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Abstract 

In this paper, an Aeshnidae Algorithm (AA) is used to solve optimal reactive power problem. 
The key inducement of the aeshnidae algorithm (AA) instigate from static and dynamic 
swarming behaviours. These two swarming behaviours are very alike to the two key phases 
of optimization using meta-heuristics: exploration and exploitation. Aeshnidae generate sub 
swarms and fly over diverse areas in a static swarm, which is the key objective of the 
exploration phase. In the static swarm, however, aeshnidae fly in bigger swarms and along 
one direction, which is favourable in the exploitation phase. In this proposed aeshnidae 
algorithm, two essential phases of optimization, exploration and exploitation, are designed 
by modelling the social interaction of aeshnidae in navigating, searching for foods, and 
avoiding enemies when swarming dynamically or statistically. The projected aeshnidae 
algorithm (AA) has been tested in standard IEEE 30 bus test system and simulation results 
show clearly about the enhanced performance of the projected algorithm in tumbling the 
real power loss. 
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___________________________________________________________________ 

1. Introduction 

Different algorithms are utilized to solve the reactive power dispatch 
problem. Different types of numerical techniques like the gradient 
method [1, 2], Newton method [3], and linear programming [4-7] have 
been already used to solve the optimal reactive power dispatch problem. 
The voltage stability problem plays an important role in power system 
planning and operation [8]. Evolutionary algorithms such as genetic 
algorithm, hybrid differential evolution algorithm, biogeography based 
algorithm, a fuzzy based approach, an improved evolutionary 
programming [9-15] have been already utilized to solve the reactive 
power flow problem in [16-18] different methodologies are successfully 
handled the optimal power problem. In [19, 20], a programming based 
approach and probabilistic algorithm is used to solve the optimal reactive 
power dispatch problem. This paper proposes an aeshnidae algorithm 
(AA) to solve reactive power dispatch problem. Aeshnidae are measured 
as small predators that hound almost all other petite insects in 
environment. Fairy aeshnidae also predate on other marine insects and 
even small fishes. The attractive fact about aeshnidae is their exclusive 
and a typical swarming behaviour. Aeshnidae swarm for only two 
reasons: hunting and migration. The former is called static swarm, and 
the latter is called dynamic swarm. In static swarm, aeshnidae create 
small groups and fly back and forth over a small area to hunt other flying 
preys such as butterflies and mosquitoes [21-24]. Confined movements 
and rapid changes in the flying path are the key characteristics of a static 
swarm. In vibrant swarms, however, an enormous number of aeshnidae 
make the swarm for migrating in one direction over long distances. The 
key stimulation of the aeshnidae algorithm (AA) instigates from static 
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and dynamic swarming behaviours. These two swarming behaviours are 
very alike to the two key phases of optimization using meta-heuristics: 
exploration and exploitation. Aeshnidae create sub-swarms and fly over 
different regions in a static swarm, which is the key objective of the 
exploration phase. In the static swarm, however, aeshnidae fly in bigger 
swarms and along one direction, which is constructive in the exploitation 
phase. The proposed AA has been evaluated in standard IEEE 30 bus 
test system. The simulation results show about the projected approach 
outperforms all the entitled reported algorithms in minimization of real 
power loss. 

2. Objective Function 

A. Active power loss 

The objective of the reactive power dispatch problem is to minimize 
the active power loss and can be defined in equations as follows: 

( ),cos222
ijjijiNbrL VVVVgPF θ−+== ∑ ∈ kk

 (1) 

where F is objective function, LP  is power loss, kg  is conductance of 

branch, iV  and jV  are voltages at buses i, j, and Nbr is total number of 

transmission lines in power systems. 

B. Voltage profile improvement 

To minimize the voltage deviation in PQ buses, the objective function 
(F) can be written as 

,VDPF vL ×ω+=   (2) 

where VD is voltage deviation, vω  is a weighting factor of voltage 

deviation. The voltage deviation given by 

,1
1

−= ∑ = i
Npq

i
VVD   (3) 

where Npq is number of load buses. 
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C. Equality constraint 

The equality constraint of the problem is indicated by the power 
balance equation as follows: 

,LDG PPP +=   (4) 

where GP  is total power generation and DP  is total power demand. 

