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Abstract 

The objective of the present paper is to study the some types of Ricci solitons on 
( ) manifolds.-nLCS  We found the conditions of Ricci soliton on conformally flat, 

weakly symmetric, and weakly Ricci symmetric ( ) manifolds-nLCS to be shrinking, 

steady, and expanding, respectively. 
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1. Introduction 

In 2003, Shaikh [35] introduced the notion of Lorentzian concircular 
structure manifolds (briefly, ( )nLCS -manifolds) with an example, which 

generalizes the notion of LP-Sasakian manifolds introduced by 
Matsumoto [25] and also by Mihai and Rosca [26]. Then Shaikh and 
Baishya ([38], [39]) investigated the applications of ( )nLCS -manifolds to 

the general theory of relativity and cosmology. The ( )nLCS -manifolds 

are also studied by Atceken et al. ([3], [4], [22]), Hui [21], Narain and 
Yadav [28], Prakasha [33], Shaikh and his co-authors ([36], [37], [40]-[44]) 
and many others. 

In 1982, Hamilton [19] introduced the notion of Ricci flow to find a 
canonical metric on a smooth manifold. Then Ricci flow has become a 
powerful tool for the study of Riemannian manifolds, especially for those 
manifolds with positive curvature. Perelman ([31], [32]) used Ricci flow 
and its surgery to prove Poincare conjecture. The Ricci flow is an 
evolution equation for metrics on a Riemannian manifold defined as 
follows: 

( ) .2 ijij Rtgt −=
∂
∂  

A Ricci soliton emerges as the limit of the solutions of the Ricci flow. 
A solution to the Ricci flow is called Ricci soliton if it moves only by a one 
parameter group of diffeomorphism and scaling. A Ricci soliton ( )λ,, Vg  

on a Riemannian manifold ( )gM ,  is a generelization of Einstein metric 

such that [20] 

,022 =λ++ gSVg£   (1.1) 

where S is the Ricci tensor and V£  is the Lie derivative along the vector 

field V on M and λ  is a real number. The Ricci soliton is said to be 
shrinking, steady and expanding according as λ  is negative, zero, and 
positive, respectively. 
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During the last two decades, the geometry of Ricci solitons has been 
the focus of attention of many mathematicians. In particular, it has 
become more important after Perelman applied Ricci solitons to solve the 
long standing Poincare conjecture posed in 1904. In [47], Sharma studied 
the Ricci solitons in contact geometry. Thereafter Ricci solitons in contact 
metric manifolds have been studied by various authors, such as 
Bagewadi et al. ([1], [2], [5], [23]), Bejan and Crasmareanu [6], Blaga [7], 
Chandra et al. [12], Chen and Deshmukh [13], Deshmukh et al. [16], 
Nagaraja and Premlatta [27], Tripathi [51] and many others. 

In 1926, Levy [24] proved that a second order parallel symmetric non-
singular tensor in real space forms is proportional to the metric tensor. 
Then Sharma ([45], [46]) studied second order parallel tensor in Kaehler 
space of constant holomorphic sectional curvature as well as contact 
manifolds. Second order parallel tensor have been studied by various 
authors in different structure of manifolds. A tensor h of second order is 
said to be a parallel tensor if ,0=∇h  where ∇  denotes the operator of 

covariant differentiation with respect to the metric tensor g. Recently, 
Chandra et al. [12] studied second order parallel tensors and Ricci 
solitons on ( ) manifolds.-nLCS  

Motivated by the above studies, the object of the present paper is to 
study Ricci soliton on ( ) manifolds.-nLCS  The paper is organized as 

follows. Section 2 is concerned with preliminaries. In Section 3 of this 
paper, we have studied conformally flat ( ) manifolds-nLCS  whose metric 

is Ricci soliton. We obtain the conditions of Ricci soliton of conformally 
flat ( ) manifold-nLCS  to be shrinking and expanding, respectively. 

