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Abstract

This paper is a continuation of Part I where the general setup was developed.
Here we discuss the general equivalence problem for geometric structures and
provide criteria for the equivalence, local and global, of transitive structures.
Cartan’s Flag Systems illustrate the theory as a major example and, finally,
some attention though little is given to non-transitive structures with regular
orbits, i.e., intransitivity classes.

1. Introduction

In the Part I, we recalled the theory of Differential Invariants as
conceived by Sophus Lie and placed it in a context best suited for the
study of the equivalence problem for geometric structures. It is
interesting to add some more remarks proper to what we shall discuss in
the sequel and, firstly, let us recall what the Finiteness Theorem for the
differential invariants, proved in Part 1, brings to the equivalence

problem. A germ of a structure S being fixed, we are interested in the
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formal equivalence, general or restricted, of S with the germs of
neighbouring structures or those eventually located on other manifolds.
We are as well interested in global equivalences, these however offering
several additional difficulties of quite a different nature since
globalization is always a hard topological task. Let us now place

ourselves back into the neighborhoods W, as described in the statement
of the Finiteness Theorem of the Part I. The constancy of the k-th order

differential invariants provides us with a necessary and sufficient

condition for the k-th order equivalence, namely: The k-jet of a structure
S’ is equivalent to the k-jet of S if and only if the k-th order differential

invariants assume the same values on both jets, these two jets belonging

therefore to the same orbit in W,. Similarly, two infinite jets of
structures, elements of lim proj W,, are equivalent whenever they are so
at every finite order. Since from an integer pu onwards the higher order

differential invariants are all obtained by iterated formal admissible

derivations of those of order < u, we infer that the infinitely many
equivalence conditions are all consequences of those of order < p and,

moreover, just of a finite number of them, namely a finite fundamental
system of such invariants. In the next section, we shall examine the
formal equivalence problem for the formally transitive structures and, in
later sections, more specific types of structures will also be discussed. As
for the first mentioned structures, we shall see that the formal
equivalence takes place if and only if the restrictions of the differential

invariants of orders < p, to the flows of the same order associated to

these structures, assume the same values and, further, the restrictions of
the derived invariants to the flows of higher orders vanish. We shall see

as well that when the flows of orders < p associated to the germs of two

structures are transverse to the trajectories - the opposite of transitivity -
then a necessary and sufficient condition for the formal equivalence is the

existence of a germ of local diffeomorphism ¢ of P such that the
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restriction of every invariant of order < p to one of these jets of structure
be equal to the restriction to the other jet composed with ¢, the same
property thereafter holding for all the invariants of higher order.

It now only remains to determine criteria under which the
hypotheses Hy and Hj, stated in Part I, Section 9, are verified and it is
precisely here that the specific nature of the prolongation spaces E
intervenes. As for the hypothesis H,, it will be realised, for example,
upon requiring the local regularity, at a given order %, of the
distributions A; and Ay ;,; together with the 2-acyclicity (or even
involutivity) of A;_; ; and arguing as in Quillen’s criterion (while
assuming of course that 1-acyclicity already holds on a sequence of open
sets W,, this reviving now the hypothesis H;). A more elaborate
analysis (see [5]) shows the possibility of linking the §&-complex

associated to the kernels Aj;_;; with the corresponding &-complex

associated to the kernels of the spaces J +(£,) and consequently, in view

of the prolongation spaces structure, with that constructed by means of

the kernels of the spaces J,, ;. L, the later introducing however a shifting,

by one unit, in the cohomology groups. This matter will be discussed in
more detail in later sections. However, it is also worthwhile to mention
that we can employ, in this context, the method of characters by
extending the reasoning of [6], Section 24, and relate the characters of

the kernels of J,, ;L with those of A;_; ;.

Finally concerning the hypothesis Hj3, not much can be simplified in

the specific case of prolongation spaces. Apparently, the most efficacious
criteria are provided, on the one hand, by the Proposition 21.5 of [6] that
involves the bracket of formal and holonomic derivations and, on the
other, by the Proposition 25.4 that relies on the explicit formula (25.5)

which, surprisingly, can already be found in Lie’s work. The hypotheses
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underlying the last proposition are no other than conditions of
transversality, in the strict sense, of the k-th order flows of local sections
S of the fibration E — P with the trajectories of Aj, such conditions

being entirely antipodal to a formal transitivity hypothesis. We finally
remark that it is possible to transcribe all the results stated above in the

case where (E, w, P, p) is no more than a prolongation space relative to

an infinitesimal Lie pseudo-algebra £ ([2]).

2. Subordinate Prolongation Spaces

and Formal Transitivity

Let us begin by stating a very naive lemma, consequence of the
functoriality properties of the prolongation operation, that nevertheless
is at the basis of everything that follows.

Lemma 1. Let (E, n, P, p) be a finite prolongation space, & be a
local vector field defined on P and ¢ be a local diffeomorphism such that

a(&) = a(e). Under these conditions, (p®),p& = p(p.&).

Let us next assume that the prolongation space has finite order /. In
order to render notations easier, we denote by Z — Z; the projection
J.E > J,E and by Z — Z, ; the semi-holonomic inclusion into
Ji_p(JRE), the same notations applying as well to [, P. We observe
that the elements of J;_j(J,E) can be canonically identified with the

(k —h)-th order holonomic contact elements of dimension n that are

transverse to the fibration J,E —> P, the contact element Z,_; being
issued at the point Yj,. This being so, the groupoid [II,,;,; P operates to
the left (or to the right if one prefers so) on

(@) J,,E, m <k +1, by means of the prolongation spaces law, in view

of the Lemma 2, Section 2 in [9] or else by the left action (1) (loc.cit., pg.
5, Part I), and the projection [1,,,,1 P — I, P
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®) Jp_p(JpE), m < k +1, by applying twice the above lemma.
(¢) Jy, TP, by the standard action.
(d) J;_p(TJLE), thanks to the left action A, (loc. cit.) followed by
the standard action hence, in particular, on 7/, E.

These actions are compatible with all the fibrations and it is quite
evident that (a) and (b) are co-variant by means of the canonical
inclusion. Furthermore, the preceding lemma implies that the
infinitesimal prolongation operation is compatible with these actions. In

fact, taking Y e 1/ 511 P, jrsr&(y) € J TP, and Y(j, &) = jrepn(y)
then, for all Z € J;,E composable with Y, the element transformed by Y
via the action (d) of the jet j,_;,(ppE)(Z) is equal to j,_p,(ppn) (Y(2)).
Moreover, we can extend the action of [, .4 P to J, . TP xp JLE
acting separately on each factor. The previous considerations can now be

summarized by the following statement (cf. (7), [9], where we replace A

by Ajop, L +k by £+ k+h and TJLE by J;,(TJLE)).
Lemma 2. The mapping
Mai—n) * Sk TP xp JpE —> Jj_p(TILE)
is a differential co-variant with respect to the action by [1,, .., P or, in
other words, this mapping commutes with both actions.

In particular, we derive the following conclusions: Let Y e [1,,;.1 P,
Z e dp E, Y(jri16() = jran(y') and assume further that pp& is

tangent of order k—h to the contact element (of order k—-h+1)

Z1)-h € Jpr1-n(JpE). Then the vector field pyn is tangent of order

k—h to the contact element W(k +1)-h» W =Y(Z), since Y transforms

Z(j41)-n onto Wgi1)-p and ji_pppE(Zy) onto ji_pppm(Wy,).
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Lemma 3. The action of [1,,;.1 P is compatible with the tangency

relations between prolongued vector fields and contact elements.

Let us now introduce the (eventually singular) vector bundles, with
base space J.E,

R),. ={(Y,2)| Y e (R}1)y, Z € JE}, (1)
where

(RY,1)y = (esrl() € Iy TP | (p4E); = 0, y = a(2)},

and
gr4p = ker (R, —> RY,; 1), (2

the choice of the notations being justified by the fact that the linear
isotropies as well as the symbols of orders ¢ + k£ of a given structure S of
species E can simply be obtained as the inverse images of these bundles
via the flow j.S or, in other terms, by the relations

RY, () = (GsS) "RY s, 000k (S) = (7uS) apus- 3)

The following sequence, where the third arrow is the morphism (7) in [9],
is of course exact:

o
0 —RY, — J, TPxp JLE Z5A, — 0. ()
The preceding lemmas show in particular that each term of this

sequence is invariant by the corresponding action of [],,;,; P. Moreover,

the action of [I,,;,; P induced on R?Jrk factors to [],,; P since it is no
other than the parts of the orders < ¢ + %k that operate on the total
isotropy J?HCTP. Finally, we observe that the action of [],,, P on

J ?HCTP xp J.E leaves invariant the sub-space
grap < (ST P @ TP)xp J,E

and the induced action on the tensorial term factors, via [,,;, P — [I; P,

since it is only the first order part that operates on the symbols.
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Lemma 4. For all Z € JE, the symbol (g,.},), is the k-th algebraic

prolongation of (g, )B(Z) and, consequently, g,.;. is entirely determined by

g, via the relation g, = g(gk) ®p JLE, where g(gk) is the k-th algebraic
prolongation of g,.

In fact, it suffices to choose a section S of E such that Z = j.S(y) and

apply the Proposition 4 in [9]. The previous discussion also entails the

following lemma:

Lemma 5. Let Qy be an orbit of 11, P in E. For every k, the restriction
g | BH(Qy) is a vector bundle of constant rank on the manifold
BY(Qq). Further, taking any two points Z, Z' € B~1(Qy ) and assuming
that the jet Y e€Il, P transforms B(Z) in PB(Z'), then (g,y;); is
transformed onto (g,.}), by the tensorial extension of the 1-jet Yi,

projection of Y, considered as a linear transformation To 7\ P —> Ty z\P.