D. Inequality constraints 

The inequality constraint implies the limits on components in the 
power system in addition to the limits created to make sure system 
security. Upper and lower bounds on the active power of slack bus ( )gP  

and reactive power of generators ( )gQ  are written as follows: 

,maxmin
kkk gslacgslacgslac PPP ≤≤  (5) 

;,maxmin
ggigigi NiQQQ ∈≤≤  (6) 

Upper and lower bounds on the bus voltage magnitudes ( )iV  is given by 

;,maxmin NiVVV iii ∈≤≤  (7) 

Upper and lower bounds on the transformers tap ratios ( )iT  is given by 

;,maxmin
Tiii NiTTT ∈≤≤  (8) 

Upper and lower bounds on the compensators ( )cQ  is given by 

,,maxmin
CCcc NiQQQ ∈≤≤  (9) 

where N is the total number of buses, gN  is the total number of 

generators, TN  is the total number of transformers, and cN  is the total 

number of shunt reactive compensators. 
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3. Aeshnidae Algorithm 

According to Reynolds [25], the behaviour of swarms follows three 
primitive principles: Separation- refers to the static collision evading of 
the individuals from other individuals in the neighbourhood. Alignment - 
indicates velocity matching of individuals to that of other individuals in 
neighbourhood. Cohesion - refers to the propensity of individuals towards 
the centre of the mass of the neighbourhood. The main objective of any 
swarm is survival, so all of the individuals should be attracted towards 
food sources and distracted outward enemies. The behaviours are 
mathematically modelled as follows: The separation is calculated as 
follows [25]: 

,
1 j

N

ji ZZD −−= ∑ =
  (10) 

where Z is the position of the current individual, jZ  shows the position    

j-th neighbouring individual, and N is the number of neighbouring 
individuals. 

Alignment is calculated as follows: 

,1
N

G
G

j
N

j
i
∑ ==   (11) 

where jG  shows the velocity of j-th neighbouring individual. 

The cohesion is calculated as follows: 

,1 ZN

Z
H

j
N

j
i −=
∑ =   (12) 

where Z is the position of the current individual N is the number of 
neighbourhoods, and jZ  shows the position j-th neighbouring individual. 
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Attraction towards a food source is calculated as follows: 

,ZZEi −= +   (13) 

where Z is the position of the current individual and +Z  shows the 
position of the food source. 

Distraction outwards an enemy is calculated as follows: 

,ZZJi += −   (14) 

where Z is the position of the current individual and −Z  shows the 
position of the enemy. 

To update the position of artificial aeshnidae in a search space and 
simulate their movements, two vectors are considered: step ( )Z∆  and 

position (Z). The step vector is analogous to the velocity vector in particle 
swarm optimization (PSO), and the aeshnidae algorithm is developed 
based on the framework of the PSO algorithm. The step vector can be 
defined as follows: 

( ) ,1 tiiiiit ZwjJeEhHgGdDZ ∆+++++=∆ +   (15) 

where d shows the separation weight, iD  indicates the separation of the 

i-th individual, g is the alignment weight, iG  is the alignment of i-th 

individual, h indicates the cohesion weight, iH  is the cohesion of the i-th 

individual, e is the food factor, ieE  is the food source of the i-th 

individual, j is the enemy factor, iJ  is the position of enemy of the i-th 

individual, w is the inertia weight, and t is the iteration counter. 

After calculating the step vector, the position vectors are calculated 
as follows: 

,11 ++ ∆+= ttt ZZZ   (16) 

where t is the current iteration. 
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In a static swarm, however, alignments are very low while cohesion is 
high to assail preys. Consequently, we assign aeshnidae with high 
alignment and low cohesion weights when exploring the search space and 
low alignment and elevated cohesion when exploiting the search space. 
For conversion between exploration and exploitation, the radii of 
neighbourhoods are augmented proportional to the number of iterations. 
Another way to balance exploration and exploitation is to adaptively tune 
the swarming factors (d, g, h, e, j, and w) during optimization. 

To perk up the arbitrariness, stochastic behaviour, and exploration of 
the artificial aeshnidae, they are requisite to fly around the explore space 
using an arbitrary walk (Levy flight) when there is no neighbouring 
solutions. In this case, the location of aeshnidae is modernized by using 
the following equation: 

( ) ,1 ttt ZLevyZZ ×+=+ k   (17) 

where t is the current iteration and k  is the dimension of the position 
vectors. 

The Levy flight is calculated as follows: 

Levy flight [26] is a rank of non-Gaussian random processes whose 
arbitrary walks are drawn from Levy stable distribution. This allocation 

is a simple power-law formula ( ) ,~ 1 β−−ssL  where 20 <β<  is an 

index. Mathematically exclamation, an easy version of Levy distribution 
can be defined as 

( ) ( ) ( )
,0if1

2exp
,0if0

2,, 23
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≤

π
γ

=µγ s
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s
sL (18) 

where 0>γ  parameter is scale (controls the scale of distribution) 

parameter, µ  parameter is location or shift parameter. In general, Levy 

distribution should be defined in terms of Fourier transform 

( ) [ ] ,20,exp ≤β<α−= βkkF   (19) 
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where α  is a parameter within [ ]1,1−  interval and known as scale factor. 