In [42], Shaikh and Binh studied weakly symmetric and weakly Ricci 
symmetric ( ) manifolds.-nLCS  Section 4 deals with the study weakly 

symmetric ( ) manifold-nLCS  whose metric is Ricci soliton. Section 5 is 

devoted with the study of weakly Ricci symmetric ( ) manifold,-nLCS  

whose metric is Ricci soliton. 
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2. Preliminaries 

An n-dimensional Lorentzian manifold M is a smooth connected 
paracompact Hausdorff manifold with a Lorentzian metric g, that is, M 
admits a smooth symmetric tensor field g of type ( )2,0  such that for each 

point ,Mp ∈  the tensor R→× MTMTg ppp :  is a non-degenerate 

inner product of signature ( ),,,, ++−  where MTp  denotes the tangent 

vector space of M at p and R  is the real number space. A non-zero vector 
MTv p∈  is said to be timelike (resp., non-spacelike, null, spacelike) if it 

satisfies ( ) 0, <vvg p  (resp., 0,0,0 >=≤ ) [29]. 

Definition 2.1 ([52]). In a Lorentzian manifold ( ),, gM  a vector field 

P defined by 

( ) ( ),, XAPXg =  

for any ( ),TMX Γ∈  the section of all smooth tangent vector fields on M, 

is said to be a concircular vector field if 

( ) ( ) ( ) ( ) ( ){ },, YAXYXgYAX ω+α=∇  

where α  is a non-zero scalar and ω  is a closed 1-form and ∇  denotes the 
operator of covariant differentiation with respect to the Lorentzian metric g. 

Let M be an n-dimensional Lorentzian manifold admitting a unit 
timelike concircular vector field ,ξ  called the characteristic vector field of 

the manifold. Then we have 

( ) .1, −=ξξg   (2.1) 

Since ξ  is a unit concircular vector field, it follows that there exists a 

non-zero 1-form η  such that for 

( ) ( ),, XXg η=ξ   (2.2) 

the equation of the following form holds: 

( ) ( ) ( ) ( ) ( ){ } ,0,, ≠αηη+α=η∇ YXYXgYX   (2.3) 
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that is, 

( )[ ],ξη+α=ξ∇ XXX  

for all vector fields ,, YX  where ∇  denotes the operator of covariant 

differentiation with respect to the Lorentzian metric g and α  is a non-
zero scalar function satisfies 

( ) ( ) ( ),XXdXX ρη=α=α=α∇   (2.4) 

ρ  being a certain scalar function given by ( ).ξα−=ρ  If we put 

,1 ξ∇
α

=φ XX   (2.5) 

then from (2.3) and (2.5), we have 

( ) ,ξη+=φ XXX   (2.6) 

from which it follows that φ  is a symmetric (1, 1) tensor and called the 

structure tensor of the manifold. Thus, the Lorentzian manifold M 
together with the unit timelike concircular vector field ,ξ  its associated 

1-form η  and an (1, 1) tensor field φ  is said to be a Lorentzian concircular 

structure manifold (briefly, ( ) manifold-nLCS ), [36]. Especially, if we take 

,1=α  then we can obtain the LP-Sasakian structure of Matsumoto [25]. 
In a ( ) ( ),2manifold- >nLCS n  the following relations hold ([36], [38], 

[39], [40]): 

( ) ( ) ( ) ( ) ( ) ( ),,,,0,0,1 YXYXgYXgX ηη+=φφ=φη=φξ−=ξη   (2.7) 

( ) ,2 ξη+=φ XXX   (2.8) 

( ) ( ) ( ) ( ),1, 2 XnXS ηρ−α−=ξ   (2.9) 

( ) ( ) ( ) ( )[ ],, 2 YXXYYXR η−ηρ−α=ξ   (2.10) 

( ) ( ) ( ) ( )[ ],,, 2 YZZYgZYR η−ξρ−α=ξ   (2.11) 

( ) ( ) ( ) ( ) ( ){ },2, XYYXYXgYX η+ξηη+ξα=φ∇   (2.12) 
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( ) ( ) ( ),XXdX βη=ρ=ρ   (2.13) 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ,,,,, 2 ξη−ηρ−α+φ= YZXgXZYgZYXRZYXR   (2.14) 

( ) ( ) ( ) ( ) ( ) ( ),1,, 2 YXnYXSYXS ηηρ−α−+=φφ   (2.15) 

for any vector fields ZYX ,,  on M and ( )ξρ−=β  is a scalar function, 
where R is the curvature tensor and S is the Ricci tensor of the manifold. 