Corollary 1. For all k, the Spencer 8&-cohomology complexes

associated to the symbols (g,.),; and (g,.1), taken at any two

arbitrary points of B_I(QO) are isomorphic by means of the restriction of

an isomorphism, of the total complexes, produced by the linear part of an

element belonging to I1, P that sends Ty z)P into Ty (z)P. Consequently,

the symbols have the same homological properties along the sub-manifold

B_I(QO). In particular, when S is a section of E taking its values in

BL(Qy), then the symbol g,,;(S) is a vector bundle of constant rank and

each fibre has the same homological properties.

Lemma 6. Let Qg be an orbit of 1, P in E. Then, for every k, the
vector bundle g(ﬂk) | Qg is of constant rank and is invariant by the action
of the groupoid T1, P on (S"**T*P ® TP)xp Q, the action on the first

term factoring by T1, P — I1; P. Furthermore, g,.; | B (Qg) = ggk)
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x QOB_l(QO). Moreover, if S is a section of E taking its values in Q,

then the groupoid R(S) is transitive on o(S) and the linear action of

p1(R(S)) leaves invariant the vector bundle g,,;.(S).

Lemma 7. Let F,, be an orbit, in J.E, of the finite or infinitesimal
action (i.e., an orbit Q; or o) of [, P and let us write ¥; = pFy,

0 < h < k. Under these conditions:

(1) F}, is a finite or infinitesimal orbit of J,E according to the nature
of the corresponding k-orbit.

@) The action of Il .1 P on J, pTP xp Fp, 0 < h <k, leaves
invariant the sub-bundles R2+h | ¥, and g/, | ¥, the induced action
then factoring to 11,,; P, and operating transitively in the base space Fy,.
The isotropies (R?Jrh ), and (R?+h )z as well as the symbols (g,,1),
and (g,.p )y, at any two points Z, Z' € ¥y, are therefore isomorphic by
means of the action by the elements of [1,,;, P, resp., [1; P.

(i) The action of Ilypyy P on TJRE | Fy, 0<h <k Ileaves

invariant the sub-bundle Ay | ¥y, the fibres at any two arbitrary points

being isomorphic via the above action and, moreover, Ay, | F;, = TFy,.

(iv) The restrictions R?m | ¥, 904 | ¥, and A | ¥, = TF), are
vector bundles of constant rank.

By all that has already been said, the proof is obvious. Let us mention

however that, in view of the exactness of the sequence (4), the vector
bundles R?Jrh and Aj, are simultaneously regular i.e., when one of them
is regular then the other is also necessarily regular. We next state

(without proof!) a rather long lemma that outlines all the basic

techniques to be used from here onwards.
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Lemma 8. The hypotheses being those of the preceding lemma, for
each solution S of F,, namely, a section S of the prolongation space E such

that j,S takes its values in ¥, the equations R,,;,(S) and
R, ,(S),0 < h <k, are transitive in oS) and the bundles R, j(S),
R?+h(S) and g,,5,(S) are all of constant rank. Further, R, ,(S) is a

closed and locally trivial Lie (differentiable) sub-groupoid, its
differentiable structure being regularly embedded in 11,,j a(S). The non-

linear isotropy Rg+h(S) is a closed and locally trivial sub-bundle of

H(;Jrh a(S), each fibre being a closed Lie sub-group of the total group. The

projection  pyip_1Rwn(S) is a locally trivial Lie sub-groupoid of
[1/:5-1 o(S) and the non-linear symbol

9141 (S) = ker(R 14, (S) — prin-1Ro+n(S))

is a locally trivial affine sub-bundle (unless when ¢ =1 and h =0, in

which case the fibre is a linear group) of the total symbol above
Prin1Rosn(S). Finally, the groupoid R,,;,(S) leaves invariant the sub-

bundles R?Jrh(S) and g,,5(S) via the standard actions on J?+hTP and

S'*hr*p ® TP, respectively. Inasmuch, R,,,(S) leaves invariant the
isotropy R?+h(S) via the action on H?Jrh P defined by conjugation, as
well as the non-linear symbol g, (S) via the standard action on the total
symbol defined by the translations to the left or to the right. We deduce
that any two fibres of R?+h(S) and g, (S)| Id(= o(S)) are always
isomorphic as Lie groups and that those of g,,,,(S) are also isomorphic as

homogeneous spaces.

Lemma 9. The data as well as the hypotheses being those of the

preceding lemma, we also have the following equalities, for 0 < h < k -1,
R?+h+1(s) = pR?+h(S) and Ryp1(S) =R, 1(S), where p is the

standard prolongation operator for partial differential equations.
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We finally introduce the (eventually singular) vector bundle with
basis J; 1 E

Ry, =Y, 2)| Y €(Ryyp)yz, Z € Iy E}, 6))
where

(Reir)z = {Jnik@) € J1iTP | (pr8)z = Zii1)1 )

Observe that Z(k +1)-1 € J1(JLE) is a first order contact element namely,
a transverse vector sub-space of T, J;E. The choice of these notations is

justified by the relation

R, 1(S) = (jpaS) "Ry (6)

Lemma 10. The fibre bundle R, is invariant under the action of
M1 P on Jy ) ) TP xp J 1 E. If Fi..1 is a finite or infinitesimal orbit
in Jj1E, then the restriction R, | ¥ 1 is of constant rank and any

two fibres are isomorphic by the action of some element in [1,, ;.1 P.

Let us recall (cf., the Theorem 2 in [9]) that each trajectory Q is a
locally trivial sub-bundle of J,E isomorphic to the quotient space
(Ilg4x P), / H(Y). Inasmuch, an infinitesimal trajectory o is a locally
trivial sub-bundle since it is isomorphic to the quotient of the connected
component of the unit y in ([1,,; P) y by the isotropy (we shall be careful
to assume P connected otherwise ®; is just a bundle whose basis is the

connected component of P containing the point y). We can thus consider

any trajectory Fj;, finite or infinitesimal, as a non-linear partial

differential equation (a non-linear differential system) of order k¥ on the
fibration (and prolongation space) n: E — P that we shall call a

fundamental equation of order k.

Lemma 11. Let F). . be a fundamental equation, F,, its projection at

k-th order and assume that ¥, N pF, # ¢. Under these conditions,

F,.1 c pF, and therefore pF; is a union of trajectories.
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Lemma 12. A fundamental equation F). is 1-integrable namely, the
property p(pF;) =F), holds, if and only if pF;, = ¢ (for every fibre).
This condition being verified, the prolongation pF) is a locally trivial
affine sub-bundle of J;,.1E — F,, where E is assumed to be a finite

prolongation space.

Let us denote by pyF). the prolongation of order A of F;. Arguing as

previously, we can also show the

Corollary 2. A fundamental equation F) verifies the extended
equality py(ppFy) =F; if and only if p,F. # ¢ and, whenever this

condition is verified, the following properties also hold:

(1) For every n < h, quk is a locally trivial (and non-void) sub-
bundle of JinE —> Fy saturated by the orbits of order k + n, finite or
infinitesimal according to the nature of Fj..

(i) pu(PyFr) = PusnFr> w+1 < A

We observe, however, that the property ppF, # ¢ does not imply, in
general, the h-integrability of F;, namely, the property

Pu(Pu1Fy) = pFy, n < A
The above property only implies the 1-integrability.

Let us next examine the tangent symbol of a fundamental equation.
On the one hand, it is clear that this symbol at the point Z € J,E is

simply the contact element

(Dpak)z =ker [(Ap); — (Mpa)p,_ 1z ]
(Ar1.1)z < (S"T*P @ VE)xg JiE], = [S"TyzP ® VyzE]x {Z},

and, on the other, we see immediately that the diagram below is
commutative and exact (cf., the second diagram at the outset of Section 3
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in [9]). Curiously enough, this diagram cannot be completed everywhere
by surjectivities, as is so common in commutative diagrams, since
structures do not behave always as nicely as one would like to and the
problem resides in the lack of h-integrability or, stated equivalently, in
the difficulty of approximating what we really look for namely, the
integrability.

Lemma 13. The first vertical sequence in (7) is surjective at the end if

and only if the first horizontal sequence verifies the same property.

(7) 0 0 0

! ) !
0 —> gosk — (SH*T*PQTP) xp LE 5 A1
1
) ! |4
1
0-—5 R — T TP %o B 2y 1A — 0
!
4 peyi—a 1 |
. . > . ;

0SREL SnlE —S Big IO Bl R KBy n B —

0 0

In fact, the above snake arrow tells us that the following sequence is

exact:

* l
00— (SZ-HCT P® TP)XP JkE—k)Ak_l,k — coker Prik—1 — 0.

The Lemma 1 can now be extended to the following assertion:
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Lemma 14. Let (E, n, P, p) be a finite prolongation space of order

L, £ a local vector field defined on E, ¢ a local diffeomorphism of P and
we assume that a(pe) = a(G). Then, [p(po)l.pré = pil(pe).Cl.