An index of o stability [ ]2,0∈β  is also referred to as Levy index. In 

particular, for ,1=β  the integral can be carried out analytically and is 

known as the Cauchy probability distribution. One more special case 
when ,2=β  the distribution correspond to Gaussian distribution. β  and 

α  parameters take a key part in determination of the distribution. The 
parameter β  controls the silhouette of the probability distribution in 

such a way that one can acquire different shapes of probability 
distribution, especially in the tail region depending on the parameter .β  

Thus, the smaller β  parameter causes the distribution to make longer 

jumps since there will be longer tail. It makes longer jumps for smaller 
values whereas it makes shorter jumps for bigger values. 

The aeshnidae algorithm (AA) algorithm starts optimization process 
by generating a set of arbitrary solutions for a given optimization 
problems. In fact, the position and step vectors of aeshnidae are 
initialized by random values defined within the lower and upper bounds 
of the variables. In each iteration, the position and step of each aeshnidae 
are updated by using Equations (15)-(17). For updating Z and Z∆  
vectors, neighbourhood of each aeshnidae is chosen by calculating the 
Euclidean distance between all the aeshnidae and selecting N of them. 
The position updating process is sustained iteratively until the end 
criterion is satisfied. 

Initialize the Aeshnidae population ( )niZi ,,2,1 …=  

Initialize step vectors ( )niZi ,,2,1 …=∆  

While the end condition is not satisfied 

Compute the objective values of all aeshnidae 

Update the food source and enemy 

Modernize factors (d, g, h, e, j, and w) 

Compute D, G, H, E, and J using Equations (10)-(11) 
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Modernize neighbouring radius if anaeshnidae has at least one 
neighbouring aeshnidae 

Modernize velocity vector using Equation (15) 

Modernize position vector using Equation (16) 

Else 

Modernize position vector using Equation (17) 

End if 

Ensure and correct the new-fangled positions based on the 
boundaries of variables 

End while. 

4. Simulation Results 

Aeshnidae algorithm (AA) has been tested in IEEE 30-bus, 41 branch 
system. The system has 6 generator-bus voltage magnitudes, 4 
transformer-tap settings, and 2 bus shunt reactive compensators. Bus 1 
is considered as slack bus and 2, 5, 8, 11, and 13 are considered as PV 
generator buses and the other buses are taken as PQ load buses. 
Generators buses (PV) are 2, 5, 8, 11, 13 and slack bus is 1. Control 
variables limits are listed in Table 1. The power limits generators buses 
are displayed in Table 2. Table 3 shows the projected approach succeeded 
in keeping the control variables within limits. Table 4 narrates about the 
performance of the proposed AA algorithm. Table 5 summarize the 
comparison results of the optimal solution obtained by various standard 
methods. 

Table 1. Basic variable limits (PU) 

List of variables Min. value Max. value Category 

Generator Bus 0.90 1.08 Continuous 

Load Bus 0.90 1.01 Continuous 

Transformer-Tap 0.91 1.00 Discrete 

Shunt Reactive Compensator − 0.10 0.30 Discrete 
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Table 2. List of generators power limits 

Bus Pg. Pg min Pg max Qg min 

1 90.00 47 121 − 20 

2 82.00 18 75 − 20 

5 50.00 10 41 − 11 

8 20.00 10 32 − 13 

11 20.00 10 19 − 10 

13 20.00 11 35 − 13 

Table 3. Control variables values after optimization 

Control variables AA 

V1 1.0605 

V2 1.0512 

V5 1.0319 

V8 1.0402 

V11 1.0811 

V13 1.0609 

T4, 12 0.00 

T6, 9 0.01 

T6, 10 0.90 

T28, 27 0.90 

Q10 0.11 

Q24 0.11 

Real power loss 4.2779 

Voltage deviation 0.9050 

Table 4. Performance of AA algorithm 

Iterations 28 

Time taken (secs.) 4.32 

Real power loss 4.2779 
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Table 5. Comparison of real power loss 

Methods Real power loss (MW) 

SGA (26) 4.98 

PSO (27) 4.9262 

LP (28) 5.988 

EP (28) 4.963 

CGA (28) 4.980 

AGA (28) 4.926 

CLPSO (28) 4.7208 

HSA (29) 4.7624 

BB-BC (30) 4.690 

AA 4.2779 

5. Conclusion 

In this paper, aeshnidae algorithm (AA) has been efficiently solved 
the optimal reactive power dispatch problem. The projected algorithm 
has been tested in standard IEEE 30 bus system. Simulation study shows 
the robustness of projected aeshnidae algorithm (AA) method in 
providing improved optimal solution by decreasing the real power loss. 
The control variables values obtained after the optimization aeshnidae 
algorithm (AA) is well within the limits. 
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