Definition 2.2. A ( ) manifold-nLCS  M is said to be η -Einstein if its 

Ricci tensor S of type ( )2,0  is of the form 

,η⊗η+= qpgS  

where p and q are smooth functions on M. 

Let ( )λξ,,g  be a Ricci soliton on a ( ) manifold-nLCS  M. From (2.3), 

we get 

( ) ( ) ( ) ( ) ( ){ }.,,2
1 YXYXgYXg ηη+α=ξ£   (2.16) 

From (1.1) and (2.16), we have 

( ) ( ) ( ) ( ) ( ),,, YXYXgYXS ηαη−λ+α−=   (2.17) 

which yields 

( ) ( ) ,ξαη−λ+α−= XXQX   (2.18) 

( ) ( ),, XXS λη−=ξ   (2.19) 

( ) ,1 α−−λ−= nnr   (2.20) 

where Q is the Ricci operator, i.e., ( ) ( )YXSYQXg ,, =  for all YX ,  and 
r is the scalar curvature of M. 

We now recall the following: 

Theorem 2.1 ([12]). A second order parallel symmetric tensor on a 

( ) manifoldLCS n -  with ,02 ≠ρ−α  is a constant multiple of the metric 

tensor. 
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Theorem 2.2 ([12]). If the tensor field SgV 2+£  on a ( ) manifoldLCS n -  

with 02 ≠ρ−α  is parallel for any vector field V, then ( )λ,, Vg  is a Ricci 

soliton. 

3. Conformally Flat ( ) Manifolds-LCS n  whose  

Metric is Ricci Soliton 

In differential geometry, the Weyl curvature tensor, named after 
Hermann Weyl, is a measure of the curvature of spacetime or, more 
generally, a pseudo-Riemannian manifold. Like the Riemann curvature 
tensor, the Weyl tensor expresses the tidal force that a body feels when 
moving along a geodesic. The Weyl tensor differs from the Riemann 
curvature tensor in that it does not convey information on how the 
volume of the body changes, but rather only how the shape of the body is 
distorted by the tidal force. The Ricci curvature, or trace component of 
the Riemann tensor contains precisely the information about how 
volumes change in the presence of tidal forces, so the Weyl tensor is the 
traceless component of the Riemann tensor. It is a tensor that has the 
same symmetries as the Riemann tensor with the extra condition that it 
be trace-free: metric contraction on any pair of indices yields zero. 

In general relativity, the Weyl curvature is the only part of the 
curvature that exists in free space- a solution of the vacuum Einstein 
equation- and it governs the propagation of gravitational radiation 
through regions of space devoid of matter. More generally, the Weyl 
curvature is the only component of curvature for Ricci-flat manifolds and 
always governs the characteristics of the field equations of an Einstein 
manifold. In dimensions 2 and 3, the Weyl curvature tensor vanishes 
identically. In dimensions ,4≥  the Weyl curvature is generally nonzero. 
If the Weyl tensor vanishes in dimension ,4≥  then the metric is locally 
conformally flat: There exists a local coordinate system in which the 
metric tensor is proportional to a constant tensor. This fact was a key 
component of Nordström’s theory of gravitation, which was a precursor of 
general relativity. 
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The Weyl tensor has the special property that it is invariant under 
conformal changes to the metric. For this reason, the Weyl tensor is also 
called the conformal tensor. It follows that a necessary condition for a 
Riemannian manifold to be conformally flat is that the Weyl tensor 
vanish. In dimensions ,4≥  this condition is sufficient as well. In 
dimension 3, the vanishing of the Cotton tensor is a necessary and 
sufficient condition for the Riemannian manifold being conformally flat. 
Any 2-dimensional (smooth) Riemannian manifold is conformally flat, a 
consequence of the existence of isothermal coordinates. Conformal 
transformations of a Riemannian structures are an important object of 
study in differential geometry. 