We infer the following corollaries by taking also into account the

Theorem 13.1 as well as the Proposition 14.2 in [6].
Lemma 15. The groupoid [1,,;.1 P operates differentiably on the
spaces jkTE, TJ.E and (S*T*P ® VE)xp JLE. The Lie sub-fibration

jkVE as well as the vector sub-bundle VJ . E are invariant by this action

and the following exact sequences:

0 —> JUTP xp JLE 25 F,TE 25T, —> 0,
and

R € Tpj.— k
0 — (S*T*P @ VE)xg JLESTIE —5TJ, \Ex;_ g JE — 0

are co-variant. Furthermore, the action on the term SET*P @ VE factors
via ppy1 i psps P —> [y P and that on the term JPTP via

pr : Mg P —> I P
Lemma 16. Let F, be a fundamental equation and ¥)._; its projection.
By means of the canonical identification,

Ak*l,lek = ker [TFk —> TFk*l]

is a locally trivial vector sub-bundle of (S*T*P ® VE)xg ¥}, invariant
under the action of Il,,;. P. When k >1 and when Z,Z' € F, and
Y e Il;yy, P are such that Y(Z) = Z', then Y transforms (Ay_y )y, in

(Ap_1,1)z by means of the tensorial extension of the (¢ +1)-jet Y,,q,
projection of Y and consider as a linear map Tpiz)E — Tyz)E. In the

case where k = 0,
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A71,0|F0 = ker [TTE : TFO —> TP] C VElFo, Y e Hg P,

and we can take any jet Y, .1 € 1,1 P projecting upon Y. When F,, is an

infinitesimal trajectory, we shall take care to restrict the action just to the

open subset of [1,,; P that leaves invariant F,.

We next consider a pair F;,; and F, of fundamental equations,
k>0, verifying p(F;,;)=F,. We shall study the geometrical
properties of the fibration F;,; — F, inasmuch as a sub-fibration of the

affine bundle J,,;E — F, above the base space F, (more precisely, it
would be convenient to replace the term J; 1 E by pil(F,) < Ji 1 E,
where p; : Jp 1 E — JLE). Since F,,; is an orbit, this fibration is

obviously a locally trivial sub-bundle, any two fibres being isomorphic by

the action of the elements belonging to [1,,;,; P. We next recall ([6],
Section 19) that J, £ — J.E is an affine bundle, the underlying
vector bundle being equal to (S*'T*P ® VE)xg JE and the affine
action defined as follows: The point Z € J.E being fixed, a vector
ve S]”lTy*P ®V,E,y=a(Z), z=P(Z), defines by means of the
canonical identification ([6], Proposition 14.2) a vector field v(v) along
the fiber A; of J,. 1E above the point Z. This vector field admits a
global  1-parameter group (¢;) of affine transformations and the affine
action of v on W € Ay is defined by W +v = ¢;(W). We thus see that
the set {v(v)| v e Sk+1T;P ® V,E} is the abelian Lie algebra of all the
infinitesimal translations of the affine space Aj. If we examine again
the diagram (14.1) in [6], we shall observe that the pair (v, W) identifies
to an element in o #+1VE that projects onto (0, Z) by the morphism
Pr.k+1 (see the first line of the diagram (14.1)). This means however, in

setting W = j,,10(y) and Z = p, (W), that (v, W) identifies to a jet
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Ji+1(€ o o) (y), where ¢ is a vertical vector field on E null to order & (i.e.,

it vanishes up to order k) along the image of the section o namely,

Jr(€ o o)(y) = 0. Equivalently, ¢ is a vertical vector field, on E, tangent
to order k along the image of ¢ and at the point o(y). This being so, we

see readily, and according to the diagram (14.1), that v(v)y = (pr110)w-

Let us now return to the fibration p;, : F,,; — F}.. Since F;,; is an
orbit under the action of [1,,;,; P on J; 1 E, the fibre (Fyq )y, W € Fy,

is the orbit of an arbitrary point W' e (F;,; )y under the action of the
sub-group K(W) of (119,41 P),, inverse image of the isotropy H(Z) by
the projection py ;1. Consequently, the fibre (Fy,; )y is isomorphic to

the homogeneous space K(W)/ H(Z) that, in general, is not connected.

However, we can easily determine its connected components since they

are simply the orbits of the connected component of the unity in K(W)

or, equivalently, the orbits of the infinitesimal action of the Lie algebra
k(W) of the group K(W). We shall therefore study the algebra q(W) of

the vector fields on Ay, images by the infinitesimal action of k(W). We
first remark that Tz (Fy,1 )y = (Ag 441)z and that consequently, every
vector w € Ty (F; 1)y is obtained as follows: We take a local vector field
& of P defined in a neighbourhood of y and consider its prolongation
Pr+1& = Pr41(PE). Under these conditions, (py.1&)y € (Af p41 ) if and
only if Tp;(pps18); = (Pr€); =0, Z = pi(W), which means precisely
that j,,;.1&(y) € (W). Moreover, the condition (p;£), = 0 also means,
in writing Z = jio(y), z = o(y), that (cf., [6], p.317, the remark just
following the corollary):

(a) p&(z) = 0 and

(b) p§ is tangent to order k£ along im o at the point z.
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Since we have nullity at the point z, we infer that the k-th order

tangency condition along the section ¢ and at the point z only depends

on the k-th order jet of o at the point y or, in other terms, p& will also

be tangent up to order %k along another section 7 and at the point z as

soon as J,7(y) = jro(y). The vector field & determines, by (k +1)-st
order prolongation, a vector field p;,;& tangent to A, and we shall

write
V() = prn8Az = pra(PE)|Az.

Since the prolongation operation preserves the brackets, i.e.,
[Pr+1(PE), Pri1C] = Pra1 ([P, C]),

where ( is an arbitrary local vector field on E, then

(D) [prn& praCllAz = [V(E), v(v)] = pra(pE, C])AZ,

(2) [pé&, (] is a vertical vector field on E,

(3) [p&, ¢] is null up to order k& along the section ¢ at the point o(y)
since ( verifies the same property and p§ is tangent to order k& along o

and vanishes at the point o(y).

We then infer that [¥(g), v(v)] = v(v'), where v' € S¥*'TP ® V,E is

the element that, for all W € A5, determines the identification

V', W) = (jra (P& Cle 1) (2) € JpVE, W = ji17(2)).

The above relation shows that any vector field v(£) belongs to the
normalizer, in W(Ay ), of the algebra of infinitesimal transformations of
the affine space A;. Consequently, q(W) is a finite dimensional Lie
algebra, sub-algebra of the affine infinitesimal transformations of Aj.

Since the above argumentation only puts in evidence the infinitesimal
transformations, we see readily that the preceding results remain valid

when Fj.; and F), are replaced just by infinitesimal orbits.
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Theorem 1. Let (F..,F;) be a pair of fundamental equations
verifying p;F;.1 = F,. The connected components of the fibre (Fi,1),,
Z € F,, are the orbits of the finite action, on Ay, of the connected affine
Lie group whose Lie algebra is equal to q(Z). If Y € [1/4541 P and if
prY(Z) =W, then Y[(Fy,1);]= (F.i1)w and the affine transformation
(Jps1E)y; — (Jp1E)y, induced by Y, transforms q(Z) in q(W)
conjugating the corresponding affine groups.

Let us next assume that the first line of the diagram (7) is surjective
at the end at a point Y e (F;,1),. Since F; 1 is an orbit, the Lemma 1

implies that the same property will also hold at any other point Y' e
(Fi41)z- Furthermore, the surjectivity of (£;,1)y shows that any vector

in Ty (Fy41)z = (A r41)y can be obtained by the prolongation of a vector

field & satisfying the property j,.;.1&(v) € S“’”lTy*P ® T,P. On account

of the two commutative diagrams in the beginning of the Section 3 in

Part I ([9]), we finally infer that p; 1§ Ay is an infinitesimal translation.

Corollary 3. When ¢, is surjective at a point W € ¥}, .1 then it is
also surjective at any other point of ¥;,; and the Lie algebra q(Z),
Z e F,, contains a sub-algebra t(Z) of infinitesimal translations whose
orbit issued from a point of (Fy 1), is equal to that of q(Z). Each

connected component of (F,.1), is an affine sub-space of Ay.

Corollary 4. When (.1 is surjective at a point in ¥, 1 and if further
the fibre (F;,1), is connected, then p; : ¥, .1 — F, is a locally trivial
affine sub-bundle of J..1E — F,, any two fibres being linearly

isomorphic under the action of [1,,;.1 P.

Lemma 17. Let (F, )kZM be a family of fundamental equations
verifying the following properties: p.F..1 = F, and F, .1 N pF. = ¢.

Under these conditions, ¥;..1 < pF}, for all k and there exists an integer
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Lo such that ¥y is an open sub-bundle of pF¥;, k > png. The integer pg
is the order of stability (1-acyclicity) of the Spencer 8-complex associated

to the tangent symbols of the equations F), (and their prolongations).

The proof is always essentially the same and so will be omitted.

We now recall that a fundamental equation does not have necessarily
any solution at all. Fortunately or not, there are non-analytic though
involutive differential systems that do not possess any solution! As for
the fundamental equations, if ever they possess a germ of a solution
passing by one of their points then the same will hold for all the other
points and the equation will be completely (or everywhere) integrable. It 1s
worthwhile to state the following corollary, consequence of the preceding

lemma, though containing some repetitions.

Corollary 5. If (F, )kZp. is a family of integrable fundamental
equations and if further the following property holds: p.F,,; = F,., then
F,,1 < pF, forall k and F),, is an open sub-bundle of pF, for k > pg.
We can even assume that pg = 0 since the projection of an integrable
fundamental equation is also integrable.

