM is faster than that of SMM at least 6 
times. For Yale experiment datasets, although the classification accuracy 
of BP-LSSMM is lower than that of SMM 3.75% the maximum and 
0.625% the minimum, the running time of BP-LSSMM is faster than    
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that of SMM at least 5.8 times. For ORL experiment datasets, the 
classification accuracy of BP-LSSMM achieves 100% for pair (5,1) and is 
lower than that of SMM for pairs (3,8) and (5,4). But the running time of 
BP-LSSMM is faster than that of SMM at least 1.6 times. 

According to the above analysis, we can conclude that the proposed 
BP-LSSMM is an feasibly and competitively quick classification method 
for matrix data. 

6. Conclusion 

In this paper, a novel quick classification method BP-LSSMM for 
matrix data is proposed by means of bilevel programming and least 
squares technique. The main advantage of the proposed method is to 
reduce the running time of classifiers and meanwhile protect the 
structure information of matrix samples. Experiment results show that 
the proposed BP-LSSMM is a feasibly and competitively quick classifier 
for matrix data classification. But, we only consider linear BP-LSSMM in 
this paper, not involve nonlinear case, which is the next step in our work. 
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