The conformal transformation on a ( ) manifold-nLCS  is a transformation 

under which the angle between two curves remains invariant. The Weyl 
conformal curvature tensor C of type (1, 3) of an n-dimensional 
Riemannian manifold ( ) ( )3>nLCS n  is defined by [15] 

( ) ( ) [ ( ) ( )YZXSXZYSnZYXRZYXC ,,2
1,, −
−

−=  

( ) ( ) ]QYZXgQXZYg ,, −+  

( ) ( ) ( ) ( ){ }.,,21 YZXgXZYgnn
r −

−−
+  (3.1) 

In [36], Shaikh studied some results on ( ) manifolds-nLCS  and proved 

that a conformally flat ( ) ( )3>nLCS n  manifold is an η -Einstein manifold 

and its Ricci tensor is of the form 

( ) [ ( )] ( ) [ ( )] ( ) ( ).1,1, 22 YXnn
rYXgn

rYXS ηηρ−α−
−

−ρ−α−
−

=  (3.2) 

From (3.2), we get 

( ) ( ).1 2 ρ−α−= nnr   (3.3) 

Suppose that h is a ( )2,0  symmetric parallel tensor field on a       

( ) manifold-nLCS  with 02 ≠ρ−α  such that 
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( ) ( ) ( ) ( ).,2,, YXSYXgYXh += ξ£   (3.4) 

Then by virtue of Theorem 2.2, it follows that ( )λξ,,g  is a Ricci soliton. 

Using (3.2), (3.3), and (2.16) in (3.4), we get 

( ) [( ) ( ) ] ( ) ( ) ( ).2,12, 2 YXYXgnYXh ηαη+α+ρ−α−=   (3.5) 

Putting ξ== YX  in (3.5), we get 

( ) ( ) ( ).12, 2 ρ−α−−=ξξ nh   (3.6) 

Since ( )λξ,,g  is a Ricci soliton on a ( ) manifold-nLCS  M, then from (1.1), 

we have 

( ) ( ),,2, YXgYXh λ−=   (3.7) 

and hence 

( ) .2, λ=ξξh   (3.8) 

From (3.6) and (3.8), we get 

( ) ( ).1 2 ρ−α−−=λ n   (3.9) 

Since 1>n  and ( ) ,02 ≠ρ−α  we have 0>λ  or 0<  according as 

( ) 02 <ρ−α  or ( ) .02 >ρ−α  Thus, we can state the following: 

Theorem 3.1. If the tensor field ,2S+ξ£  on a conformally flat 

( ) ( )3- >nmanifoldLCS n  with ,02 ≠ρ−α  is parallel, then the Ricci 

soliton ( )λξ,,g  is shrinking and expanding according as 02 >ρ−α  and 

,02 <ρ−α  respectively. 

4. Weakly Symmetric ( ) Manifolds-nLCS  

The study of Riemann symmetric manifolds began with the work of 

Cartan [8]. A Riemannian manifold ( )gM n ,  is said to be locally 

symmetric due to Cartan [8] if its curvature tensor R satisfies the 
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relation ,0=∇R  where ∇  denotes the operator of covariant 
differentiation with respect to the metric tensor g. This condition of local 
symmetry is equivalent to the fact that at every point ,MP ∈  the local 
geodesic symmetry ( )PF  is an isometry [29]. The class of Riemann 

symmetric manifolds is very natural generalization of the class of 
manifolds of constant curvature. 