Let us now return to the study of symbols. We know that g, is
always the algebraic prolongation of g,,, but this is not the case, in

general, for the kernels A;_; . Nevertheless,

Lemma 18. Let (Z;,) be an element of J,E and let us assume, for
k > u, that the morphism (, in the first horizontal sequence of (7) is

surjective at the point Z;.. Under these conditions:
(D) Ay g1 < PAg-1 g for k =y, and

(2) the Spencer d-complex corresponding to the family (A,C_L;ﬂ)kzu is
p-acyclic at order p, (ie., for k>p,) if and only if the complex
constructed with the aid of the family (g, );>o is (p +1)-acyclic at order

C+p, -1
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As for the proof, it will suffice to recall ([9], Section 3) that the family

(¢;;) is a natural transformation of the corresponding &-cohomology

complexes compatible with the algebraic prolongation operations

performed on the principal parts and proceed with the diagram chasing

below by confronting the term AY*T*P ® g/1p1 With AIT*P ® A1 k-

As for the notations, we suggest to have a glance at [12], p.83.

Td@d

0= AT TP @ grasr = ATIT P @ (ST P @ TP) F AT P @ Apgsy — 0

() ) ()

+ + -

Td@ey,
.

0 = AT*PRpur — NTPQ(SHT*PRTP) NT*P® Ap_rp — 0

() ) L&

- L 4 -

0= AT P ® grary = AT P @ (ST P @ TP) L2884 At P @ Ay 0r 1 — 0
16 Lo
0 = AT P ® goiy = AT P @ (42T P @ TP)
®

An entirely analogous argument, where we replace A;_; ; by hy,

shows as well the following lemma that transcribes what we can expect
when the surjectivity only occurs at the level p.

Lemma 19. Let Z € J E be an element such that the first horizontal
sequence in (7) is surjective. Setting h,, = (Au—l,u) and indicating by hy,
k >y, the (k- p)-th algebraic prolongation of h,, then hy, is p-acyclic if
and only if g,,1_1 s (p +1)-acyclic.

Theorem 2. The hypotheses being those of the Lemma 14, let us
further assume that there exists a formal solution (Z, )kzu of the
fundamental system F = (F}.)., (e, Z; € ¥, and ppZy1 = Z}) such

that the first sequence of (7) is surjective at the end along (Z;,). This being

so, we infer that
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(1) the same property of surjectivity also holds for any other formal
solution W = (W,,) of F,

(2) Fy1 = pFy for k = pg, and

(3) po = sup {u, nug}, where py is the integer such that the symbol

9rks kB = ng — 1, becomes 2-acyclic.

We recall that the symbol g,,,(Z;), Z;, € F, is entirely determined
by g,(Z;) and that the homological properties of this symbol are uniform
along a trajectory Fj, in E (cf., the Proposition 4 in [9], Section 6 and the
Corollary 1).

Remark. Under the hypotheses of the preceding theorem, we have
assumed the surjectivity of the morphisms ¢, for & > p, in view of being

able to guarantee the stability of the symbols tangent to the fundamental
equations F; by means of the 2-acyclicity of the algebraic symbols g,,;..

If we let down this property, very useful in applications, it will suffice to
assume the surjectivity of the morphisms ¢, for £ > pgy + 1.

Corollary 6. The hypotheses being those of the last theorem, the
solutions of Fuo coincide with the simultaneous solutions of the (infinitely

many) fundamental equations F = (F, )kzu i.e., with the local sections S

of E satisfying the conditions im j,S < ¥, k > .

Corollary 7. Let F = (F, )kzp be a family of integrable fundamental

equations verifying the property pip¥..1 = F. and let us assume further
that (;, k > pg +1, is surjective along a formal solution of F, ug being
the integer that stabilizes the symbols tangent to the equations F;.. Under
these conditions, we claim that ¥, = pF; for all k > pg and that the
solutions of Fuo coincide with the simultaneous solutions of the system F.

We also conclude thereafter that any particular solution of a given

equation Fj, is as well a simultaneous solution.
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The sorites being terminated (21 pages), let us return to geometry
and try to do some adequate work. We thus begin by considering a finite

prolongation space (E, w, P, p) of order ¢/ and take a local or global

section S of E namely, a structure of species E. We shall say that S is
homogeneous or transitive in the base space if the germs of S at any two

points y, y' € a(S) (the source of S) are always equivalent. In other
terms, there exists a germ of local diffeomorphism ¢ of P with source y

and target y' such that

def -1 _
¢(§y) - p¢o§yo¢ _§y"

where S y denotes the germ of S at the point y. Inasmuch, we shall say

that S is homogeneous of order k when the k-jets of S at any two
arbitrary points y, ¥’ € a(S) are k-th order equivalent which means that
there exists an invertible jet Y € [1,,; P such that Y(j.S(y)) = ji.S(y'),
y=ao(Y),y =B(Y), and where, by definition, Y(j;S(y)) = y®).
JS(y)- Y, y®) being the invertible k-jets on E that corresponds, by
prolongation, to the (¢ +k)-jet Y on P. We shall say, finally, that S is

formally homogeneous when the above k-th order condition is verified for

all the integers k.

We now assume that S is homogeneous of order k£ which means that

the set {j;S(y)|y € a(S)} is contained in a single trajectory, denoted by
Q;(S), under the action of the pseudo-group I',,; on J.E, natural
prolongation, k-th order, of the general pseudo-group T'(P) of all local
diffeomorphisms of the manifold P. Furthermore, when o(S) is
connected, the above set Q(S) is also contained in a single trajectory
0. (S) of the infinitesimal action £,,; since these latter trajectories are
the connected components of the finite trajectories of T';,;. Each Qj(S)
is a finite fundamental equation of order k£ and each ®;(S) is an

infinitesimal fundamental equation of the same order. When S is
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formally homogeneous, we shall denote by Q(S) = (Q;(S)) the family of
all the respective fundamental equations. If, further, j.S takes all its
values in a given infinitesimal trajectory, we denote by o(S) = (®;(S))
the corresponding family.

Proposition 1. Let S be a homogeneous structure of order k and
Q;(S) its finite fundamental equation of the same order. Then Qp_1(S)
c pQ,(S) for every integer h < k. If, furthermore, S is formally
homogeneous, then there exists an integer p, such that Qp.1(S) is an
open sub-bundle of pQy(S) for any h > pg. The integer g is the order of
stability (1-acyclicity) of the Spencer 3-complex associated to the symbols
tangent to the equation Q. (S). If, moreover, the symbol (i.e., the fibre) of
Qp.1(S) above Q4 (S) is, along j,S(y) and for h > p, an affine sub-

space of the total symbol (more generally, if each connected component of
the symbol is an affine sub-space), then Qp.1(S)= pQ,(S) for

h 2 hy = sup {ug, uj. This being so, the solutions of Qy (S) coincide
with the simultaneous solutions of Q(S). The same properties also remain

valid for op,1(S) and o(S), the integers ng and hy being the same as
those for Q(S).

It is clear that the solutions S’ of Q. (S) are precisely the structures
of species E that are k-th order equivalent to the model S, the k-th order
equivalence taking place for all the couples of points y € a(S) and
y' € a(S’). The structures S’ are of course homogeneous of order k and
any structure of this type whose jet at a single point is k-th order
equivalent to a k-jet of S is a structure k-th order equivalent to S.
Likewise, the simultaneous solutions of the family Q(S) are the structures

formally equivalent to the model S, such structures being all formally

homogeneous. We shall say that a structure is connected whenever a(S)

is connected, a connected component of an arbitrary structure S being, by

definition, the restriction of S to a connected component of a(S). Its

image is a connected component of im S.
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Proposition 2. Let S be a formally homogeneous structure. Then, the
local or global structures of species E and formally equivalent to the model

S are the solutions of Q(S). Moreover, when the hypotheses of the last
proposition concerning the affine nature of the symbols of Q — h(S) are

verified, the formal equivalence is then a consequence of the equivalence at

order hg. Finally, when o(S) is defined (which occurs especially when S

is connected), the connected structures formally equivalent to the model S

are the solutions of o(S).

The system Q(S) is, according to the terminology of [13], the

fundamental differential system for the structures of species E that are
formally equivalent to S. In his article, the author considers the model

structure defined on a manifold P, eventually distinct from P. In our
case, we simply identify P, to an open set of P since it is always possible
to transfer the model given on P, onto a model defined on an open set of
P without, for that matter, modifying the equivalence relation.

We could hereafter contemplate in defining the reduced fundamental
system and in transcribing some of the results of [13]. However, we leave
such transcriptions, not all together evident, to the care of the reader

since, at present, we are inclined to examine other important aspects of
the theory.

Let us first observe that the different notions of homogeneity
introduced above refer essentially to the pseudo-group I'(S) of all the
automorphisms of S as well as to the groupoids R,,;(S). In fact, S is
homogeneous when T'(S) is transitive, homogeneous of order k when the
groupoid R,.;(S) is transitive and finally formally homogeneous when
the transitivity of R,,.(S) occurs for all k. We can therefore introduce

the corresponding infinitesimal notions, namely, we can say that

S is infinitesimally homogeneous when L(S) 1is transitive, k-th

order infinitesimally homogeneous when R, .(S) is transitive, i.e.,
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B(R, +k(S))y = T,P, forall y € P, and formally infinitesimally homogeneous

when the last condition is verified for all &. When S is only defined on an
open set U, we shall simply replace, in the above definitions, the
manifold P by the open set U.

Let S be a structure of species E and let us inquire for conditions

rendering the target map B : (R, ;S )y —> T, P surjective. For this, we

set Y = j,,S(y) and recall that
(Rpi1S)y = {irnl(y) € Jo kTP | (pi)y € Ty (im jiS)}.

However, since &, = B(j41&(y)) = ou(pié)y, o : JLE — P, we see
promptly that the surjectivity condition is given by Ty (im j,.S) < (A )y.

Consequently, a structure S is infinitesimally homogeneous of order % if

and only if im j.S is an integral sub-manifold of the distribution
(differential system) A,. Taking into account the integrability
(involutivity) of A ([9], Theorem 2) and the fact that the integral leaves
of A, are the connected components of the trajectories Q; of Ty, we

obtain the following result:

Proposition 3. The following statements are equivalent:

(1) S is infinitesimally homogeneous of order k.

(2) Each connected component of im j.S is contained in an
infinitesimal trajectory of L,.;..

(3) Each connected component of im j,S is contained in a finite
trajectory of T'y,;..

(4) Each connected component of im S is homogeneous of order k.

Corollary 8. The following statements hold.:

(1) Every connected structure that is infinitesimally homogeneous of
order k is also homogeneous of order k and every homogeneous structure

of order k is also infinitesimally homogeneous of the same order.
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(2) Let S be a connected and infinitesimally homogeneous model
structure of order k. Then the class of all the connected structures S’
equivalent to order k to the model S is given by the connected solutions of

the fundamental equation ©(S). Each such equivalent structure S’ is

infinitesimally homogeneous of order k.

(8) Let S be a connected and infinitesimally formally homogeneous
model structure. Then the class of all the connected structures S’ formally
equivalent to the model S is given by the connected solutions of the

infinitesimal fundamental system o(S) or, when the hypotheses of the

Proposition 1 are verified, by the connected solutions of Op, (S) in which

case the formal equivalence is a consequence of the equivalence at order

hg. Any solution S’ is infinitesimally formally homogeneous.

We next discuss the notion of ¢ransitivity. The structure S is said to
be transitive of order k or k-th order transitive when it is homogeneous
of order k and, further, when the projections R ;. (S) — R,,;(S),0< h <k,
are all surjective (in fact, surmersions on account of the Lemma 8). The
structure S is said formally transitive when the above conditions are
verified for all ¥ and, finally, just transitive when it is formally transitive

and, moreover, when R,,.(S) = J,,;[(S). In other terms, this means

that any equivalence of finite order among the jets of S is actually
realised (achieved) by the jet of a local automorphism of S. In essentially

the same way, we can introduce the notions of k-th order infinitesimal
transitivity, formal infinitesimal transitivity and, for short, transitivity
by simply replacing T'(S) by £(S) and R ,,;(S) by R/, .(S).

We observe that the notions of k-th order and formal finite or
infinitesimal transitivity are invariant by k-th order and formal

equivalences, respectively. Thus, if we start with a formally transitive

resp., k-th order model, every solution of the fundamental system €(S)

resp., Q. (S) is a formally transitive resp., k-th order structure. The same
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remarks apply of course to the infinitesimal context taking, however, the
care in choosing for S a formally homogeneous and infinitesimally

formally transitive resp., k-th order infinitesimally transitive structure.

Let us now make abstraction of the model. It is clear that a structure
S is homogeneous of order % if and only if this structure is a solution of a

fundamental equation Q,. Moreover, each connected component of S is a
solution of an infinitesimal equation ®; contained in Q. Inasmuch, S is

infinitesimally homogeneous of order k& if and only if each connected
component is a solution of a finite or infinitesimal fundamental equation

of order k, though these equations may vary along with the connected

component. We have analogous conclusions in the formal context, the
number of equations being infinite unless the hypotheses of the
Proposition 1 be verified.

We next inquire on the equations bearing on the finite jets of a
structure S displaying their k-th order or their formal transitivity

attributes and start examining the infinitesimal aspects that will
curiously place in evidence a new element namely, the Medolaghi-Vessiot

equations (called improperly Vessiot-Medolaghi by several authors).

Let us be given a structure S of species E, let us fix an integer £ and
let us pose ourselves the following problem. What are the conditions to
which are bound the finite jets j;,1S(y), ¥ € a(S) = P so that

(a) the projection R, ;.1(S) — R,,.(S) be surjective (1-integrability

atorder ¢ + k) and

() R,,;(S) — TP be surjective (infinitesimal homogeneity of order £ ).

We observe immediately that the second condition can be replace, in

view of (a), by the surjectivity of R,,;,;(S) — TP. Moreover, we can

replace the above problem by the following equivalent problem:
(a;) R%,,,1(S) — RY,,(S) be surjective and

b;) R S) — TP be surjective,
1 l+k+1
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since the small diagram hereafter is commutative and exact.

0 — Ry i1 (S) — Ryspsa(S) — TP — 0
l $ H
0— RS — Ryr(S) —TP—0

0 0

We first examine the problem (a;). The relations (3) lead us to introduce

the equation ®;,; of order k£ +1 and defined on the fibration £ — P,
O = {Z € B | (RYp1)z — (R ) (z) — 0 is exact}.

The following lemma is evident on account of the Lemma 1.

Lemma 20. The equation ©,. 1 is invariant under the finite action of
Ty 11 as well as under the infinitesimal action of L,,,.,1 or, in other
terms, O, is a union of trajectories. Inasmuch, this equation is
invariant under the left action of the groupoid 11,.;.1 P on J.E and the
infinitesimal action of the algebroid J,, ;.1 TE. The solutions of ©,,1 are

the local or global structures of species E verifying the condition a;.

Since the condition b; is no other than the (k+1)-st order

infinitesimal homogeneity condition, we derive the following result:

Proposition 4. A structure of species E verifies the conditions (a) and
(b) if and only if each of its connected components is a solution of a finite

or infinitesimal fundamental equation contained in the equation ©y,q.

The connected structures satisfying (a) and (b) are the connected solutions

of the infinitesimal fundamental equations contained in ©,1.

We thus see that there exists a whole family of differential equations
of order k£ +1 on the fibration E —> P solving the proposed problem.

Whereas the fundamental equations are well behaved with respect to
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prolongations, this does not occur with the equations ©;,;. In fact, there
does not exist, a priori, any plausible relation between ©®;,; and p®,.
Inasmuch, we can even add that there does not exist any apparent
relation between p.(®;,;) and ©,, all depending on the specific

structure of the prolongation space E. We shall therefore search for the
desired results with the help of the theorem of Quillen.

With this in mind, let us first recall that this theorem strongly relies
on the 2-acyclicity of the symbols and the Corollary 1 tells us that the
homological properties of the symbols g,,; are uniform along the inverse

image of an orbit of degree zero hence, in particular, along a fundamental
equation F,. On the other hand, if S is a solution of F;, S takes its

values in the orbit of order zero Fy = B(F},). Consequently, when F is
integrable then F, c J.F; and this leads us naturally to only consider
the prolongation space (Fy, n, P, p) of order ¢ that will be called
subordinate to (E, n, P, p) and whose prolongation structure is simply
obtained by restricting the structure of E (cf., [9], Theorem 2). When F,

is a finite trajectory, the prolongation laws of E admit natural
restrictions. Quite to the contrary, when the trajectory is infinitesimal,
the infinitesimal prolongation law restricts without any problem while
the finite law will have to be restricted, at each order k, not only to the

open sub-groupoid of [],,; P, composed by those finite jets that preserve
the k-th order transverse contact elements of dimension n tangent to F

but also to the solutions of this sub-groupoid. In particular, the
a-connected component ([I,,; P), is contained in this sub-groupoid. It

is clear that J.F; is invariant in J,E (always respecting the above

restrictions concerning the infinitesimal orbits) and we shall denote by
0;,1(Fy) and g,,.(Fy) the equation ©;,; and the symbol g,,;,

respectively, when restricted to /1 Fy and J.F,. The restricted symbol

has the same homological properties everywhere. Lastly, we shall call
Fy-admissible any fundamental equation contained in ®;,; and thus

find the so claimed Medolaghi-Vessiot equations ([15], p.436, Equations
(58) and (59)).
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Theorem 3. Let (E, &, P, p) be a finite prolongation space of order
(, (Fy, m, P, p) the prolongation space subordinate to an orbit ¥, and
Ng = Na(Fy) the integer from whereon the symbol g,,1.(Fy), k > no,
becomes 2—acyclic. The linear equation R, ;(S) associated to any solution
of an Fy-admissible fundamental equation of order k +1 > ng +1 is then

transitive and formally integrable i.e., formally transitive. Moreover,

when ny, =n,(Fy) is the integer where from the restricted symbol
9/+5(Fo), k = ny,, becomes involutive, then the equation R, (S), k > 1,
is involutive.

The argument is as follows. S being a solution of a fundamental
equation of order k + 1, we know (cf., the Lemma 8) that R, ;(S) as well

as R, ;..1(S) are regular equations and that R,,;,;(S) = pR,,.(S).