During the last five decades, the notion of locally symmetric 
manifolds has been weakened by many authors in several ways to a 
different extent such as recurrent manifold by Walker [53], 
semisymmetric manifold by Szabó [48], pseudo-symmetric manifold in 
the sense of Deszcz [17], pseudo-symmetric manifold in the sense of 
Chaki [9], generalized pseudo-symmetric manifold by Chaki [11], weakly 
symmetric manifold by Selberg [34], and weakly symmetric manifold by 
Támassy and Binh [49]. It may be noted that the notion of weakly 
symmetric Riemannian manifolds by Selberg [34], is different and are not 
equivalent to that of Támassy and Binh [49]. 

As a proper generalization of pseudo-symmetric manifold by Chaki 
[9], Támassy and Binh [49] introduced the notion of weakly symmetric 
manifold and studied such structures on Sasakian manifolds and proved 
that such a structure does not always exist. 

A non-flat Riemannian manifold ( ) ( )2, >ngM n  is called a weakly 

symmetric manifold if the curvature tensor R of type ( )4,0  satisfies the 

condition 

( ) ( ) ( ) ( ) ( ) ( )VUZXRYBVUZYRXAVUZYRX ,,,,,,,,, +=∇  

( ) ( ) ( ) ( )VXZYRUDVUXYRZH ,,,,,, ++  

( ) ( ),,,, XUZYRVE+  (4.1) 

for all vector fields ( ),,,,, nMVUZYX χ∈  where ,,,, DHBA  and E 

are 1-forms (not simultaneously zero) and ∇  denotes the operator of 
covariant differentiation with respect to the Riemannian metric g. The    
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1-forms are called the associated 1-forms of the manifold and an              
n-dimensional manifold of this kind is denoted by ( ) .nWS  Moreover, it is 

to be noted that in a ( ) HBWS n =,  and ED =  [14] and hence the 

defining condition (4.1) reduces to 

( ) ( ) ( ) ( ) ( ) ( )VUZXRYBVUZYRXAVUZYRX ,,,,,,,,, +=∇  

( ) ( ) ( ) ( )VXZYRUDVUXYRZB ,,,,,, ++  

( ) ( ),,,, XUZYRVD+   (4.2) 

where DBA ,,  are 1-forms (not simultaneously zero). 

In [42], Shaikh and Binh studied weakly symmetric ( ) manifolds.-nLCS   

A ( ) manifold-nLCS  is said to be weakly symmetric [42] if its curvature 

tensor R of type ( )4,0  satisfies the condition (4.2). It is proved that a 

weakly symmetric ( ) ( )3>nLCS n  manifold is an η -Einstein manifold 

and its Ricci tensor is of the form 

( ) ( ) ( ) ( ),,, YXqYXpgYXS ηη+=   (4.3) 

where ( ) ( ) ( ){ }
( )ξ+α

ξ+α−ρ−α
= B

Bnp 12
 and ( ) ( ) ( )

( ) ,1 2

ξ+α
ξρ−α−

−= B
Bnq  

provided ( ) .0≠ξ+α B  In view of (2.16) and (4.3), it follows from (3.4) 

that 

( ) [ ( ) ( ) ( ){ }
( ) ] ( )YXgB

BnYXh ,12,
2

α+
ξ+α

ξ+α−ρ−α
=  

[ ( ) ( ) ( )
( ) ] ( ) ( ).12

2
YXB

Bn
ηηα+

ξ+α
ξρ−α−

+  (4.4) 

Putting ξ== YX  in (4.4), we get 

( ) ( ) ( ) ( ) ( )[ ]
( ) .122,

2

ξ+α
α−−ξ−ρ−α

=ξξ B
nBnh  (4.5) 
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From (3.8) and (4.5), we get 

( ) ( ) ( ) ( )[ ]
( ) .122

ξ+α
α−−ξ−ρ−α

=λ B
nBn   (4.6) 