Furthermore, the symbol g,,,(S) = (j;.S) g, (Fy) is 2-acyclic and the
morphism R/, ;,;(S) — R,,;(S) is surjective since S is a solution of the
Medolaghi-Vessiot equations of order %k +1. We thus re-encounter the
hypotheses of Quillen’s theorem ([12]) and consequently R, ;(S) is
formally integrable. We also observe that R,,;.9(S)=p R/,..1(S)

since the equation of order ¢+ k% +1 is regular and the 2-acyclicity

implies that R/, ;. 9(S) is also regular. An inductive argument will then
show that all the equations R,,;.;(S) are regular and that
R/ 1:141(S) = PRy, 1.4 (S), which by the way is already stated in the

theorem of Quillen. We finally observe that this theorem does not require
the regularity of the first two equations since it suffices in fact that

R,.;(S), hence also its prolongation, be defined by a differential
operator, which is always the case for the equations R, ;(S). The

regularity is just a Black Friday extra bonus.
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Corollary 9. When g,(F,) is 2-acyclic then every solution S of an
Fy-admissible fundamental equation of order 1 is an infinitesimally
formally transitive structure of species E (more so, of species Fy). If,
further, g,(¥y) is involutive, the same will be true for the structure S, i.e.,

for the equation R,(S).

We can now consider the section j,S as being a structure of species
J.E, prolongation of order k of the structure S and the last theorem can

be paraphrased by the

Corollary 10. Let (Fy, n, P, p) be the prolongation space subordinate
to an orbit ¥y of (E, n, P, p). The k-th order prolongation of any
Fy-admissible fundamental equation of order k+1>mg+1 is a
structure of species J.E (viz. of species J) that moreover is

infinitesimally formally transitive. Inasmuch, the prolongation of order

> 1, is an involutive structure.

We need not play, for the prolongued structures, the Ehresmannian
semi or non-holonomic game, i.e., by considering spaces like Jp(J,,.E),

since we can see promptly that R, ). (j;S) = Ryp4,(S) as soon as we
define these equations by the contact order of the prolongued vector fields
with the sections defining respectively the structure.

Corollary 11. Let F,.; be an integrable fundamental equation
contained in O, and assume that g,.;.(¥y), ¥y = poFj41, s 2-acyclic.
Then, for any h > 0, the h-th prolongation ppF;,; is an Fy-admissible
fundamental equation of order k + h +1, namely, the unique integrable

fundamental equation projecting onto ¥, 4.

In order to prove this statement, we take an arbitrary connected
solution S of ¥, 1, set Y., = ji.2S(»), h =1, and denote by F;,; the

fundamental equation of order %k + A (finite of infinitesimal according to

the nature of Fj ;) that contains the point Y;,;. The Theorem 3 tells us
that R,,;(S) is transitive and formally integrable whereupon we

conclude that:
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(a) The structure S is formally homogeneous hence im j,. ;S < F.,;,

i.e., F,j isintegrable and consequently

Fiini < pFpypn < ppFiia.
(b) The morphism

(RY — (R

+k+h )Yk+h l+k+h-1 )Yk+h—1

is surjective hence F,,; is Fjy-admissible and, on account of the

Lemma 12, the mapping (/. )Yk+h is also surjective. The 2-acyclicity of

9/+%(Fp) implies (Lemma 15) that pg = £ + 1 is equal to the integer that
stabilizes the symbols tangent to the equations F) and consequently
(Corollary 10), F;, .1 = pFj,p or, in other terms, ¥}, ;1 = ppFi,1. The
uniqueness of the equation F,; ; is obvious since any other integrable
fundamental equation of order k+ A +1 that projects onto Fj . is

necessarily contained hence equal to p;,Fj. ;.

This corollary shows that given an Fj-admissible and integrable
fundamental equation F;,;, k+12=mg +1 (cf, the Theorem 3), there

will be no place in pushing any further the calculations that is to say,

search for solutions S of Fj-admissible fundamental equations Fj_ ;.j
projecting upon Fj,; since we shall find no other than the solutions of

F; .1, no additional restriction being therefore possible.

We thus see that the local or global structures of species E admitting
an infinitesimally formally transitive prolongation can be searched for

among the solutions of the Fj-admissible and integrable fundamental
equations of orders k +1 > no(Fy)+1. Moreover, this method exhausts
the connected structures. In fact, if j.S is an infinitesimally formally
transitive structure, the equation R, .(S) is formally integrable and
transitive. Taking, if necessary, an integer k' > k, this equation acquires

a 2-acyclic symbol. Since, by definition, this equation verifies the
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conditions (a) and (b), the section S is the solution of a fundamental
equation F,,; contained in ©,,; (Proposition 3) and thereafter is
Fy-admissible, where F, = poFj,;. Since g,,;(Fy) is 2-acyclic, we can
find the structure S by the method of the Theorem 3. When the structure

is not connected, each of its components can be determined by the above
method.

The preceding results involve integrable fundamental equations
hence it is high time for us to examine the formal integrability of the less

restrictive Fj-admissible fundamental equations. The next lemma as
well as the theorem show that, subject to reasonable hypotheses, the
Medolaghi-Vessiot equations have good properties with respect to
prolongations and formal integrability.

Lemma 21. Let F,,; be an Fy-admissible fundamental equation
verifying the two properties: p¥..; # ¢ and g,.,(Fy) is 2-acyclic. Then
PF;..1 isalso an Fy-admissible fundamental equation.

In order to prove this rather remarkable result, we first observe that
the condition pF,,; # ¢ entails (Corollary 2) that pF),; is a regular

equation of order k + 2, namely, a locally trivial affine sub-bundle of

Jri9E — Fp,1 and, in particular, that its tangent symbol (y;,5),, at a
point Z € pF,; is the algebraic prolongation of (A j.1)y, Y = pr1Z,
the latter being the symbol tangent to Fj,,; at the point Y. We also know
(Lemma 11) that pFj_; is a union of trajectories, i.e., the trajectory F, o
that contains the point Z is entirely contained in pFj_ ;. We infer that
the tangent symbol (A1 j.2); of Fy.o at the point Z is contained in
(Yp+2)z. Let us now re-examine the diagram (8) at its stage (1, k +1)
where we shall replace the kernel A;_; ; by im /. The fact that Fj,; be
Fy-admissible implies (Lemma 12) that im (£} )y = (Aj 441 )y and the

proper definition of ¢ (cf., (7),) shows that im ({;,9); < (Api1k+2)z-



ON THE EQUIVALENCE PROBLEM FOR ... 79

Last but not least, the 2-acyclicity of g,,.(F,) implies that the third

vertical sequence in (8), 1.e., the sequence

. o) * 3 * .
m (€k+2 )Z —)TyP ® (Ak,k‘+1 )Y —)/\2Ty ®im (fk )Y

Y = pyZ, is exact. But this means precisely that im ({;,5), is the

algebraic prolongation of (Ay )y or, in other terms, that im ((;,9),

= (Yg+2)z D (A1 p+2)z and consequently that im (£).9); = (Api1ri2)7-
The trajectory F;,o is Fp-admissible (Lemma 12) and Fj,9 = pF. 4
since ({},9), is surjective (Corollary 6) and the symbols tangent to both

of these equations coincide (cf., the proof of the Lemma 14).

Theorem 4. Let F,,; be an Fy-admissible fundamental equation
and let us further assume that the symbol g,.;,(Fy) is 3-acyclic. Then
F,..1 is formally integrable if and only if pF;,1 # ¢ (on each fibre!) and,
this being the case, each ppF¥,..1 is an Fy-admissible fundamental

equation. If, moreover, g,.;.(Fy) is involutive then ¥, is also involutive.

The proof is almost obvious. We know, according to the Corollary 2,

that pF,.,; # ¢ if and only if F,; is l-integrable and, whenever this
condition is fulfilled, that pFj,; is also a regular equation. More
precisely, pF,,; is a locally trivial affine sub-bundle of J, oE — F}. ;.
The 3-acyclicity hypothesis on g,,.(Fy) entails, having in mind the
Lemma 16, that the tangent symbol A ;.; of F,.; is everywhere
2-acyclic. We can then complete the proof using a non-linear version of
the theorem of Quillen and showing the formal integrability of F,.; by
induction on the integer A so as to propagate the result of the preceding
lemma to all the prolongations (see, for a hint, [12] and [7]).

Scholium 1. When (E, n, P, p) is an analytic prolongation space
and when F;,; is an Fj-admissible 1-integrable fundamental equation

whose symbol g, (Fy) is 3-acyclic, then F, ; is integrable, each of its
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elements being the (k + 1)-jet of an analytic solution S. Furthermore, the
solutions of any such equation are analytic structures whose
prolongations of order k + 1 are infinitesimally transitive.

Prolonguing if necessary the equation F,;, we find an equation with

involutive symbol hence the result is a consequence of the Cartan-Kdhler
or the Cauchy-Kovalevskaya (or even perhaps the Monge-Ampére?)
theorems. The last assertion follows from the above mentioned theorems
and an eventual prolongation procedure of the formally integrable

equation R, (S) so as to attain involutivity.

The condition pFj ; # ¢ is a point wise imposition since, for this to
be so, it is necessary and sufficient that, at a point Y € F;,;, the tangent
space TyF,; contain a contact element of order 1 transverse to the
fibration J;,;E —> P and holonomic. This condition corresponds, when
k = 0, to what the author of [14] calls The generalized Jacobi relations,

that seem rather out of place.

Let us next show that the restrictions ©,,;(Fy) of ©,,; to the

subordinate prolongation spaces are closed sub-sets of JJ; 1 Fy. We shall
prove simultaneously that the restrictions ;.1 N Bgil(FO) are closed

sub-spaces in B;l;(Fy), where Bj,1 : Jp,1E —> JyE. The argument

will be based on a local coordinates calculation which, in its essence, can
already be found in [1], Vol. 2, Chapter V, Section 9 (Cenni sulle ricerche
di Engel-Medolaghi-Vessiot).

Let (xl) be a system of local coordinates defined on an open set U of
P, (xi, »*) an adapted system on the open set U of E and
(x%, ¥*, yé )\a\sk the corresponding system on PB; (i) < JE. Let us

further denote by (z') the same coordinates (x') on U and then start

our coordinate juggling game.
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At each point z = (zi ) belonging to U, the vector field
= /B -2Pa/ant, (w-2f = (x" =2 (" =2,
1< Bl <k,
vanishes at the point z and, consequently, e?(z) = jkﬁgz(z) e (JPTP),.

We further remark that the set {e?(z)} is a basis of this Lie algebra, the

Engel basis according to the terminology of [15] since, as soon as

=Y &0/ ox', then ji&(z) = > (Pl / axP) (2)P (2).

The sections 6? : U — JYTP are differentiable and constitute a local

basis of the fibre bundle J,?TP|U. Let us now place ourselves in the

context of an ¢-th prolongation space E and let us re-take the above

notations with k& replaced by ¢ + k. To each section e?, 1<B < l+k, of
J ,? TP, corresponds a prolongued vector field pk;e? of J.E defined on the

open set a%l (U) and taking its values in the vector bundle VJ,E. The

set of all these prolongued vector fields is not, in general, linearly

independent at all the points but, nevertheless, it generates the vertical

distribution A, N VJ,E. However, for any Z e o;l(U), the isotropy

(RY,;), is the set of all the linear combinations of the (¢ + k)-order

Engel basis, at the point z, whose coefficients are precisely those that

establish a relation of linear dependence among the prolongued vectors

pZeE'. In order to better describe the vector space of these linear

relations, let us return, with the obvious modifications, to the exact

sequence (7) of [9] namely,

Xk
0> R, - JY TP xp J.E - VJ,E,
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and let us set

(A o) are linear forms defined on the vector bundle

The coefficients «
JY TP xp J,E and it is evident that W e RY,, if and only if
a(k’a)(W) = 0 for any pair (A, a). The local basis {e?} of JP,TP|U lifts,

by reciprocal image, onto a local basis of the fibre bundle
JY TP HO)
(+p 7 Xp O .
Let us now write

(ha) _ (0 0) By
a ‘Z“(ﬁ,i)(i)’

where {(e£3 )'} is the dual basis to {egj }. The matrix of A, ! with respect to
the local bases {EE'} of JO, . TP xp 5 (U) and {6/ ay’} of VBH(U) < VIILE

1s no other than a(oL @) a matrix whose coefficients are functions defined

B, i)’
on the open set ;' (¢/). Furthermore, the dimension of (RY,; ), is equal
to the co-rank of this matrix since the above isotropy is the common

A0

kernel of the forms al Let us now take a point W e B;l

(U) = J} .1 E projecting in Z and let us indicate by

A,
(b((ﬁ,%))’lﬁlalﬁk+1, 1<[p <k+1,

the matrix of A;,;. The commutative diagram

Inot to be confounded with the indices A.
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Xk+1
0
Sk 1 TP xp B - V1 E

\2 I Tp

Ak
JY TP xp J,E > VJLE

shows that Tp o A;,; factors to o ?JrkTP xp J,E onto the morphism 2,

and, consequently, the matrix of A;,; transcribes by

o

where A is the matrix of Xk and the blocks (B C) are formed by the
components of the forms b(k’“), |o| = & +1, the block C being formed by

the b((é"?)), with |B| = ¢+ k+1. The coordinates being fixed, we can

identify (J?Jrk.TP)Z to a direct factor of (J?JrkﬂTP)Z, the forms a(Zk’“)
then becoming linear forms on the second space. Under these conditions,
the surjectivity of (RY,;,1 )y — (RY,,), simply means that the quotient
sub-space [b(W)"(X)] / [a?’a)] projects injectively into the space
[e?(z)*]‘m: 4+1> Where [] indicates the generated sub-space. However, the

rank of this projection is given by the rank of the block Cy and,

consequently, the surjectivity can be translated by the following

condition: The rank, at the point W, of the above matrix is equal to the

I

Since the rank of C can vary, this condition cannot be translated, locally,

rank of

by the vanishing of a certain number of determinants. We remark

nevertheless that (g/,;41) 1is the simultaneous kernel of the
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restrictions, to the total symbol, of the forms b(k’a), lo] = k +1, hence the
rank of Cy, equal to the co-dimension of (g,,;,1 )y, is constant above a

trajectory F, of E, where after, we can determine locally, in the

reciprocal image Bﬁl(Fo), the equality of the ranks of these two
matrices by means of the nullity of a certain number of determinants.
The equation ©;,; is therefore closed in th(FO ). In particular,

0.1(Fy) is closed in J ., F.

The above reasoning amounts to a long elimination process. In fact, if
we write explicitly the linear equations, bearing on the components ﬁé of
ajet jyipi16(2) € IO, 1.1 TP, that define the sub-space (RY, .4 Jw» then
the projection of this isotropy in (Rg +1 )z will have, besides the equations
defining (RY,;);, all those that arise from the equations

pha) _ 0, |o| = k +1, by the elimination of the unknowns &é, Bl =¢+k+1.

However, this elimination consists in taking the linear and linearly
independent relations among the lines of C namely, the linear
combinations that annihilate the lines of C and rewrite these same
relations with the help of the lines of B. We shall thus obtain the

auxiliary equations that define the projection of (R? k41 )w- The equality

of rank condition for these two matrices means precisely that the

auxiliary equations are linear combinations of the equations defining
(RY,1,), or, equivalently, the equations whose coefficients are given by
the lines of A. We thus find (apparently) the arguments of [15], p.297,
which are performed at first order and for the almost-structures modelled
on a transitive Lie pseudo-group.

Proposition 5. When (F,, n, P, p) is the prolongation space
subordinate to an orbit Fy contained in E, then the equation ©;1(Fy) in

J..1Fo is a closed sub-set locally defined by the vanishing of a certain
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number of determinants namely, those that establish the equality of ranks

of the previously indicated matrices. Moreover, the rank of the first matrix
is equal to the fibre co-dimension of R?+k+1|Jk+1F0 and the rank of the

sub-matrix C is equal to the co-dimension of g, .1 (Fp).

A prolongation space (E, n, P, p) of order ¢ 1is said to be
homogeneous when T, or, equivalently, [I, P operates transitively on E.
Examples of such spaces are the total spaces of /-th order G-structures

as well as those of almost-structures modelled on a transitive Lie pseudo-
group and all the previous results transcribe in this context where we

replace F, by E (= Fy). Moreover, the only proper subordinate
prolongation spaces are the infinitesimal orbits in E. We terminate this
section by resuming all the data concernig formal transitivity.

Theorem 5. Let (E, n, P, p) be a finite prolongation space of order
and (F¥y, n, P, p) the prolongation space subordinate to an orbit F,
contained in E. Let us denote by ng = n9(Fy) the integer where after the
symbol g,,1.(Fy), k = ng, becomes 2-acyclic and by n,, the integer where

after this symbol becomes involutive. Under these conditions:

(i) The non-linear equations R, 1(S), h > 0, associated to every
solution S of an Fy-admissible fundamental equation of order k +1 >
Ng +1, are transitive (in (a(S)) Lie sub-groupoids that further are
closed, locally trivial and regularly embedded in Tl ;45 o(S),
Risk+n1(8) = PR 1114 (S) and the morphism

Rﬁ+k+h+1 (S) - Rﬂ+k+h(S)

0

is a submersion. If, moreover, the isotropy groups (Rl+k+h

S), at a point
y € a(S) are all connected (or else project one upon the other), then the
above submersions become surjective and the equation R,,.(S)
will be formally integrable. This being the case, the k-th order prolongation

of the structure S is also formally transitive above the open set o(S).
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(i) The o-connected components R, ;.;(S)y also verify the same

regularity properties, the transitivity taking place in each connected

component of o(S) hence everywhere when S is connected. Finally, the

prolongation-projection properties stated above also transcribe for the

connected components namely, Ry . n41(S)g = PR 1141 (S)y and

7zé+k+h+1(s)0 - 7z£+k+h(s)0

is a submersion or, in other terms, the equation R, . (S), is formally

integrable and becomes involutive when k > n.,.

The proof is essentially provided by all the preceding sorites.

Let us next observe that the fibres of the fibration
0 0
72k+k+h+1(s) - 7€€+k+h(S)

are affine sub-spaces. Consequently, if for some integer A the isotropy

R(e)+k +h(S)y is connected, the same will occur for all higher order

isotropies at that point and the transitivity of R,,;.,(S) will further

0
(+k+

imply that R, ,(S), is also connected at any other point y' € a(S).

Corollary 12. The given data and the hypotheses being those of the

theorem, let us assume further that R?Jrk(S)y be connected at a point

yeaS). Then R,.;(S) is formally integrable and the k-th order

prolongation of any solution S of ¥}, is a formally transitive structure.

We thus see that the infinitesimal formal transitivity properties
imply the same properties for the finite formal transitivity as long as we
restrict the finite order equivalences to the a-connected components of
the non-linear Lie equations associated to the structure S. Whenever one
of the isotropy groups is connected, all the other goups are also connected

and the formal transitivity is assured without any restriction.
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We can equally define the (k+1)—st order equations ©;,; by
considering the set of all Z € J;,1E such that the morphism

0 0
(Risri)z — (Riwk)pz

is surjective. These equations are obviously invariant by the action of

Ty 41 and [Ty P and ©4,; < ©,,;. Moreover, every solution of a

finite fundamental equation of order k +1 contained in O, verifies the

following two properties:

(@) Ryip41(S) — Ry, (S) is surjective, and
() R, (S) is homogeneous of order k.