From (4.6), we get 0,0 =>λ  and 0<  according as 

( ) ( ) ( ) ( )[ ]
( ) ( ),1

2,0122
ξ

−
−=α>

ξ+α
α−−ξ−ρ−α Bn

n
B

nBn  

and  

( ) ( ) ( ) ( )[ ]
( ) .0122

<
ξ+α

α−−ξ−ρ−α
B

nBn  

This leads to the following: 

Theorem 4.1. If the tensor field ,2S+ξ£  on a weakly symmetric 

( ) ( )3- >nmanifoldLCS n  with 02 ≠ρ−α  is parallel, then the Ricci 

soliton ( )λξ,,g  is shrinking, steady and expanding according as  

( ) ( ) ( ) ( )[ ]
( ) ( ),1

2,0122
ξ

−
−=α>

ξ+α
α−−ξ−ρ−α Bn

n
B

nBn  

 and   

( ) ( ) ( ) ( )[ ]
( ) ,0122

<
ξ+α

α−−ξ−ρ−α
B

nBn  

respectively. 

5. Weakly Ricci Symmetric ( ) Manifolds-nLCS  

A Riemannian manifold is said to be Ricci symmetric if its Ricci 
tensor S of type ( )2,0  satisfies ,0=∇S  where ∇  denotes the 
Riemannian connection. During the last five decades, the notion of Ricci 
symmetry has been weakened by many authors in several ways to a 
different extent such as Ricci recurrent manifold [30], Ricci 
semisymmetric manifold [48], pseudo Ricci symmetric manifold by Deszcz 
[18], and pseudo Ricci symmetric manifold by Chaki [10]. 
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Extending all the above notions of Ricci symmetry, in 1993, Tamássy 
and Binh [50] introduced the notion of a weakly Ricci symmetric 
manifold. A Riemannian manifold ( ) ( )2, >ngM n  is called weakly Ricci 
symmetric if its Ricci tensor S of type ( )2,0  is not identically zero and 
satisfies the condition 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),,,,, XYSZDXZSYBZYSXAZYSX ++=∇   (5.1) 

where A, B, and D are 1-forms (not simultaneously zero). Such an           
n-dimensional manifold is denoted by ( ) .nWRS  In [42], Shaikh and Binh 

studied weakly Ricci symmetric ( ) manifolds.-nLCS  A ( ) manifold-nLCS  

is said to be weakly Ricci symmetric [42] if its Ricci tensor S of type 
( )2,0  satisfies the condition (5.1). It is proved that a weakly Ricci 
symmetric ( ) ( )3>nLCS n  manifold is an η -Einstein manifold and its 

Ricci tensor is of the form 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ),1,1,
22

YXD
DnYXgD

nYXS ηη
ξ+α

ξρ−α−
−

ξ+α
ρ−αα−

=   (5.2) 

provided ( ) .0≠ξ+α D  

In view of (2.16) and (5.2), it follows from (3.4) that 

( ) [ ( ) ( )
( ) ] ( )YXgD

nYXh ,12,
2

α+
ξ+α

ρ−αα−
=  

[ ( ) ( ) ( )
( ) ] ( ) ( ).12

2
YXD

Dn
ηη

ξ+α
ξρ−α−

−α+  (5.3) 

Putting ξ== YX  in (5.3), we get 

( ) ( ) ( ).12, 2 ρ−α−−=ξξ nh   (5.4) 

From (3.8) and (5.4), we get 

( ) ( ).1 2 ρ−α−−=λ n   (5.5) 

Since 1>n  and ,02 ≠ρ−α  we have 0>λ  or 0<  according as 02 >ρ−α  

and .02 <ρ−α  This leads to the following: 
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Theorem 5.1. If the tensor field ,2S+ξ£  on a weakly symmetric 

( ) ( )3- >nmanifoldLCS n  with 02 ≠ρ−α  is parallel, then the Ricci 

soliton ( )λξ,,g  is shrinking and expanding according as 02 >ρ−α  and 

,02 <ρ−α  respectively. 
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