The fact that S is a solution of a fundamental equation implies
(Lemma 8) that both equations are “good” Lie sub-groupoids. Taking a
finite trajectory Fy in E as well as the corresponding subordinate
prolongation space, we shall obtain all the structures admitting formally
transitive prolongations - at least for each connected component of such

structures - as the solutions of Fj-admissible fundamental equations

(i.e., contained in (:);f +1 NJ;1Fy), in applying the non-linear version of

Quillen’s theorem at the level of 2-acyclicity. Finally, if we ascend to the
level of involutivity, we shall obtain involutive equations and
consequently transitive structures, for short, in the analytic case.
Besides, it is clear that the solutions of these fundamental equations are,
up to a prolongation, infinitesimally formally transitive and that the
preceding results concerning the properties of Fy-admissible
fundamental equations can be entirely transcribed when the
admissibility is taken with respect to ©,,; since the conditions (a) and
(b) for the non-linear equations imply the corresponding conditions for

the linear equations. Unfortunately, The equations ©,,; are not

susceptible of a good analytical description since the surjectivity of the
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isotropy groups is more likely a global topological problem involving
connected components once this surjectivity is verified at the Lie algebra

level, i.e., when the linear sequence
0 0
(Risri1)z — (Riyp)yz — 0

is exact.

We finally remark that all the preceding definitions and results are
based on the general pseudo-group I'(P) of P and the groupoids [1,,; P.
We can however and without any additional difficulties by simply
adapting the definitions, re-write the entire section in the restricted
context though it seems unavoidable, due to the nature of the various
concepts, to consider no other but the transitive pseudo-groups. In fact,
when I' is a transitive Lie pseudo-group of order k; operating on the
manifold P and £ the corresponding infinitesimal pseudo-algebra, we
can replace the general equivalence problem by the restricted one, the
fundamental equations then becoming the finite or infinitesimal
trajectories of the prolonged pseudo-groups or pseudo-algebras T'y,; and

L. In much the same way, we shall replace, in the notions of

homogeneity and transitivity, the general equivalence by the restricted

one limiting ourselves to the elements of J,,,I" and J, ;L.

3. Formally Transitive Structures

Let (E, n, P, p) be a finite prolongation space of order ¢ that we
assume, from now on, homogeneous or else we restrict our attention to a

subordinate prolongation space relative to an orbit of order zero.

We next consider a formally homogeneous structure S of species E
and will say that another structure S’ is formally equivalent to S when,

for all integers k£ > 0 and for any pair of points y € a(S) and y' € a(S’),
there exists Y e [1,,; such that Y(j,S(y)) = jiS'(y') or, in other terms,
when the two jets belong to the same k-th order finite orbit namely, the

orbit containing im j.S. The jet Y will be named a k-th order finite
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equivalence. Further, we shall say that the formal equivalence is

dominated when there exists an integer vy such that every finite
equivalence Y of order k > vy is “dominated” by a finite equivalence Y of

order k +1, where pk? =Y. This being so, every finite equivalence of
order k > vg is induced, at order k, by an infinite order equivalence
namely, by an infinite jet (Y} ),>o, Where Y}, is a finite equivalence of
order h and pyYj,; =Y. Such an infinite jet is, in view of the Theorem
of Borel, the infinite jet j,@(y) of a local diffeomorphism ¢ of the

manifold P. The notion of dominated formal equivalence is actually the
notion of equivalence most often adopted in the study of G-structures.
The recurrent construction of principal bundles whose elements are the

k-th order equivalences of the flat model with the G-structure, this being

achieved by requiring the nullity of the successive structure tensors or
else by equivalent conditions imposed on the fundamental forms where

after culminating in the desired dominated formal equivalence

We shall say that two germs of structures of species E are formally
equivalent when they admit formally equivalent representatives, the
dominated equivalence being defined similarly with the help of
representatives. The study of the formal equivalence of formally

infinitesimally transitive structures is a consequence of the Corollary 15.
Theorem (of formal equivalence) 6. Let S be a connected
infinitesimally formally transitive structure of type E and ng = ny(S) the
integer where after the symbol g,.;(S), k > ng, is 2-acyclic. In order that
a structure S be formally equivalent to S it is necessary and sufficient
that S’ be a solution of the fundamental equation F112 +1 that contains im

anHS. Such a structure S is infinitesimally formally transitive and its

symbol g,,;.(S") has, for all k > 0, the same homological properties of the

initial one, the formal equivalence being a consequence of the finite

equivalence of order mg + 1. Moreover, if S or one of its prolongations is

formally transitive, that will notably take place when the non-linear
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isotropy groups (R?+kS)y at a point yy project, for k > kg, one upon the
other or else when one of these groups is connected, then the same will

hold for S’ and the formal equivalence will be of dominated type.

The structure S being connected, it is also homogeneous at any order

and consequently im j,, 1S is contained in a fundamental equation

F

ho+1 that is admissible due to the (ng +1)-st order infinitesimal

transitivity of S. The uniformity of the homological properties of the
symbols implies that g,,; = g,,4(S) is 2-acyclic for k¥ > ng and the
Corollary 15 then shows that S and S are, for all k& > 0, solutions of
piFy,41, which is the admissible fundamental equation, orbit of

im  Jjy,+k+1S- The property relative to the symbols g,.;(S’) is an

immediate consequence of the Lemma 5. Finally, the part concerning the
formal transitivity of S’ as well as the dominated equivalence result by
an easy argument on the isotropy groups. We shall remark, for that
matter, that the set of all the k-th order equivalences with a given source

y and a given target y’ is a homogeneous space of the isotropy groups

(R?+ks)y and (R?-st')y"

Remark. The connectedness hypothesis of the structure S can be
replaced by the formal homogeneity or even by the homogeneity of order

ng +1, in such a way as to assure that im j,, ;S be contained within an

orbit.

Corollary 13. Let S be a connected structure or a formally
homogeneous structure whose p-th prolongation is infinitesimally
transitive and let mo be the integer from where on all the symbols
9/45(S), k = ng, become 2-acyclic. In order that S be formally equivalent

to S, it is necessary and sufficient that S’ be a solution of the fundamental

equation Fy,1, k = max {u, ng}, that contains im j,,1S. The p-th

prolongation of such a structure S is infinitesimally formally transitive.
If, further, one of the prolongations of S is formally transitive, the same

will occur with S’ and the formal equivalence will be dominated.
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The formal problem being resolved, we can proceed with our inquiry
and look at what really matters, namely, the local equivalence of the two
structures. But here there is no way out other than to integrate the

fundamental equations.

As for non-transitive structures, we should point out that much can
be said in the case where the pseudo-group of local automorphisms or the
pseudo-algebra of infinitesimal automorphisms have regular orbits and,
more precisely, when these orbits are distributed within a regular
foliation. We can even assume that their prolongations to E provide as
well regular foliations. In this case we can define, at least locally,
quotient prolongation spaces and quotient structures and, adapting
accordingly the definitions, we shall be able to rewrite most of what was
stated in this and in the previous section and consequently study the
local as well as the global equivalence problems. We should also mention
that Pradine’s holonomy groupoid is certainly a powerful tool that will

hopefully determine the equivalences.

We finally say a few words on a rather outstanding example of a
transitive and homogeneous structure, one of the many Chef — d'Oeuvres
given to us by Elie Cartan ([3], [4]). We are referring here to the Systéemes
de Pfaff en Drapeau or, in celtic, Flag Systems.

These are very special non-integrable Pfaffian systems enjoying the
property of “slowly increasing their manifestation” of non-integrability or,
in other terms, the successive derived systems decrease their dimensions
just by one unit and, of course, terminate by the null system. The most
remarkable about these systems is the fact that they provide a vivid
example of one of Cartan’s merihedric (mériédrique) prolongation and
equivalence processes. Since all this can already be learnt in [11], [10],
and [8], we shall only tell “a nice story” about them. First of all, and this
is the main fact, the automorphism groups and algebras of arbitrary Flag
Systems are all canonically isomorphic and, more specifically, they are all

canonically isomorphic to the Darboux automorphisms emanating from

the equation dx? - x®dx! = 0. We can however study and classify these

structures with the help of the isotropy groups and algebras of arbitrary
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orders. These are intrinsically defined objects and the classification
comes out upon looking at the differences in the co-ranks of these
(Fréchet infinite dimensional) groups and algebras at least for those flags
that the author in [9] calls elementary. When the systems are non-
elementary, their classification becomes much more delicate and a new
phenomenon does occur namely, the appearance of continuous or even
differentiable deformations (variations) of a given flag via non-equivalent
flags. However, we can also cope with such phenomena by considering
again the isotropy algebras as discrete (finite number of variables)
moduli. Most authors still employ the rather clumsy and outdated
pseudo-normal forms introduced, way back in 1980, by the present
author though the above terminology is due to others. At present, we can
do no better than apologize for having considered these silly and uncouth
objects and where several authors come forth with fathom deep proofs
that nobody will ever read nor understand except, and with all the

blessing and mercy of the All Mighty, those authors that wrote them.

And what about the totally intransitive or rigid structures. For this,
we shall be forced to “admire the fragile and beautiful butterfly that
opens its wings in Aix-en-Provence and causes not the display of similar
wings in Fukushima but a tsunami”. This being a rather long subject we
shall not even try to say a word about it hoping that other authors give

us much to read and enjoy.
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